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Abstract. Deep learning algorithms perform poorly on long-tailed
datasets because there is insufficient data in the tail classes to re-
cover its original distribution, resulting in an under-representation of
the tail classes in the model. In this work, we propose H2T-FAST,
a Head-to-Tail Feature Augmentation method by Style Transfer to
improve the performance of the tail. H2T-FAST has the following
advantages: (1) It is a fast and universal method that acts on the fea-
ture space and so, it can be applied to different backbone networks
as well as easily integrated into various imbalanced algorithms with
stable performance gains; and (2) it is used only in the training phase
and therefore, imposes no additional burden on the deep neural net-
work in the testing phase. In particular, we firstly and randomly se-
lect the same number of head samples as the tail ones in each training
mini batch. Secondly, the style of the head is transferred to the tail to
generate new tail data containing the head style, as a way to increase
the number of the tail and get better feature representations. We test
our methods on several benchmark vision tasks with state-of-the-art
performances.

1 Introduction

Deep learning has made significant advances in the field of com-
puter vision [10, 22, 23]. On the one hand, because of the design
of complex convolutional neural networks; on the other hand, artifi-
cially designed balanced large-scale datasets are essential to success.
However, in reality, most data tends to be unbalanced, even with a
long-tailed distribution: most classes have few samples, while only
a few common classes have sufficient samples. Most models fail in
long-tailed recognition tasks because they will favor the head classes,
resulting in an under-representation of the tail classes.

Figure 1 clearly shows the problems with the model on the long-
tailed distribution. In Figure 1 (a), we first draw the feature visual-
ization of the training data with T-SNE on an artificially constructed
long-tailed CIFAR-10 dataset. Numbers O to 9 represent different
classes from the heads to the tails in order with the number of points
representing the sample size. We can find that the head has a large
feature space due to a large amount of head data, but the sample
points in the tail occupy a limited feature space due to the small
number. Because of the huge variance in feature space of head and
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tail data, the model will prefer to classify more uncertain data into the
head classes. In this work, we hypothesize that the head data contains
rich information for us with which we can improve the performance
of the tail data. We propose H2T-FAST to use the style information
of the head data to merge the tail data for generating new tail data. By
doing so, the tail class gets a better and larger feature space. Figure 1
(b) shows the feature visualization plotted after randomly generating
10 tail samples for the tail data using H2T-FAST. It is visible that
the tail data has a larger feature space and the decision boundary be-
tween different classes is also obvious. In particular, the before and
after features of one tail class are circled in the figure.

Numerous current works are mainly divided into two categories:
re-weighting and re-sampling. The re-weighting approach is mainly
an adjustment of the loss function, generally giving lower weights to
the head classes and higher weights to the tail classes, thus counter-
acting the long-tailed effect in reverse. It is easy to implement and
flexible but causes an additional burden for the optimization process.
The re-sampling approach focuses on undersampling the head data
and oversampling the tail data so that the training samples learned
by the model are class-balanced. However, the large amount of data
with sufficient variance in the head is not fully learned, while the
small amount of data in the tail is often learned repeatedly, resulting
in underfitting the head data and overfitting the tail data.

An obvious approach of augmenting the tail classes can solve the
problem of little diversity and lack of robustness of the tail classes.
Liu et al. [16] transfer the intra-class angular distribution learned
from head classes to tail classes. Chu et al. [6] leverage the head
class-generic information to recover the distribution of tail classes.
Although these methods play a good effect, they do not take full ad-
vantage of the style information in the head data classes themselves.

To alleviate the above drawbacks, we draw on the concepts of con-
tent and style of images in style transfer. The content generally refers
to the shape and form of the image, while the style mainly includes
texture and color [9], and the style information extracted in the first
few layers of the network usually does not include semantic infor-
mation. So we use the shallow style information of the head data to
change the style of the tail data and keep the tail content unchanged
to generate new tail data and ensure that the newly generated tail
data is still the original tail class(no matter what color something is,
its essence is still the same).

In this paper, we propose H2T-FAST as a new feature augmenta-
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The visualization of H2T-FAST features with T-SNE. (a) The visualization of features from 10 classes in CIFAR10. The tail class has a smaller

feature space compared to the head class. (b) We use the H2T-FAST method to get a better representation of the tail features, with wider feature space in the tail
classes, especially in the purple class circled in the figure.

tion method. Specifically, we first get the structural style information
and the content of the data in some intermediate layer of the network,
and afterward randomly fuse the style information of the head data
and the content of the tail data to generate new tail data. In doing so,
we will get more tail data with different styles and restore the diver-
sity within the class. In summary, our contributions are threefold:

e We propose H2T-FAST, a computationally low-cost feature aug-
mentation based on the style transfer method that increases the
amount of the tail and recovers the original tail distribution to im-
prove the performance when training with long-tailed datasets. To
the best of our knowledge, it is the first to introduce the style in-
formation into the long-tailed recognition and uses the style infor-
mation from the head to augment the tail classes.

o The proposed H2T-FAST can be applied to all backbone networks
and can be integrated into various long-tailed algorithms as well as
other data augmentation methods with stable performance gains.

o We evaluate H2T-FAST extensively on various long-tailed settings
and confirm that H2T-FAST is universal and effective for different
scenarios.

2 Related Work

Re-Balanced Training. For long-tailed recognition tasks, the
most widely used solutions are re-weighting [7, 4, 11] and re-
sampling methods [26, 12, 3]. Recent studies on re-sampling have
yielded good results. BBN [26] dynamically fuses two branches, one
learning from the original data and the other learning from the flipped
sampled data. Decoupling method [12] uses instance-balanced sam-
pling at the first feature learning stage, and then fine-tunes the clas-
sifier with class-balanced sampling.

Various re-weighting methods are designed with complex loss
functions. Since the sample size of each class is different, different
losses are designed for different classes [17, 25]. In the long-tailed
dataset, with the increase of the number of samples, the returns from
each sample are significantly diminishing. Therefore, Cui et al. [7]
design a better re-weighting method based on the number of valid
samples for each class. Jamal et al. [11] combine the above method
and adds a conditional weight that requires meta-learning. LDAM [4]

encourages larger margins for tail classes and applies re-weighting
after normal training. Ren et al. [19] propose a new loss function, the
balanced MSE, from a statistical perspective to accommodate long-
tailed distribution data.

Re-balanced training method try to rebalance the contribution of
each class to the model during the training process. However, these
methods will lead to insufficient training of head classes and over-
fitting of tail classes to some extent.

Data augmentation. Many data augmentation methods such as
Mixup and Cutmix have achieved good results in computer vision.
However, using them directly on the long-tailed distribution does
not work well. Remix [5] is a simple but effective way to trans-
late the Mixup algorithm to long-tailed distribution by assigning a
higher weight to the tail classes. Some methods [16, 13, 5, 18] prove
that the information from the head classes can help the tail classes.
CMO [18] combines with Cutmix to augment the tail sample using
the rich background of the head class as background images. Liu et
al. [16] think that the feature distribution was highly correlated with
the number of class samples, so the intra-class angular variance of the
head class is transferred to the tail to generate new tail data. Chu et
al. [6] uses the class activation map to classify the features into class-
specific features and class-generic features, and the generated new
tail data combines the class-generic features of the head class with
the class-specific features of the tail. FASA [24] dynamically gener-
ates virtual features to provide more positive samples for tail classes
and uses sampling adaptation to avoid over-fitting. MetaSAug [14]
augments tail classes with an implicit semantic data augmentation
(ISDA) algorithm to ensure that the generated samples contain di-
verse semantic information.

However, all these methods ignore the style information. Our ap-
proach applies style transfer skillfully to the long-tailed distribution
by designing the H2T strategy, which can effectively transfer the
style information from the head classes to the tail classes. The tail
class is augmented by a variety of head style features in order to to
make the tail data diverse.
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Figure 2. Overview of the H2T-FAST in a mini batch.
3 Method

In this section, we first introduce the overall framework of the H2T-
FAST and describe in detail the functionality of each module.

3.1 Overall Framework

Our overall framework shown in Figure 2 consists of two main mod-
ules: (1) H2T: Head to Tail strategy, and (2) FAST: Feature Augmen-
tation Based on Style Transfer. Specifically, we first randomly select
the same number of head samples as the tail samples in each train-
ing mini batch, and after that, the style features of the head and tail
samples are exchanged to generate new tail samples that differ sig-
nificantly from the original tails, and the original distribution of the
tails is recovered in this way to obtain better performance.

3.2 H2T

Consider a batch of input samples X = [x1, X2, ...Xn], of which we
divided into head classes X, and tail classes X¢, where the numbers
of Xy and X are Ny, and Ny, respectively. We also take the sum
of N1, and IN¢ as equals to the mini batch size. We consider the top
30 percent of the classes with the highest number as the head classes
and the rest as tail classes (3 for CIFAR10 and 30 for CIFAR100).
The exact threshold of the number of classes will be discussed in
the subsequent ablation experiments. After that, we randomly select
N samples from the Xy, as X§, the selected samples X¢ and tail
samples X¢ correspond to each other. In the specific training process,
these selected head samples X¢, are fed into the model along with the
tail samples X¢ to generate new tail samples in the feature space. In
short, among a mini batch, when the input is head samples, they will
train normally. If the tail samples are inputted to the model, then the
H2T strategy is initiated and the head data is randomly selected. The
randomly selected head samples will be trained together with the tail
samples. We mix the head style feature and tail content feature with
the style features of the heads used to extend the tail data. If there is
not as much head data as tail data in a batch, then we consider that
there is no need to do feature augmentation on the tail data in this
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Figure 3. Input image and visualization of feature maps at different
network layers.

Input Mixed Feature
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Figure 4. Mix the styles and contents of the two images in different
network layers to generate new features. Each line retain the content

information of the original image and combine it with the style information
of another image.

-

batch, the H2T strategy is not needed to be executed and the model
will be trained normally.

In addition, to prevent the model from overfitting, we set a hyper-
parameter p to control the probability of using this module, where p
takes values from O to 1.
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Algorithm 1 H2T-FAST
Input: Training batch features X.
Output: Head features Xy, Augmented tail features Xs.
1: Splitting batch X into head features X, and tail features Xy.
2: for each x; € X do
3:  Randomly select a sample x§, from the X,
4
5

Extract the style features of x, and the content features of x;.
New x; < Generate new tail features using style and content
features extracted from x§, and x;.
Replace original x; in X with the new tail feature x;.

end for

return X, Xt

® &R

3.3 FAST

Instead of using the complex encoder-decoder architecture typically
needed to extract the semantic style information contained in a style
transfer task, we only extract the simple structural and texture style
information. The whole process of generating new tail features is
shown in Algorithm 1.

As an example, we sample a head sample x; and a tail sample
x; from X} and X; respectively, with y,, y: being their labels.
We extract the feature maps of the two samples after an intermediate
layer of the neural network, denoted as f3,, f;. Then we extract two
feature maps from a particular dimension to get the corresponding
mean [ip, (4¢ and variance oy, o¢. As shown in Figure 3, we show the
style information obtained for an image at different network layer.
In the first few layers of the network, we can clearly see the style
information of the structure and texture of the image from the feature
map and becomes less obvious from Layer2. After that, we calculate

£ P el 0
ot

Now, the feature ft(h> as a new tail data feature contains not only
the content information of the original feature f;, but also the style
information of feature f},. As shown in Figure 4, we show a series
of feature maps of two images mixing their own content and each
other’s style information at different network layers, and we can
clearly see that at LayerO, the aircraft image fuses the bird’s style
information. The model also has to pay attention to this fused-in in-
formation. Therefore, we modify the loss function to predict both the
head style and tail content components and design different weights.
The tail loss function is

Lo= 2y p) + (1= 2 - 6y ), @
where A € [0, 1] represents the weights, £ represents the set original
loss function, yt(h) represents the output of ft(h) through the subse-
quent network and classifier.

The loss in the head branch Ly, is the result of a simple loss func-
tion calculation. While the final loss L is a simple sum of head loss
Ly, and tail loss L¢ two branches.

L=05-L¢+0.5-Ly. 3)

4 Experiment

In this subsection, we first introduce the dataset and baseline of the
long-tail distribution with the experimental details described and then
analyze the experimental results to answer the following scientific
questions.

Q1 Whether H2T-FAST gets good results on the long-tailed
dataset?

Q2 Whether H2T-FAST is generalized and model-agnostic?

Q3 Whether H2T-FAST enhances other long-tailed algorithms and
data augmentation methods?

Q4 Whether H2T-FAST is sensitive to hyperparameters?

4.1 Dataset

We conduct experiments on the artificially created long-tailed
CIFAR-10, CIFAR-100, and CINIC-10 datasets with various imbal-
ance factors. In order to compare with other methods, we also tested
our method on the step imbalanced dataset [2]. We use standard
residual network (ResNet) networks with various depths.

Imbalanced CIFAR. The original version of CIFAR-10 and
CIFAR-100 contains 50,000 training images and 10,000 validation
images of size 32x32 with 10 and 100 classes, respectively. We re-
duce the number of training examples per class to create their long-
tailed version, keeping the validation set unchanged. We construct
two long-tailed versions with p of 100 and 10, where p represents
the ratio of the number which has the highest number of head classes
to the number which has the lowest number of tail classes. For the
setting of the step unbalanced dataset, we use the setting of p equal
to 0.5 to compare easily with other methods, and pu represents the per-
centage of tail classes, with the number of head and tail data classes
being the same.

Imbalanced CINIC. The CINIC-10 dataset [8] combines data
from the CIFAR-10 dataset and ImageNet, with each class contain-
ing 9000 images in the training and validation sets, for a total of 10
classes. Since CINIC-10 is constructed from two different sources,
it is not a guarantee that the constituent elements are drawn from
the same distribution. This property can, however, be leveraged to
understand how well models cope with samples drawn from simi-
lar but not identical distributions. Furthermore, using the CINIC-10
dataset helps us comparing different methods better because it has
9000 training data, which allows us to conduct extensive experiments
with various imbalance ratios while making sure each class still pre-
serves a certain number of data. This helps us to focus more on the
imbalance between classes rather than solving a few-shot classifica-
tion problem for the tail classes. And in this dataset, we explored
more imbalanced rates p as 200, 100, 50, and 10.

4.2 Implementation details.

For fair comparisons, we use the same setting as used in the past
work [4]. In datasets CIFAR-10 and CIFAR-100, we use Resnet-32
as the backbone network, and in dataset CINIC-10, we use ResNet-
18 as the backbone network. For both CIFAR-10 and CINIC-10, we
train 200 epochs with mini-batch size 128 and decay the learning rate
0.01 at 160, 180 epoch. We use stochastic gradient descent (SGD)
with a momentum of 0.9 and weight decay of 0.0002. The difference
for CIFAR-100 is that the number of training epochs is 300 and de-
cay the learning rate 0.01 at 150, 225 epochs. We apply the standard
data augmentation, which is the combination of random crop, ran-
dom horizontal flip, and normalization. We use the mean over 5 runs
as the final result for all experiment results.
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Dataset Imbalanced CIFAR-10 Imbalanced CIFAR-100
Imbalance Type Long-tailed Step Long-tailed Step
Imbalance Ratio 100 10 100 10 100 10 100 10

ERM 71.86 86.22 64.17 84.02 40.12 56.77 40.13 5474
BBN [26] 79.82 8832 - - 4256 59.12 - -
Remix [5] 7536  88.15 68.98 8634 4194 5936 3996 57.06
LDAM [4] 7335 8696 66.58 85.00 39.60 5691 39.58 56.27
DRW [4] 7486 86.88 71.60 85.51 40.66 57.32 41.14 5722

DRS [4] 74.50 86.72 72.03 85.17 40.33 57.26 4135 56.79
Focal Loss [15] 70.18 86.66 6391 83.64 3841 5578 3857 5327

CB Loss [7] 74.11 8723 65.53 857 3832 5571 - -
LDAM-DRW [4] 77.03 88.16 7692 87.81 42.04 58.71 4536 59.46
H2T-FAST(our) 7584 87.67 69.46 86.53 41.76 58.17 3997 56.21
H2T-FAST-DRW (our) 78.36 87.88 75.67 88.09 42.66 58.18 43.01 57.62
H2T-FAST-LDAM-DRW (our) 79.88 87.81 78.82 8794 4198 57.06 43.74 55.96

HTT-FAST-LDAM-DRW + Mixup(our)  80.95 87.03 78.65 86.99 4524 5795 449 57.16
HTT-FAST-LDAM-DRW + Cutmix(our) 81.79 87.73 79.77 87.84 46.14 5932 46.02 59.06

Table 1. Top-1 accuracy on long-tailed CIFAR-10 and CIFAR-100.

Imbalance Type Long-tailed Step
Imbalance Ratio 200 100 50 10 200 100 50 10
ERM 56.16 61.82 7234 77.06 51.64 5564 68.35 74.16
DRW [4] 59.66 63.14 7356 77.88 5441 5787 68.76 72.85
DRS [4] 5798 62.16 73.14 7739 5267 5741 69.52 75.89
LDAM-DRW [4] 60.80 6551 7494 7790 5493 61.17 7226 76.12
Remix [5] 58.86 63.21 75.07 79.02 5422 5757 7021 7637

Remix-DRW [5]

6295 67776 7549 7943 6282 6756 76.55 79.36

H2T-FAST-LDAM-DRW (our)

65.62 69.01 73.16 79.22 66.04 71.1 73.76  79.45

Table 2. Top-1 accuracy on long-tailed CINIC-10 with different imbalance ratio.

Baseline Methods for Comparison. We compare our methods

betters the model performance, indicating that H2T-FAST method

with vanilla training, state-of-the-art techniques, and their combina-
tions.

e Empirical risk minimization (ERM): Standard training method
without any strategy.

e Focal Loss: Uses focal loss instead of cross entropy.

e LDAM: Uses label-distribution-aware margin loss instead of cross
entropy.

e Re-weighting and deferred re-weighting (RW, DRW): Differ-
ent weights are assigned to each class of samples. Deferred re-
weighting is to use RW after the network has been running for a
few epochs.

e Re-sampling (RS): Different sampling probabilities are adopted
for different classes.

4.3 Performance Analyses

To verify the question Q1, we did experiments on three datasets. The
results of the experiments demonstrate that H2T-FAST achieves the
state-of-the-art results.

Long-tailed CIFAR. Table 1 shows that our proposed method
H2T-FAST outperforms most of the state-of-the-art methods. In de-
tail, on the CIFAR-10 dataset, the higher the imbalance ratio, the

is better for dealing with extreme long-tail situation. In addition,
the H2T-FAST method works better when using Cutmix and Mixup.
This demonstrates that H2T-FAST can be well combined with other
data augmentation methods, especially the Cutmix method. More-
over, we find the H2T-FAST method is more effective on the CIFAR-
10 dataset than the CIFAR-100 dataset, because the number of
CIFAR-10 data is fewer, which leads to more head-to-tail data in-
teractions.

Long-tailed CINIC. The results of the CINIC-10 dataset are sum-
marized in Table 2. We found that the higher the imbalance rate or
step rate is, the better effect of the H2T-FAST boosting, regardless of
whether the data present a long-tailed or step distribution, this finding
is also consistent with the results on the CIFAR10 dataset, which fur-
ther shows the effectiveness of H2T-FAST method. Comparing Table
1 and Table 2, there is an interesting finding: The H2T-FAST method
has a more significant effect on the CINIC-10 dataset. This is because
the CINIC-10 dataset is a hybrid version of the CIFAR-10 and Ima-
geNet datasets, each class has a large number of samples with high
intra-class diversity, the original distribution of the tail classes is bet-
ter recovered by fusing the style information of the diverse heads.
Therefore, when the head and tail samples are mixed, the model will
work better.
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Normalization InstanceNorm BatchNorm LayerNorm PONO
LayerO 75.64 75.73 75.54 75.84
Layerl 74.05 74.16 73.94 75.81
Layer2 71.75 71.58 75.04 75.81
Layer3 28.85 67.32 67.55 67.11

Table 3. Different Style feature extraction methods in different intermediate layers.

0.8 0.7 0.6

A 1 0.9
Layer0 75.84 73.08
Layerl 75.81 75.12
Layer2 75.81 74.87
Layer3 67.11 69.98

73 7171 72.33
7439 7185 7222
73.76 7271 72.96
69.44  69.7 70.09

Table 4. PONO in different intermediate layers with various style label weights.

4.4  Ablation Study

With the following ablation experiment, we answered question Q2
and Q3.

Combining different baselines with H2T-FAST. We combine
different loss functions and data augmentation methods to verify the
effectiveness of H2T-FAST, as shown in Table 5. H2T-FAST has a
great improvement in the way of modifying the loss function, espe-
cially for focal loss, which has the biggest improvement of 5.18%.
And there is also a significant improvement by H2T-FAST to the
other data augmentation method. In particular, in combination with
the Cutmix method, the use of the H2T-FAST method improves by
2.27% relative to the original method and achieves the best results.

The results of the ablation experiment show that H2T-FAST
method is model-agnostic and generic. H2ZT-FAST method can be
combined not only with other long-tailed algorithms but also with
data augmentation methods.

CIFAR10 Long-tailed
w/o H2T-FAST  w/ H2T-FAST
ERM 71.86 75.84 (+3.98)
DRW 74.86 78.36 (+3.50)
Focal 70.18 75.36 (+5.18)
Focal-DRW  75.60 77.76 (+2.16)
LDAM 73.35 76.99 (+3.64)
LDAM-DRW  77.03 79.88 (+2.85)
Mixup 78.86 80.95 (+2.09)
Cutmix 79.52 81.79 (+2.27)

Table 5. Top-1 accuracy of ResNet-32 with H2T-FAST for different loss
functions and augmentation methods on Imbalanced CIFAR10 with p = 100

4.5

To answer question Q4, we performed several experiments to verify
the sensitivity of the model to each hyperparameter.

Hyperparameter Analysis

Choices of extracting style features methods. We explored the
effectiveness of different methods for extracting style features at
different intermediate layers of the network. Table 3 shows that

all methods applied at LayerO of the network are the best, and
PONO [20] is better than the other methods. We hypothesize that the
reason is that PONO captures local style information and this style
information is a category independent without carrying the original
labels, while LN [1], IN [21] and BN compute global features which
carry more original information in the later layer of ResNet. In par-
ticular, instanceNorm gets the worst results in the third layer of the
network, which is due to the fact that the style information carries a
lot of labeling information at this point. To verify this idea, we set
up another experiment with different weights A for the style labels.
As X has a lower weight, the fused image contains more labels with
style information. As shown in Table 4, with a higher proportion of
labels in the style, the performance is better at the later layers of the
network. But the overall performance of the network also decreases,
which indicates that the deeper the network is extracted the more
style information contains the original label information. Therefore,
we prove that it is meaningless to fuse the deep label information
of the head data to the tail data. So we set A to 1. The newly gen-
erated images still belong to the tail class and have no relationship
with the newly added head styles. The shallow style information is
not sufficient to represent the whole class.

85
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Figure 5. Histogram of the accuracy for the three methods with different
head and tail thresholds.
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Dataset Imbalanced CIFAR-10 Imbalanced CIFAR-100
Imbalance Type Long-tailed Step Long-tailed Step
Imbalance Ratio 100 100 10 100 10 100 10
H2T-FAST(our) 04 02 01 04 03 03 04 04
H2T-FAST-DRW (our) 02 0.1 0.1 04 03 03 05 03

H2T-FAST-LDAM-DRW(our) 0.1 0.2

01 02 05 03 05 05

Table 6. The best probability p on long-tailed CIFAR-10 and CIFAR-100.

Evaluate different thresholds for dividing heads and tails. We
test the results on the CIFAR-10 dataset when the head and tail
classes are divided by different thresholds. As seen in Figure 5, all
hyperparameters obtained better results, and the best one is obtained
when the threshold value is 3. So we use thirty percent of the class
number as the threshold.

For all step datasets, the number of classes at the head and tail
should theoretically be the same. However, in our method, to be con-
sistent with exp datasets, the threshold is set to 3, 30, corresponding
to CIFAR-10 and CIFAR-100, respectively.

Accuracy
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Figure 6. Accuracy of the three methods for different probability p.

Model p A Topl
1.0 79.88
09 79.49
0.8 78.88
0.7 78.12
ResNet32 0.1 06 7532
0.5 74.10
04 68.72
03 57.69
02 49.03
0.1 40.03

Table 7. Accuracy of H2T-LDAM-DRW-FAST on CIFAR-10 with
differnet A

Evaluate different probability p and A\. The Figure 6 and Table 7
show the effect of different p and A on the experiments, respectively.
We find that the performance is good when A is fixed and p is less
than 0.6. This is because with increasing p values, the tail data has

a higher probability to exchange, which will lead to over-fitting of
the tail data and thus affect the performance of the head classes. This
leads to a decline in the overall performance.

We also searched for probability values from 0.1 to 0.5 in all ex-
periments as shown in Table 6. On the CIFAR10 dataset, the best
probability is 0.1 or 0.2, while on the CIFAR100 dataset, the best
probability is 0.3 or 0.5. We found that the best probability p is rela-
tively large on the CIFAR100 dataset, which indicates that the H2T-
FAST should set a higher probability on more complex datasets to
allow more interaction between the head class information and the
tail class information.

Moreover, we further verify that the larger A is better on H2T-
FAST-LDAM-DRW. When the probability p is fixed, as A decreases,
and the proportion of style tags increases, the overall performance of
the network begins to degrade.

5 Conclusions and Future Work

We propose a feature augmentation method for long-tailed recogni-
tion, which only performs a small increase in computation during the
training process. New tail data is only generated during the training
process, where the tail data is combined with the style features of
the head in one mini batch to generate new tail data. Our method
is simple and effective, and we validate it in various benchmark vi-
sion tasks. Furthermore, we have demonstrated the effectiveness of
the method by conducting numerous ablation experiments. However,
our method only considers the fusion of one image in the head and
one in the tail, and methods to fuse more images can be considered
in the future. Moreover, because of the need to classify head and tail
classes, it is not yet possible to migrate to other image classification
tasks with many classes. It would be a good direction for research
in the future to design a better strategy for not having to distinguish
between head and tail data.
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