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Abstract. Bayesian optimization (BO) is a popular global opti-
mization scheme for sample-efficient optimization in domains with
expensive function evaluations. The existing BO techniques are ca-
pable of finding a single global optimum solution. However, find-
ing a set of global and local optimum solutions is crucial in a wide
range of real-world problems, as implementing some of the opti-
mal solutions might not be feasible due to various practical restric-
tions (e.g., resource limitation, physical constraints, etc.). In such
domains, if multiple solutions are known, the implementation can
be quickly switched to another solution, and the best possible sys-
tem performance can still be obtained. This paper develops a mul-
timodal BO framework to effectively find a set of local/global solu-
tions for expensive-to-evaluate multimodal objective functions. We
consider the standard BO setting with Gaussian process regression
representing the objective function. We analytically derive the joint
distribution of the objective function and its first-order derivatives.
This joint distribution is used in the body of the BO acquisition func-
tions to search for local optima during the optimization process. We
introduce variants of the well-known BO acquisition functions to the
multimodal setting and demonstrate the performance of the proposed
framework in locating a set of local optimum solutions using multi-
ple optimization problems.

1 Introduction

Bayesian optimization (BO) is a popular global optimization scheme
for sample-efficient optimization in domains with expensive function
evaluations [34, 40]. The BO iteratively builds a statistical model of
the objective function according to all the past evaluations and se-
quentially selects the next evaluation by maximizing an acquisition
function. BO has shown tremendous success in a wide range of do-
mains with no analytical formulation of objective functions, includ-
ing simulation optimizations [1], device tuning/calibration [7, 36],
material/drug design [43, 14], and many more.

Despite several variants of BO in recent years [3, 11, 38], the focus
of all methods has been on finding a single global optimum solution.
However, many real-world problems can be considered multimodal
optimization [8], where it is desired to find all or most global and lo-
cal optimum solutions of multimodal functions. The rationale is that
implementing some of the optimal solutions might not be feasible
due to various practical restrictions (e.g., resource limitation, phys-
ical constraints, etc.); in such a scenario, if multiple solutions are
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known, the implementation can be quickly switched to another solu-
tion and the best possible system performance can still be obtained.

Besides BO techniques, several deterministic and stochastic tech-
niques have been developed for multi-model optimization. These in-
clude the gradient descent method, the quasi-Newton method [5, 22],
and the Nelder-Mead’s simplex method [4], which require the ana-
lytical form of the multimodal function and tend to be trapped into
a local optimum. Evolutionary optimization is a class of techniques
applicable to domains with no available analytical representations.
Examples include variants of genetic algorithms [23, 24], clonal se-
lection algorithms [9], and artificial immune networks [10]. How-
ever, evolutionary techniques’ reliance on heuristics and excessive
function evaluations prevent their reliable applications in domains
with expensive-to-evaluate functions.

This paper develops a multimodal BO framework to effectively
find a set of local/global solutions for multimodal objective func-
tions. We consider the standard Gaussian process (GP) regression
as the surrogate model for representing the objective function. Since
characterizing local/global optima requires accessing both the val-
ues and first-order conditions of the objective function, we analyt-
ically derive the joint distribution of the objective function and its
first-order gradients using the kernel function properties and deriva-
tives, illustrated by Fig. 1. This joint distribution is used in the body
of the BO acquisition functions to search for local optima during
the optimization process. We introduce the variants of the well-
known BO acquisition functions to the multimodal setting, includ-
ing joint expected improvement and probability of improvement.
The performance of the proposed framework in locating a set of
local optimum solutions is demonstrated using multiple optimiza-
tion problems, including evaluations using synthetic function, well-
known multimodal benchmarks such as Griewank function and Shu-
bert function, as well as through hyperparameter tuning problems
for image classification on CIFAR-10 dataset [18]. Our proposed so-
lution can effectively capture multiple local/global optima in these
evaluations.

The main contributions of our work are as follows:

• We develop a new BO framework for finding local optima by an-
alytically deriving the joint distribution of the objective function
and its first-order gradients according to the kernel function of
Gaussian process regression.

• We introduce new acquisition functions, such as joint expected
improvement and probability of improvement, to search local op-
tima during the optimization process of our framework.

• Experimental results on multimodal functions and real-world im-
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age classification problem demonstrates the effectiveness of our
framework in capturing multiple local and global optima.

2 Related Work

2.1 Bayesian Optimization and Acquisition Functions

Among many optimization frameworks [37, 32, 41], Bayesian opti-
mization has emerged as a popular method for the sample-efficient
optimization of expensive objective functions [35, 13]. It is capable
of optimizing objective functions with no available closed-form ex-
pression, where only point-based (and possibly noisy) evaluation of
the function is possible. The sampling-efficiency of BO schemes has
made them suitable for domains with non-convex and costly func-
tion evaluations. Fundamentally, BO is a sequential model-based ap-
proach to solving the problem of finding a global optimum of an
unknown objective function f(·): x∗ = argmaxx∈X f(x), where
X ⊂ R

d is a compact set. It performs a sequential search, and at each
iteration k, selects a new location xk+1 to evaluate f and observe its
value, until making a final recommendation of the best estimate of
the optimum x∗.

The sequential selection is achieved through the acquisition func-
tion a : X → R, defined over the posterior of GP model,
where BO selects a sample in the search space with the highest ac-
quisition value. Upon evaluating the objective function at the se-
lected input, the surrogate GP model gets updated. Various BO
policies have been developed depending on the acquisition func-
tion choices, including expected improvement (EI) [27], knowledge
gradient (KG) [12], probability of improvement (PI) [19], upper-
confidence bounds (UCB) [20], and entropy search (ES) [15]. Recent
studies have also considered accounting for future improvements in
solution quality [44, 17, 39] and BO methods for constrained prob-
lems [2, 30]. However, existing work often focuses on finding the
global optimum rather than a set of local/global optima, which are
also necessary for multimodal objective functions and will be ex-
plored in this paper.

2.2 Local Maxima in Gaussian Random Fields

A separate line of statistical applications concentrates on the tail
distribution of the heights of local maxima in non-stationary Gaus-
sian random fields, such as in peak detection problems. Such a tail
distribution is defined as the probability that the height of the lo-
cal maximum surpasses a given threshold at the point x, condi-
tioned on the case that the point is a local maximum of the Gaus-
sian process model, given by the following equation: Pr(f(x >
ξ)|f(x) is one local maximum), where ξ is the threshold. Existing
work [6] has probed into this problem in the Gaussian process model.
The general formulae are derived in [6] for non-stationary Gaussian
fields and a subset of Euclidean space or Riemannian manifold of
arbitrary dimension [21], which depends on local properties of the
Gaussian process model rather than the global supremum of the field.
Although the goal is to characterize certain local properties rather
than finding a set of local/global optima, the contributions of the
above work provide the key intuitions to our new BO framework
design.

2.3 First-Order Derivative in Bayesian Optimization

The first-order derivative information has been exploited in exist-
ing works of BO, such as [25, 45]. Besides, [26] make gradient in-
formation available for hyperparameter tuning. Additionally, adjoint

methods provide gradients cheaply in the optimization of engineer-
ing systems [16, 31]. The gradients provide useful information about
the objective function and can help the BO during the optimization
process. For instance, [40] develop a derivative-enabled knowledge-
gradient algorithm by incorporating derivative information into GP
for BO, given by (f(xk+1),∇f(xk+1))

T|f(x1:k),∇f(x1:k) ∼
N (

(f(x1:k),∇f(x1:k))
T, diag(σ2)

)
, where σ2 is the variance.

These methods assume the gradients of the objective function can
be queried along with the objective function during the optimization
process. GIBO[28] alternates between minimizing the variance of the
estimate of the gradient and moving in the direction of the expected
gradient. Later proposed MPD [29] extended and refined it by find-
ing the maximum look-ahead gradient descent direction. However,
we propose the BO framework to find local optima by computing
and updating the joint distribution of the prediction with its first-order
derivative regarding kernel functions. Besides, existing methods with
gradients concentrate on using gradients as additional information to
improve the traditional BO model targeting global optimum, while
our algorithm aims to find as many local optima as possible. Despite
the similarity, we do not directly access the objective’s gradient.

3 Background

Gaussian model: Gaussian process (GP) model is the most com-
monly used model for standard BO and also adopted by our frame-
work, providing the posterior distribution of the objective function
according to all the past evaluations. In this part, we introduce sev-
eral preliminaries of the GP model. Considering the objective func-
tion f(·) and the GP model with k+1 input samples x of dimension
n, the prior of the model is:

f(x1:k+1) ∼ N (μx1:k+1 ,Σx1:k+1,x1:k+1),

where we use μx1:k+1 to denote the mean of the prior and
Σx1:k+1,x1:k+1 to represent the initial covariance of k+1 input sam-
ples. If we know the first k samples’ values as observations f(x1:k),
based on the prior, the posterior of the GP model representing the
objective function at the next sampling point xk+1 can be obtained
as:

pf
def
= f(xk+1)|f(x1:k) ∼ N (μxk+1 ,Σxk+1,xk+1), (1)

where μxk+1 and Σxk+1,xk+1 are the mean and variance respec-
tively at this step. For simplicity purpose, we use pf as the short
notation of the posterior f(xk+1)|f(x1:k).

4 Finding Local Optima via Bayesian Optimization

We aim to develop a multimodal BO framework capable of efficiently
computing optimal solutions. Our method will achieve optimization
regarding a joint distribution containing the Gaussian posterior and
its first-order derivative: the Gaussian posterior reflects the surrogate
model as we observe the objectives in new places, and the first-order
derivative of the posterior informs us about the latent location of lo-
cal/global optima. Therefore, to this end, we compute the first-order
derivative of the objective function to get the gradient and apply it
to our new BO framework. Since the derivative operation is linear,
we can combine the Gaussian posterior of the objective and its first-
order derivative into a joint distribution and then compute the joint
mean/variance for the acquisition functions. In this framework, we
design new acquisition functions to fulfill the needs of finding local
optima. Inspired by existing work [6], we first introduce a particular
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(a) Iteration k

(b) Iteration k + 1

Figure 1: Illustration of our proposed BO method for finding a set of
local/global optima by considering both GP model prediction and its
first-order derivatives.

threshold for the objective posterior to find candidates above/below
the threshold value (depending on finding maxima/minima). Besides,
as the optimum point’s gradient is usually zero, we limit the posterior
of the calculated derivative to a small interval around zero to further
approach the optimum.

An illustrative example. Fig. 1 shows an illustrative example of our
proposed method. In iteration k, we update the Gaussian posterior
of the objective and its first-order derivative. Existing BO methods
for finding a global maximum would select xk+1 (and subsequent
locations) to maximize the expected improvement or the probability
of improvement, failing to recognize other local/global maxima in
this multimodal function. For instance, probability of improvement
can be described by the equation: Pr(f(x) > ξ), where ξ is the
given threshold.

To find other local/global optima, we derive the prediction’s first-
order derivative and let it satisfies: Pr(f ′(x) < ε), where ε denotes
a small constant and hence indicates the place where the first-order
condition approximates to zero.

On the other hand, if we only consider the first-order condition in
choosing xk+1, the sequential search could easily get trapped in sta-
tionary/saddle points without improving the objective value toward
local maxima. Therefore, our method leverages the joint distribution
of objective function and its first-order derivative to find a set of lo-
cal/global maxima by jointly computing and updating the probabil-
ity: Pr(f(x) > ξ, f ′(x) < ε).

As shown in Fig. 1a, we have two latent local/global maxima, A
and B, denoted by the cyan dots. Given the threshold ξ and first-order
condition, the proposed algorithm will select local maximum A as
the next sampling point rather than global maximum B at iteration k.
Although our method can find the local maximum, it is not oblivious
to other possible solutions, given by Fig. 1b, which suggests B as the
latent sampling point for the next optimum solution. This illustrative
example demonstrates our method’s capability of finding all latent
optimum solutions of multimodal functions by considering both GP
model prediction and the first-order condition. Furthermore, analyz-
ing such joint distribution would also be useful for deriving other
special acquisition functions such as the expected improvement.

4.1 Multimodal Bayesian Optimization

We characterize a local/global optimum solution by leveraging the
estimates of both the objective function and the first-order derivative
of the function in the BO framework. We begin by considering the
first-order derivative of the objective function f(·). Due to the linear
property of the differentiation operation, we have the derivative of
f(·) also subject to the GP model [33]. Then, given input sample
yk+1 that can be a different point from xk+1, we derive another
posterior:

pf ′
def
= f ′(yk+1)|f(x1:k) ∼ N (μyk+1 ,Σyk+1,yk+1), (2)

where, for simplicity, we let p′f be short for the posterior
f ′(yk+1)|f(x1:k).

Since both xk+1 and yk+1 are related to the objective function
f(·), posteriors f(xk+1)|f(x1:k) and f ′(yk+1)|f(x1:k) will not be
independent and identically distributed (i.i.d.). Besides, based on (1)
and (2), and as both posteriors comply with the Gaussian distribution,
we can further acquire a joint Gaussian distribution as follows:

pf,f ′ ∼ N
([

μxk+1

μyk+1

]
,

[
Σxk+1,xk+1 Σxk+1,yk+1

Σyk+1,xk+1 Σyk+1,yk+1

])
. (3)

Before solving the mean and variance in joint distribution (3), we
introduce the sufficient condition leveraging dominated convergence
theorem in a lemma for interchanging derivative with expectation.

Lemma 1 (Interchangeable condition). Let Y ∈ Y be a random
variable. g : R×Y → R is a function such that g(t, Y ) is integrable
for all t and g is continuously differentiable with respect to t. Assume
that there is a random variable Z such that | ∂

∂t
g(t, Y )| ≤ Z almost

surely for all t and E(Z) < ∞. Then, we have:

∂

∂t
E [g(t, Y )] = E

[
∂

∂t
g(t, Y )

]
.

Proof. See Appendix A.

Next, we derive the mean and variance of the target joint distri-
bution (3). Based on standard mean and variance results of Gaussian
posterior model, we can obtain our mean of designed algorithm given
by the following steps:

μk+1 = E

[
f(xk+1)|f(x1:k)
f ′(yk+1)|f(x1:k)

]
(a)
=

d

dyk+1
E

[
f(xk+1)|f(x1:k)
f(yk+1)|f(x1:k)

]

=

[
k(xk+1,x1:k)
d

dyk+1
k(yk+1,x1:k)

]
K−1

x1:k,x1:k
(f(x1:k)− μ0(x1:k)),

(4)
where (a) uses the interchangeable condition in Lemma 1, and μ0

denotes the initial mean of the first k samples.
Furthermore, as the joint posterior is constructed by objective pre-

diction and its first-order condition, the first covariance matrix K0 is
given by:

K0 =

[
k(xk+1,xk+1)

d
dyk+1

k(xk+1,yk+1)
d

dyk+1
k(yk+1,xk+1)

d2

dyk+1 dyk+1
k(yk+1,yk+1)

]
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Therefore, according to the variance of GP model, the variance
of (3) is:

σ2
k+1

= K0 −
[

k(xk+1,x1:k)
d

dyk+1
k(yk+1,x1:k)

]
K−1

x1:k,x1:k

[
k(xk+1,x1:k)
d

dyk+1
k(yk+1,x1:k)

]T

.

(5)
Therefore, we conclude the mean and variance of joint distribu-

tion (3) in a theorem by leveraging Lemma 1 as follows:

Theorem 1 (Bayesian optimization for local optima). Under the in-
terchangeable condition, the mean of the joint Gaussian distribution
posterior in (3) is:

μk+1
def
=

[
μxk+1

μyk+1

]
= AK−1

x1:k,x1:k
(f(x1:k)− μ0(x1:k)),

(6)

where μ0 denotes the initial mean of the first k samples, and the
auxiliary matrix A is provided as follows:

A =

[
k(xk+1,x1:k)
d

dyk+1
k(yk+1,x1:k)

]
.

Additionally, the solution of variance in the posterior is given by:

σ2
k+1

def
=

[
Σxk+1,xk+1 Σxk+1,yk+1

Σyk+1,xk+1 Σyk+1,yk+1

]

= K0 −AK−1
x1:k,x1:k

AT.

(7)

In Theorem 1, k(·) in (6) denotes the kernel function, such as
the squared-exponential and Matern kernels, which define the influ-
ence of a solution on the performance and confidence estimations of
untested nearby solutions. Apart from that, in variance (7), K repre-
sents the covariance matrix, where [Kx1:k,x1:k ]ij = k(xi,xj)

Furthermore, we provide two examples using the squared-
exponential kernel and polynomial kernel, respectively, to illustrate
Theorem 1 as below.

Example 1.1 (Square-exponential kernel). As a popular kernel func-
tion widely used in many existing works, the squared-exponential
kernel can strongly connect spatially adjacent sampling points as
those points are more similar. The kernel is defined by the equation
below:

k(xi,xj) = α exp(−‖xi − xj‖22
2l2

), (8)

where α and l are scale factor and length scale parameter introduced
by the kernel, respectively.

For simplification, we assume yk+1 = xk+1. By leveraging the
given square-exponential kernel (8) and computing its gradient, the
mean in Theorem 1 becomes:

μk+1 = ĀK−1
x1:k,x1:k

f(x1:k), (9)

where f(x1:k) are known initial sample values and Ā is given by:

Ā = α

[
exp(− ‖xk+1−x1:k‖22

2l2
)

−xk+1−x1:k

l2
exp(− ‖xk+1−x1:k‖22

2l2
)

]
.

Likewise, we obtain the variance as:

σ2
k+1 = α

[
1 0
0 1

l2
In

]
− ĀK−1

x1:k,x1:k
ĀT, (10)

where In represents the identity matrix of dimension n.

Example 1.2 (Polynomial kernel). In this example, we consider an-
other frequently-used kernel, the Polynomial kernel, which represents
the similarity of sampling points in the space over polynomials, al-
lowing the learning of non-linear models. The kernel is defined as:

k(xi,xj) = ᾱ(xi · xj − c)δ, (11)

where c ≥ 0 is a free parameter trading off the influence of higher-
order versus lower-order terms in the polynomial, ᾱ is the scale fac-
tor, and δ denotes the polynomial’s dimension.

For simplification, let yk+1 = xk+1. In the most typical situation,
the kernel is a homogeneous polynomial kernel where c = 0, and the
dimension δ = 2. Then, we compute its gradient by leveraging the
given polynomial kernel (11), and the mean in Theorem 1 becomes:

μk+1 = ¯̄AK−1
x1:k,x1:k

f(x1:k), (12)

where f(x1:k) are known initial sample values and ¯̄A is given by:

¯̄A = ᾱ

[
(xk+1 · x1:k)

2

2(xk+1 · x1:k) · x1:k

]
.

Likewise, we obtain the variance as:

σ2
k+1

= ᾱ

[ ‖xk+1‖4 2‖xk+1‖2 · xk+1

2‖xk+1‖2 · xk+1 2(xk+1 ⊗ xk+1 + ‖xk+1‖2In)
]

− ¯̄AK−1
x1:k,x1:k

¯̄AT,

(13)

where ⊗ denotes the outer product and In represents the identity
matrix of dimension n.

4.2 Determining Local Optima

We manage to access the posterior of any xk+1 via the designed GP
model. The next step is determining the next test point to evaluate,
which can be obtained through the acquisition function (AF). Due
to the joint distribution in (3), to guarantee the discovery of a local
optimum solution, we need 1) the value of the objective function at
the test point to be larger than elsewhere nearby, and 2) the first-order
derivative of the objective function at the same point to be close to
zero. This step is another optimization problem regarding pf,f ′ , but
does not require evaluating the objective function f(·).

To start with, we use conditional distribution expansion to change
the form of the joint probability distribution. The new joint posterior
becomes:

pf,f ′ = (pf |pf ′) · pf ′ , (14)

where pf |pf ′ obeys the Gaussian distribution with the mean of:

μ̄k+1 = μxk+1 +Σxk+1,yk+1Σ
−1
yk+1,yk+1

(f ′(yk+1)− μyk+1),
(15)

and variance of:

σ̄2
k+1 = Σxk+1,xk+1 −Σxk+1,yk+1Σ

−1
yk+1,yk+1

Σyk+1,xk+1 . (16)

To satisfy the two aforementioned requirements, we let xk+1 and
yk+1 be at the same position, where we have:

pf ′ = f ′(yk+1)|f(x1:k) = f ′(xk+1)|f(x1:k).

According to (14), we further expand the joint distribution in (3) to
fulfill the needs of the AF design. After that, referring to the original
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AF definition, we newly define several AFs for determining the local
optimum solution given in the following corollaries as examples.

Firstly, we provide the joint probability of improvement, which
evaluates the objective function at the point most likely to improve
upon the value of the current observations. Under such criterion, the
point with the highest probability of improvement will be selected.

Corollary 1 (Joint probability of improvement). In our case, when
xk+1 = yk+1, the AF objective is:

aPI(xk+1)

(b)≈
∫ ∞

ξ

(pf |pf ′) dξ ·
∫ ε

−ε

pf ′ dε

= Q

(
ξ−μ̄k+1

σ̄2
k+1

)[
Q

( −ε−μyk+1

Σyk+1,yk+1

)
−Q

(
ε−μyk+1

Σyk+1,yk+1

)]
,

(17)
where (b) uses expansion (14) and an approximation in calculating
integral, ξ is the probability of improvement threshold, ε is a small
constant to restrict the first-order derivative, and Q(·) denotes the
Q-function with μ̄k+1 and σ̄k+1 given in (15) and (16), respectively.

Note that we split the original integral function and let pf |pf ′ ≥ ξ
and |pf ′ | ≤ ε to suit our purpose in determining local optimum so-
lution. In (a) of (17), when calculating acquisition, due to small ε,
the standard double integral can be approximated by the product of
two integrals. As pf |pf ′ and pf ′ follow Gaussian distribution, us-
ing Q-function, which is the tail distribution function of the standard
Gaussian distribution, simplifies the AF in the expression.

Next, we define a joint expected improvement that evaluates the
objective function at the point that improves upon the value of the
current observations in terms of expectation. Under this criterion, the
point with the greatest expected improvement will be selected.

Corollary 2 (Joint expected improvement). In our setting, when
xk+1 = yk+1, the AF objective becomes:

aEI(xk+1)

(c)≈
∫ ∞

ξ

(f(xk+1)− ξ)(pf |pf ′) dξ ·
∫ ε

−ε

pf ′ dε

=

∫ ∞

ξ

(f(xk+1)− ξ)(pf |pf ′) dξ

·
[
Q

(−ε− μyk+1

Σyk+1,yk+1

)
−Q

(
ε− μyk+1

Σyk+1,yk+1

)]
,

(18)

where (c) adopts expansion (14) and an approximation in calculating
integral. Other parameters are defined the same as those in Corol-
lary 1.

Two AFs introduced in the corollaries will be used with our new
BO framework for determining the local optima.

5 Experiment

In this section, we perform thorough experiments on the synthetic
multimodal functions and real-world implementation to test our al-
gorithm’s effectiveness in finding local optima. Additionally, we re-
port the ablations and scalability experiments of the designed algo-
rithm on multimodal functions. The code has been made available at:
https://github.com/ysmei97/local_bo.

5.1 Multimodal Function

We implement our framework on two common 2D functions (i.e., the
Griewank function and the Shubert function) as benchmark objective
functions for this experiment. The results are shown in Fig. 2 and
Fig. 3. The red dots in the figures represent current sampling points,
and the blue dots denote previously sampled points. To visualize the
sampling order, we show the number of the current step above each
dot. Each experiment is tested for 40 iterations.

5.1.1 Benchmark 1: Griewank Function

The Griewank function has many widespread local minima, which
are regularly distributed. We consider the case where input dimen-
sion m equals 2 and the range of input in each dimension satisfies
xi ∈ [−5, 5]. The function’s graph shows four optima under such
conditions in Figure 2.

We adopt the squared-exponential kernel with α of 10 and l of 0.1,
and select three random sampling points as priors, which are fixed in
each test. Fig. 2b shows the final result of using joint PI with ξ of
1 and ε of 0.1. We manage to reveal a total of two local optima: the
first local optimum at step 4 (Fig. 2a) and the second one at step
40 (Fig. 2b). The acquisition values for potential sampling points
that can be the local optima are higher, while for selected points and
their neighbors are zero. Since all optima on the Griewank function
are regularly distributed, the points on the grid have nearly similar
acquisition values.

5.1.2 Benchmark 2: Shubert Function

As another commonly-used function in optimization problem anal-
ysis, the Shubert function is a 2D multimodal function with multi-
ple local and global optima. This function is often evaluated on the
square x1, x2 ∈ [−10, 10]. To allow for easier viewing, we restrict
the domain to x1, x2 ∈ [−2, 0], presented in Figure 3.

We use designed joint EI as AF with ξ of 0 and ε of 0.1. As shown
in Fig. 3, our framework can find the most local optima over time.
We list several key steps where local optima are found in Fig. 3a,
Fig. 3b, and Fig. 3c, which illustrates the effectiveness of our design.

5.2 Hyperparameter Tuning in Classification Task

Adopting the best hyperparameters, even the known ones, are not
always feasible in many scenarios where we have additional hard-
ware or runtime restrictions, especially for some expensive machine
learning tasks. In these situations, we leverage the local optimal hy-
perparameters as a compromise. In this part, as a simulation of men-
tioned cases, we aim to verify our algorithm’s capability for finding
local optimum hyperparameter combinations on a real-world image
classification problem.

5.2.1 Dataset

The dataset we use for the image classification task is CIFAR-10,
a standard dataset consisting of 60000 32 × 32 color images in 10
mutually exclusive classes with 50000 training images and 10000 test
images. To fully utilize the dataset, we did necessary preprocessing,
including reshaping and padding, with no loss of the information.
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(a) Step 13: 1st optimum (b) Final result

Figure 2: Finding local optima on Griewank func-
tion via aPI .

(a) Step 13: 1st optimum (b) Step 31: 2nd optimum (c) Step 37: 3rd optimum

Figure 3: Finding local optima on Shubert function via aEI .

(a) Step 7: 1st optimum (b) Step 11: 2nd optimum (c) Step 28: 3rd optimum (d) Final result

Figure 4: Searching for local optima with aEI on CIFAR-10 image classification model of backbone ResNeXt.

5.2.2 Modeling and Experimentation

We build the model using ResNeXt [42] as the backbone. Among hy-
perparameters introduced by ResNeXt, we mainly focus on the layer
of the network and the width of the subblock and leave the cardinality
fixed. Based on this, we create an image classification model as the
objective function, where the inputs are the layer and width and out-
put is the validation accuracy. Since training online introduces latent
nuance in searching local optima every step, we test our framework
to determine local optimum hyperparameter combinations in an of-
fline manner, i.e., we apply our algorithm to a trained model with all
the samples ready.

In the experiment, we set cardinality to 4 and vary width from 5
to 35. Besides, we consider 6 layer candidates, which are 29, 38, 50,
68, 86, and 101. Using an interval of 10, we map the 6 layer can-
didates into a range from 0 to 50 as approximated representations.
As shown in Fig. 4, the accuracy increases with width and layer pro-
jection values. However, such an increase is not monotonic, and we
can spot many local optimum solutions. Since the mean of all results
is around 87.0, we set the ξ as 87 and ε as 0.01. We adopt squared-
exponential kernel, with α of 5 and l of 2.

Fig. 4 exemplifies some steps in which our method finds local op-
tima. Compared to the width, the layer in this scenario impacts more
on output accuracy. Therefore, the algorithm prioritizes to explore
the local optima of different widths under a specific layer and then
searches elsewhere for different layers. For instance, in Fig. 4b and

Fig. 4c, we spend multiple iterations searching for the optima with
the layer of 68 before switching to explore that with the layer of 86.

5.3 Comparison with other baselines

In this section, we compare our method with several selected base-
lines algorithms: (1) MPD [29], which uses maximum look-ahead
descent probability; and (2) GIBO [28], which performs local search
by minimizing the trace of the posterior covariance of the gradient
only; (3) vanilla BO with PI; (4) vanilla BO with EI. We use a 1D
multimodal synthetic function of which the inputs range from 0 to 1
with 200 sampling instances to verify the methods’ capability of find-
ing the local and global maxima. Each run has a budget of 100 steps.
We show the results in Table 1, where our framework can locate the
objective local maxima faster than other baseline methods. Given a
specific threshold, our framework will prioritize locating the nearby
local maximum solutions. Besides, compared to the model with the
joint probability of improvement, the one with joint expected im-
provement has better performance owing to its awareness of the po-
tential improvement amount.

We also compute the average distance by adding the distance be-
tween new observation xi and ground truth x∗ of each step i and
taking the average based on the number of already-taken steps n ,
given by

∑n
i xi−x∗

n
. For every new observation, the distance is rec-

ognized as the nearest ground truth x∗ to xi. According to Table 1,
our framework achieves lower regret than other baseline methods,
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(a) Posterior only (b) First-order derivative only (c) Our method (posterior+derivative)

Figure 5: Ablations regarding the Gaussian posterior of the objective (standard BO) or its first-order derivative only.

Table 1: Comparison between proposed framework with other baselines in finding the local and global optimum solutions.

Baselines 1: Global maxima 2: 2nd large local maxima 3: 3rd large local maxima Average Distance every 30 steps
Step Average Distance Step Average Distance Step Average Distance Step 30 Step 60 Step 90

Joint PI 78 0.062 36 0.040 12 0.034 0.043 0.068 0.059
Joint EI 80 0.061 22 0.055 6 0.022 0.055 0.065 0.057
MPD 20 0.092 37 0.109 47 0.089 0.128 0.080 0.081
GIBO 25 0.151 31 0.135 60 0.131 0.139 0.131 0.134
Vanilla PI 28 0.170 – – 54 0.209 0.204 0.197 0.288
Vanilla EI 18 0.090 66 0.174 81 0.187 0.135 0.176 0.179

especially in deciding the local optimum solutions in experiments
2 and 3, demonstrating the effectiveness of finding local optima by
adopting our approach.

5.4 Scalability Experiment

To demonstrate our method’s scalability, we experiment with 3D
Griewank functions for locating local/global optimal solutions. Due
to the visualization limitation of high-dimensional functions, we post
several steps of detected local maxima in Table 2, where we show
that the distance to ground truth becomes smaller in the process for
three maxima. We run the experiment for 300 steps in total, with
a minimum sampling distance of 0.1. As seen from the table, our
algorithm can be easily extended to cope with optimization prob-
lems in higher dimensions following the same procedure as process-
ing lower-dimensional multimodal functions. Specifically, for the 3D
Griewank function shown in Table 2, we successfully locate the so-
lutions at steps 29, 169, and 245 with the distances to ground truth
maxima as 0.024, 0, and 0.1, respectively.

5.5 Ablation Experiment

In this experiment, we present the ablation results by removing the
first-order derivative and posterior of the objective in AF (which is
expected improvement) and run the test on a synthetic function. We
present the results at the tenth iteration. As can be seen in Fig. 5a,
once we remove the first-order derivative condition, the AF will be
similar to the standard BO, and the algorithm will start looking for
the points to maximize the acquisition value, failing to rapidly rec-
ognize other local/global maxima in this multimodal function. The
two local maxima are not found during iterations, while our method
successfully reveals them. In Fig. 5b, if we only consider the first-
order derivative condition in choosing the next sampling point, the
sequential search could easily get trapped in minima or stationary
points without improving the objective value toward local maxima,
such as points 1 and 2 or points 4, 5, and 6. In contrast, our algorithm

Table 2: Finding maxima on 3D Griewank function.

Step Maxima x1 x2 x3 f(x1, x2, x3) Distance

27 -3.6 0.9 0.0 1.725 1.030
28 -3.0 -0.8 0.2 1.833 0.831
29 1 -3.0 -0.2 0.0 1.982 0.224

30 -3.4 -0.2 0.0 1.907 0.361
31 -2.9 0.2 -0.5 1.924 0.574

167 0.4 -4.2 0.0 1.912 0.447
168 -0.1 -4.4 0.2 1.993 0.224
169 2 0.0 -4.4 0.0 2.004 0.000

170 0.0 -4.3 -0.3 1.985 0.316
171 -0.3 -4.4 0.2 1.953 0.361

243 -0.5 4.2 -0.2 1.863 0.574
244 0.2 4.3 -0.1 1.978 0.245
245 3 0.0 4.4 -0.1 2.003 0.100

246 -0.3 4.4 0.5 1.934 0.583
247 -0.1 4.5 -0.3 1.984 0.332

can explicitly find the local maximum solutions by considering both
conditions, given by Fig. 5c, where the maxima are points 1 and 4.
The ablations indicate that our method can detect the global maxi-
mum and local maxima for given objective functions.

6 Conclusion

We propose a BO framework for finding a set of local/global op-
tima in multimodal objective functions that are expensive to evalu-
ate. Given a posterior modeled as a Gaussian Process, our method
considers the joint distribution of the objective function and its first-
order derivative. Evaluations on benchmark functions, image classi-
fication tasks, and hyperparameter tuning problems demonstrate the
effectiveness of our solution in finding local/global optima.
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