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Abstract. Adversarial benchmark construction, where harder in-
stances challenge new generations of AI systems, is becoming the
norm. While this approach may lead to better machine learning mod-
els —on average and for the new benchmark—, it is unclear how
these models behave on the original distribution. Two opposing ef-
fects are intertwined here. On the one hand, the adversarial bench-
mark has a higher proportion of difficult instances, with lower ex-
pected performance. On the other hand, models trained on the ad-
versarial benchmark may improve on these difficult instances (but
may also neglect some easy ones). To disentangle these two effects
we can control for difficulty, showing that we can recover the per-
formance on the original distribution, provided the harder instances
were obtained from this distribution in the first place. We show this
difficulty-aware rectification works in practice, through a series of
experiments with several benchmark construction schemas and the
use of a populational difficulty metric. As a take-away message,
instead of distributional averages we recommend using difficulty-
conditioned characteristic curves when evaluating models built with
adversarial benchmarks.

1 Introduction

Benchmarks are increasingly prevalent in AI, and in machine learn-
ing in particular [37, 18]. Benchmarks such as ImageNet [6], CI-
FAR10/100 [16], (Super)GLUE [35] or SQuAD [26] are becoming
reference points to which all techniques are expected to be compared.
This success has led to an acceleration in the development of new
and more varied benchmarks [11]. When human-equivalent perfor-
mance is reached for these benchmarks, they are often discontinued
and replaced, or extended through the inclusion of more challenging
problems, in a kind of ‘challenge-solve-and-replace’ evaluation dy-
namic [29], or a ‘dataset-solve-and-patch’ adversarial benchmark co-
evolution [36]. For example, the ImageNet dataset has been regularly
updated with more challenging images and categories, as AI systems
have improved (e.g., ImageNetV2 [27]). Also, CIFAR10 is accompa-
nied by the more challenging CIFAR100 [16]. The same happens in
the field of NLP, where SQuAD1.1 has been replaced by SQuAD2.0
[26] or GLUE by SuperGLUE [35]. Overall, as AI systems have be-
come more advanced and powerful, the benchmarks used to evaluate
their performance have also become more challenging.

Instead of replacing the benchmark completely, adversarial bench-
marking has gained popularity as a more gradual and systematic ap-
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Figure 1: Performance of a CNN on CIFAR10 controlling for dif-
ficulty. Bottom: the original (green) and adversarial (red) difficulty
distributions. Top: the characteristic curves where performance is
binned by difficulty. The first effect we expect (grey arrow) is ag-
gregate performance to decrease (as it does in this case) on the ad-
versarial benchmark simply because there are more examples that are
difficult. The second effect (blue arrows) is due to models being now
better on the region of higher difficulty as more examples in this area
are used for training, but sometimes worse on the easy instances. Ag-
gregate accuracy cannot disentangle these two effects.

proach to improving machine learning models by continuously incor-
porating increasingly difficult or adversarial examples. This method
also causes a temporary drop in performance which is seen as a chal-
lenged, and re-aligns expectations for systems that are intuitively less
good than what the previous state of the benchmark indicated. Ad-
versarial examples can be either artificial [9] or natural [10]. The
former involve the generation of new hand-crafted adversarial exam-
ples which are designed to exploit the weaknesses of a model and
are typically created using optimisation algorithms that find the min-
imum necessary perturbation that lead to incorrect predictions. The
latter consist of real-world, unmodified, and naturally occurring ex-
amples (e.g., difficult examples or anomalies of unforeseen classes)
that should lead to low-confidence predictions, causing the model
performance to degrade significantly. In contrast to artificial adver-
sarial examples, by including natural adversarial examples in bench-
marks, researchers and developers can test the ability of AI systems
to handle these types of variations and maintain their performance
in the face of real-world challenges. However, the cyclical nature
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of constructing these adversarial benchmarks introduces many sub-
tleties and potential contaminants that must be carefully considered
to avoid evaluations based on the assumption that the data come from
the original distribution.

Although the idea behind all of the above interventions is to keep
the field of AI progressing and prevent stagnation, the effectiveness
of this adversarial benchmarks can be compromised. The benchmark
distribution is no longer a good representation of the problem, and
the performance of the AI system on the benchmark (even if made
larger and larger) is no longer a good proxy for performance on the
original problem. This can occur in a variety of ways. For example,
and focusing on natural adversarial examples, if the training data is
populated with these challenging examples, it may end up being bi-
ased or not adequately covering the range of possible inputs. If this
happens, the model may not generalise well to new data. On top of
this, if these challenging examples have been recognised by being
failures on some previous systems, this creates a loop of causal con-
tamination, since the new benchmarks depend on previous systems
and benchmarks, and so will the new systems created and evalu-
ated in this context. By selecting or creating more difficult instances,
the training data may become biased. We use the term ‘adversarial
benchmark contamination’ for this specific kind of bias.

Figure 1 (bottom histograms) shows the difficulty density plot for
two distributions: the original problem distribution (green) and the
adversarial benchmark distribution (red). Aggregate accuracy (77%
and 69% respectively) can be seen as a product of this probability
and the results per difficulty (the curves on the top). In other words,
we analyse the issue of adversarial benchmark contamination by de-
composing the natural adversarial examples into bins based on their
difficulty, and evaluating the model’s performance on each bin sepa-
rately. This can be done by using system characteristic curves (SCC)
[22, 20, 23, 21], inspired by the concept of person characteristic
curve previously developed in Item Response Theory (IRT) [8, 5].
A SCC plots the response probability (average accuracy) of a partic-
ular model as a function of instance difficulty. This makes it possible
to compare models in a more insightful way. Actually, it can help
disentangle different effects, such as the decrease in aggregate per-
formance due to a higher proportion of difficult examples in the test
set, but the increase of performance for more difficult examples be-
cause they had a higher proportion too in the training data. We will
also show that if the adversarial examples are i.i.d. from the original
distribution conditioned to difficulty, the characteristic curves allow
us to recover the performance on the original distribution.

We will analyse all this theoretically, confirm it empirically, and
show how different effects are disentangled in a few image classifi-
cation scenarios. The main findings and contributions of this paper
are:

• A theoretical analysis decomposing aggregate performance as a
weighted sum of the partial performance per difficulty, showing
how we can construct an adversarial benchmark whose original
distribution is ‘recoverable’ just by weighting the difficult in-
stances differently.

• An empirical analysis where we provide and implement differ-
ent methodologies for the construction of adversarial benchmarks
(using different computer vision benchmarks) and analyse (and
evaluate) the impact of models trained with them on the original
distribution.

• The capability of disentangling the negative effect of having a
higher number of difficult instances from the positive effect of
having trained the model on more difficult examples.

• The finding that there are cases with a performance loss for the
easy examples, especially when the number of easy examples left
in the adversarial benchmark is small.

All this comes with some take-away recommendations when using
adversarial benchmarks at the end of paper.

2 Background

Progress in AI is undeniable, but how much of it remains when the
conditions change is more debatable. Criticisms go from the well-
known effects such as the Clever Hans phenomenon [28], appear-
ing repeatedly in AI systems (e.g., [4]), to the outright denial of any
progress in performance at all (e.g., [32, 10]). There are mainly three
main ways of looking at the problem of changing conditions in eval-
uation. (1) A lack of generalisation to out-of-distribution data [1].
However this does not explain why systems do not generalise well
when no change of distribution happens. (2) A possible explanation
for this is simply blaming this to small benchmarks. Hence, a com-
mon practice is to make benchmarks broader, so covering a wider
sample from the distribution. One option is to replace the bench-
mark by a much larger one [29, 36]. (3) But larger does not mean
broader. As adding more unconditioned examples does not necessar-
ily broaden the sample in the right direction, there have been plat-
forms to extend benchmarks only in the direction where the model
fails (because it does not generalise well). This is known as adversar-
ial testing or evaluation [12, 13, 7]. In what follows, we cover these
three main concepts-

2.1 Out of distribution testing

A machine learning system will have more robustness and practi-
cal value if it shows an ability to generalise, i.e., to produce rele-
vant outputs for data beyond its training set. While most datasets are
built following the independent and identically distributed (i.i.d.) as-
sumption, in many cases this assumption is violated, and in many
ML systems their generalisation capacity is simply related to the fact
that the system has captured the idiosyncrasies of the dataset, in-
cluding spurious correlations that manifest in both the training and
test sets [31, 17]. Out-of-distribution (OOD) testing is increasingly
popular for evaluating a machine learning system’s ability to gener-
alise beyond the biases of a training set. Focusing too much on the
target leads to results that are unrealistic and unreliable, because in
many cases research teams come up with methods, techniques and
approaches that do perform well on the OOD dataset, but the model
ends up relying on spurious cues and shortcuts to reach the desired
target. In other words, the metrics of the benchmark are gamed in a
way that defeats its original, well-intended purpose. Instead of mak-
ing advances towards generalisation, the performance on specific
datasets has been treated as a standalone objective [31, 17]. In this
paper we want to clearly distinguish the loss of performance because
the distribution really changes or because the examples are more dif-
ficult, but belonging to the same distribution.

2.2 Benchmarks replaced by other benchmarks

While it took 15 years before models reached superhuman perfor-
mance on the MNIST dataset, for imageNet this period was re-
duced to 6 years, for SQuAD 1.1 two years, and for SQuAD 2.0 and
GLUE only one year [15]. This phenomenon, which is referred to as
a “challenge-solve-and-replace” [29] or a “dataset-solve-and-patch”
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[36] dynamics, encourages the introduction of bigger datasets. The
new benchmarks are usually richer, and training and evaluating the
model in these new benchmarks leads to further generalisation. The
problem arises when the samemodel is evaluated on the new distribu-
tion (represented by the new benchmark) and the original distribution
(represented by the old benchmark). Because the metrics of perfor-
mance are linked to the distribution in which they are calculated, the
results of these new models do not hold when testing on the original
distribution. This is one of the issues we analyse in this paper.

2.3 Adversarial testing

Replacing or extending datasets to make benchmarks more challeng-
ing can be performed in a more gradual and systematic way. This
is actually what adversarial data collection (ADC) [14] and dynamic
adversarial data collection (DADC) [34] represent, and they are gain-
ing traction, especially in the NLP community. In the hope of build-
ing models that rely less on part of the distribution models are usually
successful, ADC uses a human workforce to interact with the model
in real-time trying to produce instances that elicit incorrect predic-
tions. In practice, though, ADC and DADC do not always lead to
robust models. Moreover, while such models usually perform bet-
ter on other adversarial datasets, the results for a diverse collection
of out-of-domain evaluation sets are not promising [33, 14]. These
problems are beginning to be realised but we lack the tools to prop-
erly see some of the underlying effects. This is another issue that we
address in this paper.

3 Controlling for Difficulty

Let us start with a theoretical analysis of a shift in difficulty where the
conditional probability on difficulty is maintained. Let us consider a
class of AI systems Π and a class of items M, representing problems
or tasks to be solved. Given a subject π ∈ Π to be evaluated and
an item μ ∈ M, we want an evaluation function R̂(π,μ) estimating
the result of π on μ. We want this value to be as close as possible
to the actual expected result R(π,μ). As there are infinitely many
subjects and tasks, pre-evaluating all combinations is not feasible,
and we need to rely on some features from which we could infer or
extrapolate. These features can appear originally (e.g., the pixels in
an image or the number of parameters of a neural network) or can be
inferred from intrinsic (theoretical) analysis or extrinsic (empirical)
evaluations.

One key latent feature that can be extracted is the difficulty of an
item, denoted by �(μ)). Instance difficulty can be defined as a metric
� that decreases with the expected performance R for a customary
system. A good difficulty metric � would maximise the following
expected probability:

Eμi,μj ,π[�(μi) < �(μj) ⇒ R(π,μi) > R(π,μj)] (1)

with μi,μj being items sampled from M and π sampled from Π,
according to a reference distribution of instances and systems respec-
tively. It is important to note that a difficulty predictor is not required;
instead, any metric of individual instance difficulty can be used. If an
intrinsic difficulty metric (e.g., image blur or clutter) is available, it
can be used directly. In most cases, however, access to such a met-
ric is limited and a population metric must be used. This is why the
populational nature of Eq. 1 is convenient in many areas of AI, since
various techniques are typically applied before selecting a system
for deployment, and discarded suboptimal systems can be reused for
the calculation of difficulty as the average error for each instance, or

with more complex approaches such as Instance Hardness metrics
[30] or Item Response Difficulty (IRT) [8, 5]. Finally, note that, for
new benchmarks, this population difficulty is calculated using a set
of models applied to the new dataset, but we must ensure that these
models were built using techniques introduced before the benchmark
evolved adversarially over time.

3.1 Additively-Aggregated Performance

Going back to the estimation of R̂(π,μ), the most common and
easiest—yet unrealistic—way to estimate this is to assume one single
performance estimator for all instances: R̂(π, ·). Then, we calculate
expected performance on the distribution as a weighted sum on the
probability of each instance, as follows:

R̂(π,μ) � R̂(π,M, p)
def
=

∑

μ′∈M

p(μ′)R(π,μ′) (2)

3.2 Performance Decomposition by Difficulty

If adversarial evaluation shifts the difficulty distribution, we should
control for it. To do so, we can break down performance by difficulty:

R̂(π,M, p) =
∑

μ∈M

p(μ)R(π,μ)

=
∑

h

∑

μ∈M,�(μ)=h

p(μ|h)p(h)R(π,μ)

=
∑

h

p(h)
∑

μ∈M

p(μ|h)R(π,μ) (3)

def
=

∑

h

p(h)R(π,M, p|h)

The first step is by Bayes’ rule, but as we are assuming �(μ) = h,
h is determined by μ and hence the denominator p(h|μ) = 1. The
second step is just by realising that p(μ|h) = 0 for any μ that has
other difficulties.

The previous derivation shows that aggregate performance can be
decomposed as a weighted sum of the partial performances per each
difficulty, the newly defined R(π,M, p|h) in the final step. These
are the points of the system characteristic curve (SCC). SCCs are
inspired by the concept of person characteristic curve previously de-
veloped in IRT. The red and green curves in Fig. 1 are SCCs.

From the previous decomposition, we can see the following result
follows:

Proposition 1. Given two distributions p1 and p2 such that the in-
stance conditional probability on difficulty is equal, i.e., p1(μ|h) =
p2(μ|h), then the characteristic curves are equal.

This derives directly from Eq. 3 and the definition of
R(π,M, p|h). The corollary of this is that given the full character-
istic curve for p1, under this same assumption of equal difficulty-
conditional probabilities, we can calculate the actual R̂(π,M, p2)
for p2 and vice versa. This is a way of seeing aggregate performance
as the area of a SCC with a weighted transformation of the x-axis.
Note that the area under the SCC assumes p(h) uniform, but this
does not hold in general.

The direct application to our case is that if pOrig is the original dis-
tribution and pAdv is an adversarial distribution built in such a way
that pOrig(μ|h) = pAdv(μ|h), then we can calculate performance on
the original distribution from the SCC of the adversarial distribution.
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Based on Eq. 3, adversarial benchmark construction only needs to
modify p(h), by making difficult instances more frequent. If this is
done by choosing higher difficulties and sampling from the original
space M using p(μ), then the aggregate performance changes, but
the agent characteristic curve does not. Accordingly, if we know how
p(h) has changed, we can always go back and forth from the charac-
teristic curve and aggregate performance. This kind of modification
of the distribution is ‘recoverable’.

However, on many occasions, the difficult instances are not chosen
from p(μ), but usually constructed or selected in a very particular
way, clearly distorting p(μ|h). If we cannot disentangle how p(μ|h)
has been modified precisely, then this kind of modification is not
‘recoverable’, and we will not be able to know how μ will behave
for the original distribution.

4 Empirical Analysis

We now conduct an empirical analysis to determine whether the de-
composition is capable of disentangling several confounding effects
that happen when evaluating models on adversarial datasets. In this
sense, for an illustrative combination of benchmarks and models, we
will carry out a confirmatory analysis to verify that we obtain the
same SCCs for the original dataset and the adversarial dataset when
keeping the same p(μ|h), also evaluating whether we can extrapo-
late the aggregate result on the adversarial test data to the original
distribution without measuring it directly. Furthermore, we will dis-
entangle and interpret the different positive and negative effects re-
garding the individual increase in performance for harder instances,
the overall decrease in performance caused by having more of the
hard instances in the test set, or the individual decrease in perfor-
mance for easy instances when the original distribution changes.

4.1 Methodology

In order to perform the analysis we are going to consider three meth-
ods that keep p(μ|h) and one that deviates slightly. These methods
can increase the number of difficult instances chosen from p(μ) [14]
and of course remove easy instances provided this is performed ran-
domly [25] [2].

In order to demonstrate the impact of different adversarial data
collection (ADC) approaches on evaluation, we use three illustrative
image recognition datasets (see Table 1). We put a special empha-
sis on this domain and classification problems for several reasons.
Firstly the populational difficulty metric for these datasets is avail-
able from previous work [19]. Secondly, the number of instances in
these datasets are big enough to construct the datasets we need as
shown in Figure 2. Finally, these datasets are very common datasets
for image classification tasks.

Dataset #inst #feat Description Difficulty

CIFAR10 60K 3072 32x32 colour images, 10
classes of objects

0 0.5 1

Fashion-
MNIST 70K 784 Zalando’s 28x28 article

images

MNIST 70K 784 Database of 28x28
handwritten digits

Table 1: Datasets categorised by name, number of instances, number
of features, and difficulty distribution (1 − average error).

For the generation of the adversarial versions of the above datasets,
we create four modified datasets following different methodologies

to closely examine the effect of ADC on the evaluation results (see
Fig. 2 for a summary). We refer to a random sample from the Orig-
inal dataset as DOrig and use it as a baseline dataset. We then create
a Simple Adversarial dataset DSAdv, which consists of two halves:
one from the original distribution and the other half consisting of
the hardest instances from the held-out part of the original distribu-
tion (p(μ)). The third dataset, which we call Balanced Adversarial
dataset (DBAdv), is constructed in the same way asDSAdv, but the hard-
est instances contain the same number of instances for each class.
Finally, we introduce a Double Adversarial dataset (DDAdv), which is
created by first sampling the easiest instances from DOrig, selecting a
random set of the size equal to half the size of DOrig and then adding
the same number of the hardest instances from the held-out part of
the original distribution. In all adversarial cases we sample the hard
instances by adding them from p(μ). Hence, we can examine if con-
trolling by difficulty holds in practice.

Figure 3 shows the distribution of instances per difficulty range for
those adversarial datasets (DSAdv,DBAdv,DDAdv) compared to the orig-
inal one DOrig (basically uniform). This information helps us under-
stand by how much the number of instances increases for the higher
difficulty ranges (in all cases: DSAdv, DBAdv, DDAdv) and how much it
decreases for the lower ones (only for DDadv).

For each adversarial dataset, we train two classical classification
techniques: a convolutional neural network (CNN) and a simple
neural network (NN), a fully-connected multi-layer perceptron. We
wanted to train a more complex and powerful model and a simpler
and lighter one to analyse situations where almost performance is
saturated and other cases where performance is still far from ideal.
The CNN we train for both MNIST and FashionMNIST datasets
consists of two convolutional layers and two fully connected layers
with ReLU activation function and pooling layers in between. The
model has a total of 225,034 parameters. We train the models for
30 epochs . For CIFAR10 the CNN model that we train consist of
six convolutional layers with max-pooling and normalisation layers
in between, followed by two fully connected layers. The total num-
ber of parameters for this network is nearly 2.4 million. In this case
the model is trained for 50 epochs. In case of simple neural network
(NN), which is a Multi-layer Perceptron, the network consists of only
two fully connected layers with total parameters of 3,985 for MNIST
and FashionMNIST datasets and we trained them for 30 epochs. For
CIFAR10, the model consists of six fully connected layers with a to-
tal number of 2.49 million parameters, trained for 100 epochs. The
choice on number of epochs was guided by both literature precedents
and our own experiments to ensure that the models achieved satisfac-
tory performance without overfitting.

We evaluate all models on the corresponding test set as a ran-
dom sample extracted from the modified dataset, with the sample
size equating 10% of the training set. We also evaluate all three ad-
versarially built models on the original dataset (DOrig). For all the
aforementioned models, we perform 20 cross-validation repetitions
to obtain reliable estimates of model performance given the size of
the datasets.. We choose categorical cross-entropy as loss function
and we set batch size to 128.

For our experiments, we use a populational difficulty metric de-
fined as the average error for each instance (provided in [19]). See
further discussion of the difficulty of the datasets addressed in the
appendix [24] (A.1). We scale the difficulty values between 0 and 10
to improve intelligibility. Results are shown using SCCs. For their
generation, we divide the instances in 5 bins according to difficulty
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Figure 2: Dataset construction: The main dataset is divided into two non-overlapping sections, S1 and S2, which comprise 25% and 75% of the
dataset, respectively. We use S1 asDOrig. The construction process for the Simple Adversarial dataset (DSAdv) is illustrated on the left, Balanced
Adversarial dataset (DBAdv) in the centre, and Double Adversarial dataset (DDAdv) on the right.

Figure 3: Distribution of instances per difficulty bin for the original
(DOrig) and all adversarial datasets (DSAdv, DBAdv, DDAdv)

range1. The first bin contains the instances with difficulty level be-
tween 0 to 2. This range for the second, third, forth and fifth bin is
2-4, 4-6, 6-8 and 8-10 respectively. For each bin, we plot the diffi-
culty on the x-axis and we plot the average accuracy of the instance
in the bins on the y-axis. See figure 8 in the appendix for some illus-
trative sample images at each difficulty level for each data set.

4.2 Results

If we look at the aggregate results, as shown in Table 2, we see that
the accuracy for the adversarial datasets is worse than for the original
dataset. This means that from the two effects in Fig. 1, the difficulty
shift in grey dominates over the blue effect. A much more insightful
view appears when we look at Fig. 4, showing different behaviours
depending on the difficulty. In general, the performance of all ad-
versarial models is below the performance of the original model (in
green) for the first three/four bins, but higher for the last one/two
bins.

We can see that, in general, the behaviours of the solid and dashed
curves are very similar2, with the only exception of the final point
forMDAdv in MNIST and most of the curves forMBAdv for FashionM-
NIST. This second case might be caused by a high imbalance in those
ranges of difficulty (see Fig. 3), which affects the evaluation in those
ranges when the dataset is balanced. This means that when looking
at the SCCs, if we keep the same p(μ|h) for the generation of adver-
sarial datasets, the use of the adversarial or original dataset for eval-
uation is irrelevant. The exception to the above are those cases where
there is a class re-balance per difficulty, which happens for MBAdv,
and it’s more noticeable when there is originally more imbalance.

In turn, we can as well estimate the aggregated result of testing
the adversarial model for the original distribution without measuring
it directly. Table 4 demonstrates that the performance of adversarial
models on the original distribution can be accurately recovered by
calculating it using the model’s SCC and the difficulty distribution of

1 The bias-variance decomposition is related to the uncertainty of the diffi-
culty metric and helps to optimise the metric by identifying the optimal bin
size to minimise overall error. Increasing the number of bins reduces bias
but increases variance due to smaller bin sample sizes. In our case, using
five bins proved suitable for balancing bias and variance while providing
valuable insight into model performance on adversarial benchmarks.

2 Note that, for MDAdv,DDAdv curve (solid violet) there is a discontinuity for
difficulty range {0,2}. This is due to the construction of the dataset DDAdv

for which we undersample the easiest instances from DOrig, so there are no
instances in this bin (see Fig. 3).
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Figure 4: SCC of all models trained on datasets constructed from MNIST (a & d), FashionMNIST (b & e) and CIFAR10 (c & f) using
CNN (top) and NN (bottom). The tuples 〈Ma, Db〉 indicate that the model has been trained on dataset a and tested on dataset b (with
a, b ∈ {Orig, SAdv, BAdv, DAdv}).

MOrig,DOrig MSAdv,DSAdv MSAdv,DOrig MBAdv,DBAdv MBAdv,DOrig MDAdv,DDAdv MDAdv,DOrig

MNIST CNN 98.71 ± 0.30 97.85 ± 0.35 99.04 ± 0.21 97.75 ± 0.44 99.03 ± 0.17 97.72 ± 0.27 99.06 ± 0.25
NN 84.65 ± 1.63 70.94 ± 2.22 84.19 ± 2.19 70.59 ± 2.21 82.45 ± 1.83 71.77 ± 1.83 75.53 ± 2.06

FashionMNIST CNN 90.32 ± 0.65 80.21 ± 0.73 90.74 ± 0.67 82.61 ± 0.74 89.65 ± 0.44 78.50 ± 1.08 90.67 ± 0.70
NN 78.34 ± 2.43 57.34 ± 3.10 75.08 ± 4.22 65.41 ± 1.22 74.97 ± 2.10 53.47 ± 3.09 69.90 ± 5.92

CIFAR10 CNN 77.11 ± 1.28 69.05 ± 1.24 76.69 ± 1.06 70.51 ± 1.59 76.75 ± 0.91 67.87 ± 1.46 75.43 ± 1.55
NN 43.24 ± 0.77 26.60 ± 1.47 33.84 ± 1.75 27.81 ± 1.05 35.18 ± 1.08 24.62 ± 0.79 24.49 ± 1.24

Table 2: Aggregate performance and standard deviation for models trained on datasets constructed fromMNIST, FashionMNIST and CIFAR10
using CNN and NN. Notation as in Figure 4.

the original dataset, if we compare these values with theDOrig dataset
in Table 2. Again, with the exception of those adversarial sampling
methods that modify the class balance (see the difference for the NN
in FashionMNIST between the actual one, 74.97 and the estimated

one, 78.75.
In addition, for all tasks, models and samplings in Fig. 4 we see the

decrease in performance on the last bins. This is sufficiently impor-
tant to obscure that most curves get better than the green one in that
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MOrig,DOrig MSAdv,DSAdv MSAdv,DOrig MBAdv,DBAdv MBAdv,DOrig MDAdv,DDAdv MDAdv,DOrig

MNIST CNN 99.16 99.38 99.37 99.28 99.35 99.38 99.72
NN 87.53 86.07 86.74 85.03 84.57 81.23 81.80

FashionMNIST CNN 92.87 91.80 92.46 92.60 91.36 92.06 92.56
NN 81.40 76.24 77.09 81.15 77.06 72.56 72.99

CIFAR10 CNN 78.47 77.16 77.55 79.32 77.54 75.97 76.68
NN 42.59 33.17 33.34 36.12 34.84 26.70 26.18

Table 3: Area under the curve (SCC) for models trained on datasets constructed from MNIST, FashionMNIST and CIFAR10 using CNN and
NN. Notation as in Figure 4.

MSAdv,
DSAdv→Orig

MBAdv,
DBAdv→Orig

MDAdv,
DDAdv→Orig

MNIST CNN 99.07 98.95 99.07
NN 83.56 82.64 74.88

FashionMNIST CNN 90.13 90.49 90.32
NN 74.32 78.75 69.68

CIFAR10 CNN 76.42 78.17 74.87
NN 33.58 36.15 24.94

Table 4: Recovered performance of adversarial models on original
distribution: Having the characteristic curve of a model in hand, we
can calculate the performance of the (adversarial) model on the orig-
inal distribution without actually testing it.

area. In particular, MSAdv and MDAdv are especially good at the end,
but as we can see in Table 2, not sufficiently to compensate for the
loss in accuracy in these bins on aggregate accuracy, not even in area
under the SCC. While the full insight can be obtained when looking
at the histogram of difficulties (see Fig. 3), we can clearly disentangle
the positive effect of the increase in performance for harder instances
from the negative effect of having a high proportion of hard instances
in the test.

Finally, we see some other effects. For instance, a significant de-
cline for MDAdv in the first bin is observed in almost all the plots.
This is because DDAdv is created by first undersampling the easiest
instances from DOrig, which results in less contribution of these in-
stances for the loss and a worse fit for them (see Figures 7 (d) in the
Appendix). This is very pronounced in some cases, especially those
with NN in Fig. 4. But this is a more general phenomenon, happen-
ing when the curves detach from 100% performance. For instance,
FashionMNIST is dominated by the original model (green line) in
medium difficulties, and the same happens for MNIST with NN. In
total, the areas of the curves (see Table 3) are seldom better than the
original model, and shifting towards the right would only make this
worse (see appendix A.4 for further analysis of model performance).
Beyond any generic pattern, the SCCs allow us to precisely analyse
where there are gains in performance and where there are losses.

5 Discussion

The analysis of experimental results with aggregate metrics makes
sense as far as the reference distribution is representative of the prob-
lem we want to solve. For instance, if we want to evaluate a self-
driving car on the distribution of journeys that happened last year
in a particular country, the average of some metric of success is an
estimate of the expected value for that metric. This is informative
and can lead to decisions about what technology is better than the

rest. However, this is no longer valid if the distribution is changing.
In many cases we cannot anticipate how this distribution is going to
change, so this is still a hopeful bet for evaluation.

However, adversarial testing changes the distribution in a very spe-
cific, systematic way, not because the target problem is changing, but
because we want to make systems better. Following with the pre-
vious example, if the distribution of journeys has not changed, we
should not change the distribution to test our systems. Doing that on
the adversarial dataset for testing is wrong if we still evaluate by un-
weighted aggregate metrics. What we have shown in this paper is that
aggregating is right if controlled by what is shifting the distribution,
which is difficulty. This leads to the SCCs, which is a very convenient
way of doing this and extrapolating back to the original distribution,
or even to other distributions where the difficulties change. As far as
the dataset modification (including making it adversarial) does not
distort p(μ|h), we can do all these extrapolations.

We hence recommend SCCs to summarise results whenever there
is an adversarial situation. If only one number is preferred, at least
we should choose the area under the SCC and not accuracy, although
the curve provides more valuable information, particularly regarding
trends. Actually, we see that some adversarial methods are slightly
better on the original distribution in Table 2 (CNN for MNIST and
FashionMNIST) but this is even less clear for the areas under the
curves (Table 3). We might also consider creating multiple plots for
each difficulty bin (e.g., in the case of two-point summary metrics,
such as refinement and calibration, we would have two curves instead
of one). Although this approach might be less visually appealing than
a single curve for a one-point metric, it might provide more detailed
insights. Furthermore, this approach could be extended to conditional
density estimators by plotting the errors for the estimated mean and
variance for each example, with the data binned by level of difficulty.

This work has made some assumptions and presents some limita-
tions. First, difficulty is estimated from a battery of techniques, and
we should be well aware about the nature of the x-axis. Second, the
scale and binning of this same x-axis may lead to different conclu-
sions if we look at the area, so it is better to look at the trend. Third,
we kept the size of the datasets fixed to keep similar training condi-
tions (the focus of this paper was not to see what adversarial training
setting is best but to determine good adversarial testing settings).

The new methodology and insights lead to several possibilities for
future work beyond the natural extension of these results to other
domains and types of tasks. We would like to explore the effect of
these benchmark contaminations when adversarial training and test-
ing are performed iteratively. Also, we would like to explore other
ways of introducing the adversarial examples where the distribution
is not preserved, but the changes are traceable and invertible, so that
the expected performance on the original dataset can be recovered as
well.
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