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Abstract. Bi-objective search problems are a useful generalization

of shortest path search. This paper reviews some recent contributions

for the solution of this problem with emphasis on the efficiency of the

dominance checks required for pruning, and introduces a new algo-

rithm that improves time efficiency over previous proposals. Exper-

imental results are presented to show the performance improvement

using a set of standard problems over bi-objective road maps.

1 Introduction

Bi-objective search (BOS) problems are a useful generalization of

shortest path search. Since [6], several algorithms have been pro-

posed and evaluated for multi-objective search (MOS) in general

(e.g. [19] [13] [15] [14] [21]), and BOS in particular (e.g. [18] [17]

[8] [5] [1][22] [9]). Ideas relevant to multi-objective search apply

to BOS as well. However, the special properties of bi-objective prob-

lems make it possible to devise specific and more efficient procedures

for this case, turning it into a separate research subject.

The work of [13] showed the importance of the consistency prop-

erty of heuristics in MOS, and analysed NAMOA*, an algorithm op-

timal under such property in the number of paths explored.

Although the number of explored paths is a fundamental measure

in the efficiency of MOS, other important computational considera-

tions need to be taken into account. In A* [7], each path to a known

state can be pruned or preserved with a constant-time comparison on

its cost. However, MOS may require costly comparison operations

(dominance checks) between the vector costs of all paths reaching

a given state to decide which to preserve. Additionally, newly gen-

erated paths also need to be checked for dominance against the set

of solution costs already found. A dominance check between a given

vector and a set of vectors is potentially a computationally costly op-

eration [2]. Several recent contributions on the runtime efficiency of

multi-objective search have focused on reducing this cost, with spe-

cial emphasis in the bi-objective case [14] [9].

This paper reviews these recent contributions under a common

framework, and identifies a new additional technique that further im-

proves dominance check efficiency.

Section 2 presents the problem definition and necessary notation.

Sections 3 and 4 review recent contributions in efficient dominance
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checks for BOS and identify a new area of improvement. Sections

5 and 6 describe a new BOS algorithm and discuss some properties.

Experiments on the efficiency of the new approach over road-map

benchmark problems are presented and discussed in sections 7 and

8. Finally, in section 9, conclusions and future work are outlined.

2 Problem definition and notation

Let G be a locally finite directed weighted graph G = (S,A,C),
where S is a finite set of states; A is a set of arcs A =
{(i1, j1), ..., (im, jm)} ⊆ S × S; and C is a function that assigns to

each arc (i, j) ∈ A a vector of 2 positive costs �c(i, j) = (c1ij , c
2
ij) ∈

R2+. Let a path from state s1 to state sk be a sequence of states

(s1, s2, . . . sk) such that ∀i < k (si, si+1) ∈ A. The cost of a path

is the sum of the cost vectors of its arcs. Bi-objective cost vectors

induce a partial order preference relation ≺ called dominance,

∀�y, �y′ ∈ R2 �y ≺ �y′ ⇔ y1 ≤ y′

1 ∧ y2 ≤ y′

2 ∧ �y 	= �y′.

We also define the weak dominance (
) relation,

∀�y, �y′ ∈ R2 �y 
 �y′ ⇔ y1 ≤ y′

1 ∧ y2 ≤ y′

2.

A path P1 from s1 to sk dominates a path P2 from s1 to sk if the

cost of P1 dominates the cost of P2.

Given a set of vectors X , we define nd(X), the set of non-

dominated vectors in X as, nd(X) = {�x ∈ X | ��y ∈ X �y ≺
�x}. Let P be the set of all paths in the graph G, from start state

sstart ∈ S to goal state sgoal ∈ S. Let X be the set of their costs.

The full bi-objective shortest path problem (G, sstart, sgoal) con-

sist in finding all paths in P with costs in nd(X ). This paper deals

with the cost-unique bi-objective shortest path problem [9], which

consists in finding only one path in P for each cost in nd(X ).
Many multi-objective best-first search algorithms use the lexico-

graphic order ≺L, since the lexicographic minimum in a set is also

non-dominated in the set. This total order is defined as follows,

∀�y, �y′ ∈ R2 �y ≺L
�y′ ⇔ y1 < y′

1 ∨ (y1 = y′

1 ∧ y2 < y′

2)
and the preference relation 
L has its natural meaning,

∀�y, �y′ ∈ R2 �y 
L
�y′ ⇔ �y ≺L

�y′ ∨ �y = �y′

A heuristic function �h(s) is a function that for each state s returns

an estimation of the cost of non-dominated paths from state s to the

goal. We say that�h(s) is monotone or consistent if, for all arcs (s, s′)
in the graph, when the following condition holds,
�h(s) 
 �c(s, s′) + �h(s′) ∧ �h(sgoal) = �0.

A common choice for a consistent bi-objective heuristic is �h(s) =
(h∗

1(s), h
∗

2(s)) where optimal costs h∗

1(s), h
∗

2(s) are precalculated

using two single-objective Dijkstra searches (one for each objective)

from the goal state over the graph with reversed arcs [20]. This has

also been empirically analyzed by [10]. The computational cost of
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the precalculation is generally quite small compared to the ensuing

bi-objective search. Alternative heuristics are discussed in [11] [4].

3 Antecedents

Most current unidirectional algorithms for MOS are generalizations

of the A* algorithm [7]. Succinctly, A* builds a search tree, with

root at the start state sstart, that records the best known path to each

visited state. When two different paths reaching the same state are

found, only the best is recorded and the other is discarded (pruned),

breaking ties arbitrarily. Each path in the tree reaches a different state

s with cost g(s). A set of states (initially only the start state) are kept

in a priority queue Open in increasing order of the characteristic

function f(s) = g(s) + h(s). States in the tree that are not present

in Open are said to be ’closed’. The procedure iteratively removes

and expands the first state in Open, i.e. it generates its successors

and adds them to the tree and Open when appropriate. When h(s)
satisfies the consistency property A* is optimal in its class over the

number of states expanded [3]. The procedure terminates when a goal

state sgoal is selected from Open.

NAMOA* [12] is a multi-objective extension of A* that shares an

analogous optimality property when heuristics are consistent, i.e. it

expands the optimal number of paths [13]. This is a landmark prop-

erty regarding the efficiency of MOS. However, paths generated but

not explored by NAMOA* are pruned on the basis of dominance

checks. Checking dominance is a computationally costly operation.

Therefore, several subsequent algorithms have improved the runtime

performance of NAMOA* focusing on efficient ways to perform the

necessary dominance checks. This is also the focus of our discussion.

Important differences between single and multi-objective search

need to be tackled by any multi-objective best-first algorithm. Firstly,

there are generally many non-dominated (optimal) paths reaching

each state. Therefore, each relevant path is univocally identified by a

node or label l, which combines the path’s terminal state with its as-

sociated cost vector. We implicitly assume the existence of a pointer

to a parent label parent(l), which is null for the start label. Label

pointers keep a record of interesting generated paths. A newly found

label to a state s is discarded or pruned (i.e. removed from the record)

if its cost is dominated by that of some previously found label to s.

Likewise, a new label can prune a previously known one if both reach

the same state and the former dominates the latter. In the bi-objective

case, each label has the form (s, (g1(s), g2(s))), where g1(s) and

g2(s) denote the two cost functions to be minimized.

Secondly, each path or label (s,�g) has an evaluation cost �f =

�g + �h(s). In the bi-objective case �f = (f1, f2). In this paper we

will use ’extended’ labels (s,�g, �f) when necessary for the sake of

clarity. A set of labels is kept in an Open queue, and at each iteration

a non-dominated one according to its evaluation cost �f is removed

and expanded. Unexpanded recorded paths/labels are said to be open,

and expanded ones closed. All algorithms described in this paper

record labels in a tree structure, each root-to-leaf branch standing

for a path in state space. They also implement Open as a priority

queue of labels with lexicographic order of evaluation costs, since the

lexicographic optimum in a set is guaranteed to be non-dominated in

that set. We assume the following priority queue operations:

• empty(queue) : returns true if the queue is empty, false other-

wise.

• insert(l, queue) : inserts label l into the queue.

• top(queue) : returns the first (top) label from the queue, and

leaves the queue unchanged.

• pop(queue) : removes and returns the first (top) label in queue.

• update(l1, l2, queue) : replaces label l1 with l2 in the queue,

preserving queue order.

Finally, the full multi-objective search problem aims to find the

set of all non-dominated solution paths. Any path with evaluation

cost �f dominated by that of a found solution can be discarded (this

is a different kind of pruning referred to as ’filtering’). Search ter-

minates when Open is empty, i.e. when all labels have been either

expanded, discarded (pruned), or identified as solutions. The recent

BOA* algorithm solves the simpler cost-unique problem (see sec-

tion 2). We assume the same problem definition in this paper. The

extension to the more general full problem is straightforward. The

next subsections review the improvements in dominance check ef-

ficiency over NAMOA* proposed by two recent bi-objective algo-

rithms: NAMOAdr* and BOA*.

3.1 NAMOA∗

dr

NAMOA∗

dr (NAMOA* with dimensionality reduction) [14] is an ef-

ficient revision of NAMOA* that assumes lexicographic ordering

in the Open priority queue, and consistent heuristics. Algorithm 1

presents a pseudocode freely adapted to the cost-unique bi-objective

case. Pruning operations are highlighted with comments.

Open ← empty queue; Sols ← ∅;

Set default value ∀s ∈ S, gmin
2 (s) ← ∞;

Set default value ∀s ∈ S, Gop(s) ← ∅;

Let lstart be (sstart, (0, 0), (h1(s), h2(s)));
parent(lstart) ← null;

insert(lstart, Open); insert(lstart, Gop(sstart) ;

while ¬empty(Open) do

l1 ← pop(Open);

Let l1 be (s, (g1, g2)(f1, f2));
Remove l1 from Gop(s) ;

if f2 ≥ gmin
2 (sgoal) then

continue; // lazy filter

end

gmin
2 (s) ← g2;

if s = sgoal then

add l1 to Sols;

continue;

end

foreach new label l2 successor of l1 do

Let l2 be (s′, (g′1, g
′

2), (f
′

1, f
′

2));

if (g′2 ≥ gmin
2 (s′)) ∨ (f ′

2 ≥ gmin
2 (sgoal)) then

continue; // eager cl-prune/filter

end

if ∃(s′, �g, �f) ∈ Gop(s
′), �g 
 (g′1, g

′

2) then

continue; // eager op-prune

end

Remove from Gop(s
′) all labels with cost dominated

by (g′1, g
′

2); // eager op-prune

parent(l2) ← l1;

insert(l2, Open);

insert(l2, Gop(s
′));

end

end

Algorithm 1: NAMOA∗

dr algorithm, freely adapted from [14] for

cost-unique bi-objective search.
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The overall idea is similar to A*. An initial label lstart is inserted

into Open. Then, labels are iteratively selected from Open on a lex-

icographic best-first basis according to their evaluation cost (f1, f2).
Goal labels are saved, and non-goal ones are expanded (i.e. successor

labels generated and possibly added to the tree)1.

We describe NAMOA∗

dr highlighting its improvements against

NAMOA*. In order to carry out pruning operations, NAMOA* keeps

two sets Gop and Gcl associated to each state s. The first keeps the

labels of open paths reaching s, while the second keeps the labels

of closed ones. NAMOA* also keeps a set of non-dominated solu-

tion labels Sols. Each time a new label is generated for s, its cost

is checked against Gop(s) and Gcl(s) for pruning, and its evalua-

tion against Sols for filtering (pruning against found solutions). If

the label is not pruned, then any labels it may dominate are pruned

from Gop(s)
2. Additionally, each time a new solution label is added

to Sols, the evaluation costs of labels in Open and the Gop(s) sets

are checked against it for filtering3. In summary, according to [13]

pruning involves two paths reaching the same state, while filtering

compares the evaluation �f of a path to the cost of solutions found.

NAMOA* performs both operations as soon as possible. We collec-

tively denote this default behavior in NAMOA* as ’eager pruning’.

To be more precise, we extend the terminology in [14] and distin-

guish four different kinds of pruning:

• cl-pruning: when the cost of a new label l = (s,�g) is dominated

by that of some label in Gcl(s), l is discarded.

• op-pruning: when the cost of a new label l = (s,�g) is dominated

by some label in Gop(s) , l is discarded; or, when the cost of some

label l′ in Gop(s) is dominated by such new l, l′ is discarded.

• old-filter: when the evaluation cost �f of newly generated labels

(s,�g, �f) is checked against the cost of known (old) solution labels

in Sols, and discarded if found to be dominated.

• new-filter: when the cost of newly found solution labels is checked

against the evaluation cost of all open labels, and those found to

be dominated are discarded.

The BOS algorithms discussed in this paper differ mainly in the

way they implement the dominance checks needed for these four

pruning operations. Therefore, we highlight these differences.

NAMOA∗

dr applies two efficient techniques to reduce the compu-

tational cost of dominance checks in cl-pruning and new filtering.

These exploit the following property. When a set of non-dominated

bi-dimensional vectors {�y} is ordered lexicographically, then (i) the

sequence of y1 values is monotonically non-decreasing, and (ii) the

sequence of y2 values is monotonically non-increasing. If all vec-

tors are different, then the sequences are (i’) strictly increasing and

(ii’) strictly decreasing, respectively. This follows naturally from the

definition of lexicographic ordering (see section 2).

Let us assume some dominated vectors are inserted in lexico-

graphic order in a lexicographically ordered non-dominated se-

quence. These can be easily identified scanning the sequence. Any

vector that breaks the monotonically non-increasing sequence of y2
values is dominated.

NAMOA∗

dr exploits this property and keeps a scalar value gmin
2 (s)

for each state, equal to the minimum second cost component of all

1 The pseudocode abstracts some details of successor label generation for
brevity. Given a label l1 = (s, (g1, g2), (f1, f2)) and a successor state s′

of s with cost �c(s, s′) = (c1, c2), then l2 = (s′, (g′
1
, g′

2
), (f ′

1
, f ′

2
)) is a

successor label with g′i = gi + ci, and f ′

i = g′i + hi(s
′) for i = 1, 2.

2 Due to the consistency of the heuristic, labels in each Gcl(s) are non-
dominated among any reaching state s, so there is no need to check them.

3 Again, due to consistency, no previously found solution label can be domi-
nated by a newly found one.

closed labels to s (i.e. that of the one most recently selected). A new

label (s, (g1, g2)) can be cl-pruned if g2 ≥ gmin
2 (s) avoiding the

need for an explicit and computationally costly full dominance check

against labels in Gcl(s). This technique is called ’dimensionality re-

duction’, since bi-dimensional vector dominance checks are reduced

to constant-time uni-dimensional scalar comparisons [14]4. Notice

that the cl-pruning operation is still ’eager’, in the sense that it is

carried out as soon as possible, only with a more efficient procedure.

NAMOA∗

dr also reduces to a great extent the cost of both new and

old filtering operations. Old-filter operations can also be carried out

with a constant-time comparison between the evaluation cost f2 of

each new label and the minimum g2 of labels in Sols. This is again an

incarnation of the dimensionality reduction idea, since solution labels

are found by the algorithm following also a lexicographic ordering.

New-filter operations can be particularly costly, since the Open

set can be large. NAMOA∗

dr applies in this case a technique called

’lazy filtering’ [16]. When a new solution label is found, no particu-

lar operation is carried out (i.e. no eager filtering checks are applied).

Current open labels wait their turn in the Open queue, and are even-

tually checked for filtering only when they reach the top of the queue.

At that point the filtering operation can be carried out again with a

constant-time scalar comparison between the evaluation cost f2 of

the selected label and the minimum g2 of labels in Sols. The term

’lazy’ means the pruning is not made as soon as possible, but rather

delayed until label selection, when it can be carried out in a more

efficient way.

Finally, NAMOA∗

dr performs eager op-pruning operations check-

ing dominance against all labels in Gop, just as done by NAMOA*.

These improvements made NAMOA∗

dr an order of magnitude

faster than NAMOA* on a benchmark of bi-objective road-map prob-

lems [14].

3.2 BOA*

BOA* (Bi-objective A*) [8] [9] is a recent extension of A* for BOS

problems. A pseudocode is presented in algorithm 2 with pruning

operations highlighted by comments.

Like NAMOA∗

dr , BOA* incorporates dimensionality reduction for

eager cl-pruning and lazy filtering. However, BOA* introduces sev-

eral additional simplifications. Since BOA* solves the cost-unique

problem (i.e. only searches for a single path for each non-dominated

cost), there is no need to explicitly keep the Gcl sets for each state5.

The main contribution, from the point of view of our discussion on

pruning operations, is an efficient implementation of op-pruning, that

eliminates the need for the Gop sets as well.

The elimination of the Gop sets means newly generated labels to

a known state s cannot be compared straightaway against other cur-

rently open labels to s. Instead, all such new labels are inserted into

Open. Only when labels reach the top of Open, they are compared

against the gmin
2 value of their state for pruning. This is a constant-

time comparison between two scalar values. The result is a simpler

and more efficient BOS procedure.

In summary, BOA* incorporates dimensionality reduction in eager

cl-pruning and lazy filtering, and extends these ideas to op-pruning.

We call this operation ’lazy op-pruning’. These improvements

showed BOA* to be around three times faster than NAMOA∗

dr on

a benchmark set of bi-objective road-map problems [9].

4 Analogously, for k-objective problems, k dimensional checks are reduced
to k − 1 dimensional ones.

5 We also applied this simplification in our pseudocode of NAMOA∗

dr
in

algorithm 1 adapted to the cost-unique problem.
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Open ← empty queue; Sols ← ∅;

Set default value ∀s ∈ S, gmin
2 (s) ← ∞;

Let lstart be (sstart, (0, 0), (h1(s), h2(s)));
parent(lstart) ← null;

insert(lstart, Open);

while ¬empty(Open) do

l1 ← pop(Open);

Let l1 be (s, (g1, g2)(f1, f2));

if (g2 ≥ gmin
2 (s)) ∨ (f2 ≥ gmin

2 (sgoal)) then

continue; // lazy op-prune/filter

end

gmin
2 (s) ← g2;

if s = sgoal then

add l1 to Sols;

continue;

end

foreach new label l2 successor of l1 do

Let l2 be (s′, (g′1, g
′

2), (f
′

1, f
′

2));

if (g′2 ≥ gmin
2 (s′)) ∨ (f ′

2 ≥ gmin
2 (sgoal)) then

continue; // eager cl-prune/filter

end

parent(l2) ← l1;

insert(l2, Open);

end

end

Algorithm 2: BOA* algorithm, adapted from [9]

4 Computational overhead of lazy pruning

In this section we provide some insights on how the costly dominance

checks between vectors and sets of vectors are apparently replaced by

constant-time scalar comparison operations in BOS algorithms. We

discuss in turn the different kinds of pruning operations (cl-pruning,

filtering, and op-pruning).

Let us first address the case of dimensionality reduction applied to

cl-pruning. As explained above, the key of this technique is the fact

that best-first algorithms already need to sort open labels in some way

so that non-dominated ones are always selected (best-first search).

Sorting with a lexicographic order results in a double advantage.

Since the sequence of labels selected from Open is lexicographi-

cally monotonically non-decreasing, when a label (s, (g1, g2)) is se-

lected, its g1 value is already known to be as large as all those pre-

viously selected for s (and present in Gcl(s)). All that remains to be

checked for dominance is the scalar constant-time comparison of g2
and gmin

2 (s), regardless the size of Gcl(s). Therefore, this technique

is virtually computationally free. The computational cost of the lex-

icographic ordering is actually needed for the best-first operation of

the algorithm, and dimensionality reduced cl-pruning just takes ad-

vantage of it. Practically all the comparisons between vector costs re-

quired for cl-pruning have already implicitly taken place in the queue

ordering process. The cl-pruning operation is still eager (i.e. carried

out as soon as possible) and vastly more efficient. A similar analysis

applies to dimensionality reduced eager old-filtering.

Let us now analyze the case of lazy new-filtering used also in

NAMOA∗

dr and BOA*. Instead of performing an eager filtering oper-

ation each time a new solution is found (i.e. checking the cost of the

new solution label against the evaluation cost of all labels in Open),

no open labels are checked at the time. The final constant-time com-

parisons are performed gradually as each of them is selected from

the top of the Open queue.

Unlike dimensionality reduced cl-pruning, lazy new-filtering is not

completely free from a computational point of view. Once a label

l = (s, (g1, g2), (f1, f2)) is selected from Open, the comparison

f2 ≥ gmin
2 (sgoal) can be performed in constant time. However, if

label l could have been filtered eagerly by some solution label l∗

found after l entered Open, then l has lingered longer in Open than

it could have. It could have been filtered earlier (eagerly), just when

l∗ was found. As a result, the size of Open was larger than strictly

necessary in the period between the discovery of l∗ and the selection

of l. As a side effect, this increases the average computational cost of

insertion and deletion operations in Open during that period.

Finally, the lazy op-pruning operation carried out by BOA* also

incurs in a similar overhead for Open queue operations. Explicit

comparison operations needed to eagerly check dominance are re-

placed by implicit ordering ones inside the Open queue. How-

ever, labels that could have been eagerly op-pruned against their

Gop(s) sets populate the Open queue until they are eventually se-

lected and checked with a final constant-time comparison operation.

The identification of this computational overhead of lazy pruning

techniques is important, since it opens up the possibility of further

improvements in the runtime of BOS algorithms.

In the next section we present a new BOS algorithm. This algo-

rithm applies an alternative dimensionality reduced pruning tech-

nique that lies in between eager and lazy pruning. We call this tech-

nique ’early pruning’, since it generally does not prune as soon as

possible, but does not wait as much as lazy pruning either. Experi-

mental results in section 7 will show that this new technique produces

a practical reduction in runtime.

5 Algorithm EBA*

This section introduces EBA* (Early pruning Bi-objective A*), a

new BOS algorithm. Our proposal relies on the same assumptions of

previous algorithms (NAMOA∗

dr , BOA*), i.e. use of lexicographic

ordering, and a consistent heuristic function.

The pseudocode of EBA* appears in algorithm 3. Like previous

algorithms, EBA* builds a search tree with root at the start label ls.

Found solution labels are saved in a set Sols. Each state s keeps a

variable gmin
2 (s) with the smallest value of g2 among expanded la-

bels to s, and in particular gmin
2 (sgoal) keeps the smallest value of

g2 among solutions found. These are used for efficient dominance

checking in eager old-filtering and cl-pruning respectively (dimen-

sionality reduction). One difference between EBA* and previous al-

gorithms is the management of the priority queues of labels:

• Each visited state s keeps a priority queue of unexplored la-

bels Gop(s), according to a lexicographic order of cost vectors

(g1, g2)
6.

• A single Open priority queue of labels is ordered according to

a lexicographic order of evaluation costs (f1, f2). This queue

contains only the top label of each non-empty Gop(s) queue.

The top label in Open is trivially the best among all labels in

Gop(s) queues (i.e. all open labels).

EBA* creates the start label, inserts it in Open and Gop(sstart),
and creates the search tree. Until Open becomes empty, the best open

label l1 is selected (calling popReplace, which also updates the gmin
2

value of the label’s state). Then lazy filtering is checked and l1 dis-

carded if needed. If l1 is a goal label, then it is added to Sols. Other-

wise, the label is expanded. For each successor label l2 EBA* checks

6 Evaluation vectors (f1, f2) can be equivalently used since all labels in
Gop(s) reach the same state s.
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Open ← empty queue; Sols ← ∅;

Set default value ∀s ∈ S, gmin
2 (s) ← ∞;

Set default value ∀s ∈ S, Gop(s) ← empty queue;

Let ls be (sstart, (0, 0), (h1(sstart), h2(sstart)));
insert(ls, Open); insert(ls, Gop(sstart));
parent(ls) ← null;

while ¬empty(Open) do

l1 ← popReplace(Open);

Let l1 be (s, (g1, g2)(f1, f2));

if f2 ≥ gmin
2 (sgoal) then

continue ; // lazy filter

end

if s = sgoal then

add l1 to Sols;

continue;

end

foreach label l2 successor of l1 do

Let l2 be (s′, (g′1, g
′

2), (f
′

1, f
′

2));

if (g′2 ≥ gmin
2 (s′)) ∨ (f ′

2 ≥ gmin
2 (sgoal)) then

continue; // eager cl-prune/filter

end

parent(l2) ← l1;

insertReplace(l2, Open);

end

end

Algorithm 3: EBA* Algorithm

Let l be (s, (g1, g2), (f1, f2)) ← top(Open);

pop(Gop(s));

gmin
2 (s) ← g2;

newlabel ← false;

while ¬newlabel ∧ ¬empty(Gop(s) ) do

Let l′ be (s, (g′1, g
′

2)(f
′

1, f
′

2)) ← top(Gop(s));

if (g′2 ≥ gmin
2 (s)) ∨ (f ′

2 ≥ gmin
2 (sgoal)) then

pop(Gop(s));
// early op-prune, early-filter

else

update(l, l′, Open);

newlabel ← true;

end

end

if ¬newlabel then

pop(Open); // remove l

end

return l;

Algorithm 4: popReplace(Open) algorithm.

Let l be (s, (g1, g2), (f1, f2));
if empty(Gop(s) ) then

insert(l, Open);

insert(l, Gop(s));

else

l′ ← top(Gop(s));
if l lexicographically better than l′ then

update(l′, l, Open);

end

insert(l, Gop(s));

end

Algorithm 5: insertReplace(l,Open) algorithm.

for dimensionality reduced eager cl-pruning and old-filtering and the

label is discarded if needed. Otherwise, it is added to the search tree,

and the Open and its own state Gop queues (calling insertReplace).

The popReplace and insertReplace operations manage the Open

and Gop queues. Both operations are detailed in algorithms 4 and 5

respectively.

Algorithm popReplace returns the best label in Open, updating

the gmin
2 value of the label’s state. It also checks if another open label

of its state s can be promoted to the Open queue. To this end, it it-

eratively pops labels from Gop(s), applying dimensionality reduced

early op-pruning and old-filtering, until a suitable label is found or

Gop(s) becomes empty. Notice that this pruning operation is not ea-

ger nor lazy, as it is carried out just before a label is transferred from

Gop(s) to Open. If a suitable label l′ is found, it is used to update

Open. Otherwise, Gop(s) became empty and label l is removed from

Open. After this procedure, Open still has the single best label for

each state with non-empty Gop.

The use of Gop(s) queues for each state s reduces the overall

Open size, since there is at most one label in Open for each state

at any given time. Additionally, early op-pruning operations are car-

ried out on Gop queues. This key process prevents many labels from

entering Open when compared to lazy op-pruning. Labels are ’early’

pruned upon reaching the top of their state’s Gop(s) queue, which is

generally of a small size compared to Open. In consequence, the

overhead in Gop queue operations due to early op-pruning is smaller

compared to the overhead in Open due to lazy op-pruning operations

in BOA*.

The popReplace operation also offers the chance to perform

early filtering, discarding additional labels before they even en-

ter the Open queue. More precisely, this allows labels to be effi-

ciently checked against solutions found between the moment the la-

bel was generated and the moment it reaches the top of its state’s

Gop(s) queue. This is a new source of efficiency over the lazy new

filtering applied by both NAMOA∗

dr and BOA*. Labels that can be

efficiently early filtered in the Gop(s) queues, will never enter Open

nor produce overhead in its operations.

Finally, procedure insertReplace adds newly generated labels to

the Open and own state Gop queues. Whenever a new label improves

upon the current best �f value of its state, it replaces the previous

representative for that state in Open using an update operation.

5.1 Example

Let us compare the workings of BOA* and EBA* through a simple

example (figure 1), with start s0 and goal s4. For simplicity let’s

assume blind search, i.e. ∀s, h1(s) = h2(s) = 0. Table 1 shows

the lexicographically ordered content of Open for both algorithms

at each iteration (only state and evaluation �f for each label, since for

all labels �f(s) = �g(s)). Each label expansion for a state s updates

gmin
2 (s), but only gmin

2 (s2) is mentioned in our discussion, since it

is the only value actually used for pruning in this example.

Figure 1: Sample bi-objective graph.

BOA* starts expanding label (s0, (0, 0)). At iteration 2 label
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(s1, (1, 2)) is expanded and successor (s2, (2, 3)) added to Open.

Notice that (s2, (4, 4)) is dominated by (s2, (2, 3)), but no eager op-

pruning is applied and both labels to s2 coexist in Open. At iter-

ation 3 (s2, (2, 3)) is selected, setting gmin
2 (s2) = 3. At iteration

4 (s3, (3, 3)) is expanded and its successor (s2, (5, 4)) eagerly cl-

pruned. At iteration 5 label (s2, (4, 4)) is selected and lazy op-pruned

using gmin
2 (s2) = 3. The only solution is found at iteration 6.

In EBA* all iterations call ’popReplace’, and upon label expan-

sion unpruned successors are processed by ’insertReplace’. EBA*

starts expanding label (s0, (0, 0)), and all three successor labels are

added to Open and their state’s queues Gop(s1), Gop(s2), Gop(s3)
(not shown in Table 1). At iteration 2 EBA* expands (s1, (1, 2)).
The Gop(s1) queue becomes empty and ’insertReplace’ is called

over successor (s2, (2, 3)), which is added to the Gop(s2) queue

along with (s2(4, 4)). Since it is the best label, it becomes the only

representative of s2 in Open, replacing (s2(4, 4)). At iteration 3

’popReplace’ selects (s2, (2, 3)), setting gmin
2 (s2) = 3, and early

op-pruning label (s2(4, 4)) from Gop(s2), which becomes empty.

At iteration 4 (s3(3, 3)) is selected, and its successor (s2(5, 4)) is

eagerly cl-pruned. Finally, the only solution is found at iteration 5.

This simple example illustrates how using Gop queues in EBA*

allows for earlier op-pruning of label (s2(4, 4)) at iteration 3, effec-

tively reducing the overall count of open labels when compared to

BOA* in subsequent iterations. This in turn reduces the computa-

tional cost of any subsequent queue operations.

It. BOA* EBA*

1 s(0, 0) s(0, 0)
2 s1(1, 2), s3(3, 3), s2(4, 4) s1(1, 2), s3(3, 3), s2(4, 4)
3 s2(2, 3), s3(3, 3), s2(4, 4) s2(2, 3), s3(3, 3)
4 s3(3, 3), s2(4, 4), s4(4, 5) s3(3, 3), s4(4, 5)
5 s2(4, 4), s4(4, 5) s4(4, 5)
6 s4(4, 5) -

Table 1: Open queue contents at each iteration for BOA* and EBA*.

6 Properties

We sketch a proof of admissibility for EBA* exploiting its similarity

to that of BOA* in [9] (sec. 7.1). Lemmas 1,2,4,5,6, and Theorem 1

in [9] easily apply to both BOA* and EBA*. Only Lemmas 3 and 7

in [9] need to be proven for EBA* to complete the proof. The term

"node" as used in [9] for BOA* is equivalent to "label" in this paper.

Proof 1 (Replaces proof of Lemma 3 in [9]) Let l = (s,�g, �f) be

selected, setting gmin
2 (s). Assume, for the purpose of contradic-

tion, that the next selected label to s, l′ = (s, (g′1, g
′

2), �f ′), has

g′2 ≥ gmin
2 (s). In order to reach the top of Gop(s) and be selected,

l′ either was inserted with ’insertReplace’ in line 23 of EBA* after

l was selected (contradicting the eager cl-prune condition in line 19

of EBA*), or remained the top of Gop(s) in the call to ’popReplace’

that selected l (contradicting the early op-prune condition in line 7

of popReplace, given the value of gmin
2 (s) set by l in line 3).

Proof 2 (Replaces proof of Lemma 7 in [9]) The different pruning

conditions applied to prune any label x1 = (s, (g′1, g
′

2), (f
′

1, f
′

2)) in

EBA* are,

• Case a: lazy filter (EBA*, line 10, f ′

2 ≥ gmin
2 (sgoal))

• Case b: eager cl-prune (EBA*, line 19, g′2 ≥ gmin
2 (s))

• Case c: eager filter (EBA*, line 19 f ′

2 ≥ gmin
2 (sgoal))

• Case d: early op-prune (popReplace, line 7, g′2 ≥ gmin
2 (s))

• Case e: early filter (popReplace, line 7, f ′

2 ≥ gmin
2 (sgoal))

The lemma holds for reasons analogous to those in [9](lemma 7),

since the pruning conditions are the same, and they hold indepen-

dently of the moment they are applied. Let us analyze each case,

• Case a: same as case 2 in [9]lemma 7

• Cases b and c: same as case 3 in [9]lemma 7

• Case d: Let label x1 = (s, (g′1, g
′

2), (f
′

1, f
′

2)) be early op-

pruned. For the pruning condition to hold, some label x4 =
(s, (g1, g2), (f1, f2)) was previously selected and set the current

value of gmin
2 (s) = g2 (otherwise gmin

2 (s) = ∞ and no pruning

is possible). By [9](lemma 2), f1 ≤ f ′

1, which implies g1 ≤ g′1.

By the pruning condition, g2 ≤ g′2. So (g1, g2) weakly dominates

(g′1, g
′

2), which implies x1 can be pruned and the lemma holds by

virtue of [9]lemma 6.

• Case e: Let label x1 = (s, (g′1, g
′

2), (f
′

1, f
′

2)) be early fil-

tered. For the pruning condition to hold, some label x4 =
(sgoal, (g1, g2), (f1, f2)) was previously selected and set the cur-

rent value of gmin
2 (sgoal) = g2 (otherwise gmin

2 (sgoal) = ∞ and

no pruning is possible). Let x2 = (sgoal, (g”1, g”2), (f”1, f”2))
be a successor of x1 reaching the goal state. By [9]lemmas 1 and

2, g1 = f1 ≤ f ′

1 ≤ f”1 = g”1. By the pruning condition and

[9]lemma 1 g”2 = f”2 ≥ f ′

2 ≥ f2 = g2. So (g1, g2) weakly

dominates (g”1, g”2) which implies x1 can be safely pruned,

since x2 need never be considered for inclusion in Sols.

7 Experiments

A recent contribution [9] showed BOA* to improve the runtime effi-

ciency of NAMOA∗

dr . Therefore, we limit our experimental compar-

ison to EBA* and BOA*.

We use a publicly available C implementation of BOA*7. An ef-

ficient binary heap is used for the Open queue. We build our C im-

plementation of EBA* sharing as much code as possible8, and use

the same kind of binary heaps for Open and the Gop(s) queues. We

ran both algorithms over a set of publicly available test problems on

bi-objective road maps used in [9]. These comprise eight sets of fifty

problem instances, defined over different road maps. Due to space

limitations we present results here for the four largest road maps (Ta-

ble 2a), which include the hardest problem instances. The maps are

available from the "9th DIMACS implementation challenge: shortest

paths"9. The maps provide sets of states (locations) and arcs (roads)

with cost information regarding distance (c1) and travel time (c2).

Experiments were run on an Intel (R) Core(TM) I7 10700K

3.8GHZ S1200 16Mb CPU with 64Gb DDR4 RAM under Ubuntu

22.04. Each process was run on a single thread.

Both algorithms perform the same number of label expansions and

find the same number of solution labels over all problem instances. In

other words, both explore the same portion of the state space, being

the difference the efficiency of that exploration.

Table 2b presents results on the runtime of EBA* and BOA* over

the instances of the different maps.

Table 2c records some statistics on the number of basic heap per-

colation operations carried out by both algorithms. In the case of

BOA* this includes percolations in Open, while for EBA* this in-

cludes percolations over all queues (Open and the Gop(s) queues).

Table 2d presents some statistics regarding the size of the queues in

7 https://github.com/jorgebaier/BOAstar/
8 https://www.lcc.uma.es/~lawrence/eba.zip
9 https://users.diag.uniroma1.it/challenge9/download.shtml
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both algorithms. We measure the average size of the Open queue for

each problem instance. The table shows the average of such values

for all problem instances in each map. We also measure the maxi-

mum size of Open for each instance, and report the maximum of

such values for the instances of each map. We also report the maxi-

mum value of any Gop queue for each problem set.

Name Region States Arcs Avg. sols.

NW Northwest USA 1207495 2840208 1051

NE Northeast USA 1524453 3897636 1071

CAL California and Nevada 1890815 4657742 907

LKS Great Lakes 2758119 6885658 6057

(a) Road map sizes and average number of solutions in problem sets.

Avg. Max Min Med σ

NW (Northwest USA)

EBA* 3.79 46.35 0.34 0.67 8.55
BOA* 4.14 48.00 0.34 0.68 9.51

NE (Northeast USA)

EBA* 8.32 47.11 0.44 2.71 11.43
BOA* 8.92 52.53 0.44 2.69 12.31

CAL (California and Nevada)

EBA* 7.95 91.04 0.55 0.88 17.45
BOA* 8.73 106.67 0.55 0.93 19.80

LKS (Great Lakes)

EBA* 213.46 1087.99 1.92 82.99 276.60
BOA* 266.61 1422.41 2.00 94.96 360.75

Runtime ratios EBA*/BOA*

NW NE CAL LKS

0.913 0.932 0.911 0.801

(b) Runtime statistics (in seconds) for each of the 50 instance bench-
marks, and runtime ratios EBA*/BOA*.

Avg. Max Min Med σ

NW (Northwest USA)

EBA* 157.71 1509.23 0.02 24.10 336.89
BOA* 221.57 2023.89 0.02 32.62 469.39

NE (Northeast USA)

EBA* 293.51 1458.35 < 0.01 118.52 378.41
BOA* 413.74 2091.72 < 0.01 172.60 528.94

CAL (California and Nevada)

EBA* 269.62 2430.72 < 0.01 27.25 519.10
BOA* 378.14 3361.32 < 0.01 39.13 721.13

LKS (Great Lakes)

EBA* 5557.78 24707.62 73.91 2417.70 6550.34
BOA* 7663.18 33563.67 103.58 3404.71 8959.35

# percolations ratios EBA*/BOA*

NW NE CAL LKS

0.712 0.709 0.713 0.725

(c) Heap percolation operations (in millions) for different test
sets, and percolation ratios EBA*/BOA*.

NW NE CAL LKS

Average of Open average sizes

EBA* 5543.40 15529.39 11638.37 63859.85
BOA* 80949.22 268680.64 181907.00 2110226.94

Maximum of Open maximum sizes

EBA* 42705 79459 86191 234311
BOA* 1135990 1517523 2825448 12379212

Maximum of all Gop maximum sizes

EBA* 1110 926 1256 5118

(d) Queue size statistics for different test sets

Table 2: Experimental data and results.

8 Discussion

Runtime results for BOA* in Table 2b are consistent with those re-

ported by [9], though our machine is slower. EBA* beats BOA* in

all four instance sets, both in average and maximum runtimes, and

obtains a runtime ratio between 0.932 and 0.801 when compared to

BOA*. Best performance is achieved over the hardest set (LKS). The

ratio over all test sets was 0.81, i.e.a saving of 19% of the runtime

taken by BOA*. Paired one-tailed Student’s t-tests were carried out

to check the statistical significance of average runtime results. These

provided p-values of 0.029, 9.1 × 10−5, 0.021 and 2.9 × 10−5 for

NW, NE, CAL and LKS respectively. These show the significance

of improvement in average runtime for EBA* with confidence of at

least 97.1%, and much higher for the more difficult LKS set.

The results in Table 2c provide some explanation for this better

performance. The use of Gop(s) queues combined with early prun-

ing in EBA* saves a sizeable amount of heap percolations, well over

8 billion in the hardest instance. Again, EBA* systematically beats

BOA* in all road maps, with a substantial reduction both in average

and maximum values. EBA* performs only 73.2% of the percola-

tions carried out by BOA* over all test sets.

The results in Table 2d provide in turn some explanation for the

reduced number of percolations in EBA*. The average size of Open

in EBA* is much smaller than in BOA* in all instance sets, and

clearly an order of magnitude smaller in the hard LKS set. The max-

imum size of Open is also at least an order of magnitude larger in

BOA* when compared to EBA* in all sets. In contrast, the size of the

Gop sets in EBA* is much smaller in size, reaching a global max-

imum of 5118 among all such sets in all problem instances. This

means heap operations (pop, insert, and update) are carried out in

EBA* in much smaller queues.

9 Conclusions and future work

This paper introduces EBA*, a new admissible bi-objective shortest

paths search algorithm with efficient pruning checks.

We present an analysis highlighting the different types of pruning

techniques, some applied by previous bi-objective algorithms. More

precisely, we characterize pruning operations depending on their type

(op-pruning, cl-pruning, old-filter, new-filter), the moment they are

applied (eager, early, lazy), and their use of dimensionality reduc-

tion. Additionally, the computational overhead introduced by appar-

ently constant-time lazy pruning techniques is identified. EBA* in-

corporates previous efficient dominance check techniques, introduc-

ing early pruning, a new efficient technique that exploits the use of

Open and state (Gop) queues to reduce the computational overhead

of lazy op-pruning and filtering. This reduces the number of open

labels, the cost of queue operations, and ultimately runtime.

The admissibility of the new algorithm is discussed. Experimental

results show a consistent reduction in runtime when compared to the

previous BOA* algorithm over standard road-map problem sets.

Future work includes deeper experimental analyses on different

problem sets, the extension of early pruning to problems with more

objectives, and the evaluation of EBA* in combination with bidi-

rectional approaches for MOS. The recent work of [1] proposed a

bidirectional BOS framework in which two BOA* searches are run

concurrently in opposite directions. This allows sharing of solutions

between searches for efficient filtering. Heuristics can also be im-

proved at runtime by exploiting information gained in the opposite

search. An evaluation of EBA* in this framework is also a promising

area of future research.
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