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Abstract. Bike Sharing Systems (BSSs) offer a flexible and sus-
tainable transport option that has gained popularity in urban areas
globally. However, as users move bikes according to their own needs,
imbalanced bike distribution becomes a significant challenge for BSS
operators. To address this problem, we propose a Workload Aware-
ness (WA) approach that considers the rebalancing workload of BSS
sub-networks and congestion issues when repositioning bikes dy-
namically. Our algorithm, WA, identifies sub-networks in a BSS and
ensures a similar rebalancing load for each sub-network. Our mixed
integer nonlinear programming (MINLP) model then finds a reposi-
tioning policy for each sub-network, taking into account operator ca-
pacity, bike and dock information, and minimizing total losses due to
bike shortages and dock congestion. Our experiments on the Ningbo
City Bike system demonstrate that our approach outperforms state-
of-the-art methods by reducing the loss of the system by up to 60%
and significantly reducing computational time by up to 36%.

1 Introduction

Bike Sharing System (BSS) is a shared transport service where users
can rent bikes for short journeys. Traditionally, a BSS has stations
with docks set up across a city and stocked with a number of bikes.
Users can pick up and return bikes at any station according to their
real-time demand without booking in advance. As BSSs can provide
a green and flexible travel option to individuals and mitigates the
problem of carbon emission and traffic congestion at the social level,
they have become increasingly popular worldwide [1]. Nowadays,
there are 1914 BSSs with 8,967,122 bikes operating worldwide, with
hundreds more in the planning stage [23].

However, a major problem with the flexibility for BSS users is im-
balanced bike distribution [15]. The demand of users is self-oriented
without a global vision and is asymmetric. In this case, a large
number of users’ individualistic movements can cause two possi-
ble problems: (i) starvation, where supply is less than demand; and
(i) congestion, where supply is more than demand. Such bike sup-
ply/demand imbalance can result in a number of consequences such
as revenue loss for a BSS company and increased carbon emission.
Hence, it is crucial for the owners of BSSs to redistribute the re-
sources and to ensure the system is balanced and functioning effec-
tively [12].
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To address these problems, researchers have adopted several ap-
proaches. A common approach is to deploy heavy vehicles (e.g.,
trucks) to relocate bikes among stations, either at night or during
the day. However, the use of fuels-burning vehicles goes against the
concept of greenness and worsens the problem of heavy traffic [13].

As an alternative, researchers have been studying the use of
smaller carriers to perform dynamic repositioning tasks in BSSs
[9, 18]. Dynamic repositioning involves using trailers, a type of add-
on to a bike that can carry a small number (usually 3-5) of bikes, to
move bikes throughout the day to fix imbalances during rush hours.
With a sufficient fleet size and proper scheduling, small vehicles
distributed across a BSS can help relocate bikes to nearby stations
and balance the system at a lower environmental cost. However, to
simplify the problem, existing works only focus on the starvation
problem and neglect the congestion problem. Thus, their proposed
method fails to decrease the total loss of a BSS maximally. Further-
more, they do not consider the large scale of bike rebalancing prob-
lems. Without considering this commonly occurring issue [10], the
designed rebalancing strategy will not be applicable in a real-world
BSS which can consist of hundreds of stations.

There are several works devoted to decomposing a large BSS into
smaller sub-networks for dynamic bike repositioning (see Section
2). However, these methods only consider the geographical informa-
tion of stations and ignore the information of historical trip records.
Furthermore, they do not consider rebalancing workload in each
sub-network. As the number of operators who use smaller carriers to
perform dynamic repositioning tasks for each sub-network is approx-
imately the same, making sub-networks have an evenly rebalancing
workload is crucial: sub-networks with heavy rebalancing workload
may not have sufficient operators to finish the repositioning tasks
within a given planning period, while sub-networks with light rebal-
ancing workload make operators to be idle, causing a waste in the
human resources.

Against this background, this paper proposes a mixed integer non-
linear programming (MINLP) with Workload Awareness (WA) ap-
proach. We first propose WA that groups stations in a large-scale
BSS into different sub-networks based on the stations’ geographical
information and bike flows and ensures that each sub-network has
a similar rebalancing workload. Then we allocate operators for con-
ducting rebalancing in each sub-network. Considering the capacity
and location of operators and tracing the docks and bikes informa-
tion, we design a MINLP model to minimize the total loss.
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This paper advances the state-of-art method for dynamic reposi-
tioning using small vehicles in the following ways. First, our WA
algorithm is the only one that allows each sub-network to have an
evenly rebalancing workload by incorporating both geographical in-
formation of stations and bike flows. Such a joint consideration can
ensure that each sub-network has a similar rebalancing workload,
leading to better loss-minimizing performance and higher computa-
tional efficiency. Second, we are the first to design the MINLP model
that considers losses caused by lack of docks (congestion) and losses
caused by lack of bikes (starvation). Finally, we design a simula-
tor which is built on the real-world data set from Ningbo City Bike
system to evaluate the effectiveness of rebalancing approaches. Our
empirical results show that our approach can significantly decrease
the loss of the system by up to 60% compared to the current state
of the art. Moreover, compared to the state of the art algorithms, our
proposed method can reduce the program’s running time by up to
36%.

2 Related Work

Acknowledging the many benefits of BSSs, various researches are
carried out to cover the problem of uneven resource distribution and
optimally utilize its advantages. In this section, we summarize and
give examples of the main strands of research that are closely related
to our work.

Methods of bike rebalancing fall into one of two main categories:
static repositioning and dynamic repositioning. In a static reposition-
ing scheme, bike positioning is carried out during the “off” hours of
a BSS, e.g., at night, to achieve a strategically determined stock level
for the next operation round. Costa Affonso et al.’s work [3] is one of
the latest works in this strand. Usually, static repositioning employs
a smaller number of heavy vehicles (e.g., trucks) with larger capacity
and greater travel range [21]. However, the effect of static reposition-
ing is limited and can fail to match supply and demand quickly as the
bikes start to move when the BSS operates during the day [14].

On the contrary, dynamic repositioning schedules for bike repo-
sitioning happen throughout the day when the BSS is in operation
and considers the bike flows at different times of the day. Dynamic
repositioning using trucks has been studied [20, 6, 14]. The use of
a large number of small vehicles has also been studied a lot due to
environmental concerns regarding heavy vehicles. The best example
of this line of work is by Ghosh and Varakantham [9], who consider
the problem of dynamic scheduling using small bike trailers. How-
ever, they only consider the loss caused by starvation but not the loss
caused by congestion. Thus, their proposed method fails to decrease
the total loss of a BSS significantly. Furthermore, they do not con-
sider the large-scale bike rebalancing problem. Hence, the running
time of this approach becomes excessive for a real-world BSS.

Concerning the time-effectiveness issue, clustering in bike rebal-
ancing has attracted considerable attention. For example, Raviv et
al. [22] cluster the stations based on the expected number of empty
stations after a certain amount of time. Forma et al. [5] propose a
clustering method based on station locations as well as their inven-
tory capacity. Ghosh ez al. [10] apply the k-means clustering based
on station locations. Li ef al. [16] use reinforcement learning to re-
balance the system after clustering. The best example of this line of
work is by Wang et al. [24], who exploit bike flows between sta-
tions in addition to the geographical information of stations. Their
solution is called MFUA. However, they do not consider rebalancing
workload in each sub-network and ignore the congestion problem in
arebalancing problem. Thus, they cannot help to reduce the total loss

in a large-scale BSS most effectively.

3 System Model

In practical bike rebalancing operations, when the coverage of bike
stations is broad, and the user demands are high, we need to de-
compose the large BSS into smaller sub-networks for real-time op-
erations [10, 14, 24]. We consider a set C = {1,2,...,C} of C
sub-networks. The objective of a BSS decomposition is to make
each sub-network have three properties, i.e., inner-balance in each
sub-network, inter-independence between sub-networks and similar
rebalancing workload [24]. The inner-balance property means that
the total bike rent and return demands in a sub-network should be
almost equal. The inter-independence property means no frequent
transitions between any two sub-networks. The similar rebalanc-
ing workload means that sub-networks have an evenly rebalancing
workload. Then we allocate operators for each sub-network to con-
duct bike rebalancing operations. The number of operators for each
sub-network is approximately the same in a practical BSS system.

Then we extend the generic model of dynamic rebalancing and
routing problem (DRRP) introduced by Ghosh et al. [10], which is
common in the literature (e.g., [17, 7, 14]), for defining our prob-
lem. For each sub-network, the problem can be represented using the
following tuple:

<SCv VCv C#7 C*7 df70’ {02,5}7 HC7 Fi)

e S, represents the set of stations belonging to sub-network c. Each
station s € S, has a capacity (number of docks) CZ.

e ). represents the set of operators allocated to sub-network c. Each
operator v € V. has a capacity (maximum number of bikes car-
ried) C.

o d#° specifies the initial number of bikes at station s € S, at the
start of the day (planning period 0). Together, d#° gives the ini-
tial distribution of bikes across stations belonging to sub-network

cl.

° 02,5 = 1 if operator v € ), is at station s € S, at the start
of the day. Together, the set {US,S} gives the initial locations of
operators.

e H_.isaSc x S. matrix where H; ,+ denotes the distance between
station s € S; and s’ € S, that are belonged to sub-network c.

e F! contains the demand flow (number of bikes demanded) in
sub-network ¢ across all K training scenarios, which are used
for training purposes. Fif/ denotes the demand flow from station

s € Sc to s’ € S, in training scenario k in the planning period ¢.

To dynamically schedule for bike relocation throughout the day,
we divide the operating time of a BSS into a series of discrete
planning periods. As the locations of bikes and operators change af-
ter each planning period, we update the variables regarding distribu-
tions and let d7* and {0, ,},v € V., s € S. denote the distribution
of bikes and the locations of operators belonging to sub-network c at
the start of planning period t.

As is common in the literature (e.g., [9, 7, 18]), we make the fol-
lowing assumptions for the ease of representation and evaluation’:
(i) we assume that users and operators in planning period ¢ always
return their bikes at the beginning of planning period ¢ + 1; (ii) users
are impatient and leave the system if they encounter an empty station.

1 Throughout this paper, we use bold notations for vectors.
2 These assumptions can easily be relaxed with minor modifications to our
methods.
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Algorithm 1 WA Algorithm

1: Input: C, S, C#,d*! H,F', K;

2: Initialize: B. « () for c € C, O <« 0;

3: Compute LB* LD* Vs € S,k € K;

4: AL, = ComputeAL(S);

5: Construct sub-networks based on community detection algo-

rithm;

6: Select the centroides /. for sub-network c;

7: forc € Cdo

8: AL.= ComputeAL(B.);

9: if AL. > AL, then

10: Sort s € B, in descending order of H, ;_ to get B};
11: for s € B! do

12: while AL. > AL, do

13: if ComputeAL (B, \ {s}) < AL and s # [. then
14: O+ OU{s};

15: Be + Be\ {s};

16: AL. = ComputeAL(B.);

17: end if

18: end while

19: end for
20:  endif
21: end for

22: for s € O do

23: Ccandidale «— @;

24:  Sort c € C in ascending order of AL, to get C" ;
25:  forceC'do

26: if ComputeAL(B. U {s}) < AL, then
27: Ccandidate P U{C};

28: end if

29: end for

30:  Sort ¢ € "%t i ascending order of H. sl to get chn
and c1, where ¢, is the first cluster index in CT" ;

3 O« O\ {s};

32: B, < Be, U{s};

33: AL., = ComputeAL(S.,);

34: end for

35: for s € O do

36: O+ O\ {s};

37: c=argmingcc ALy

38 B. <+ B.U{s};

39: AL. = ComputeAL(B.);

40: end for

41: return B, for c € C;

Users return their bikes to the nearest station if the destination station
is full; and (iii) the events at each planning period follow a particu-
lar sequence. Operators first carry out the repositioning tasks, then
arrival users pick up their bikes and lastly, users return their bikes at
the destination station.

4 Methodology

In this section, we first describe the details of MINLP with WA ap-
proach. Then, we illustrate the system simulator that simulates the
dynamic process of MINLP with WA approach for a BSS.

4.1 WA Algorithm

The WA algorithm aims at decomposing a large BSS into small
sub-networks so that the complexity of solving the bike rebalancing
problem can be reduced. In more detail, WA group stations in a large-
scale BSS into different sub-networks, within which we can schedule
and perform bike repositioning. Algorithm 1 presents WA algorithm.

The main idea of this algorithm is to consider the geographical lo-
cations of stations, traffic flow and rebalancing workload while gen-
erating sub-networks. More specifically, WA generates sub-networks
based on distance and traffic flow first, then adjust the sub-networks
to eliminate any highly rebalance-demanding sub-networks.

‘We use the station’s original total loss (i.e., the total loss that would
occur at that station if no rebalancing is performed) to measure the
degree of rebalancing needed at a station quantitatively. The higher
the original total loss at a station is, the more rebalancing should be
performed around that station to reduce such loss.

To evaluate the amount of rebalancing needed by a set of stations,
we use the notion of Average Loss (AL) over stations of non-zero
loss. For a set of stations P, we compute AL as

ComputeAL(P)
_ L S v S (LB’“ n LD’“) (1
K max (|P+*|,1) ° AN
keK sePtik

where PT* represents the set of stations in 7P with a non-zero total
loss in scenario k, LB;C denotes loss caused by a lack of bikes, which
is incurred when a user can’t find an available bike to rent at station s
in scenario k£ and L D? is the loss caused by a lack of docks, which is
incurred when a user can’t find an available dock to return their bike
at station s in scenario k.

WA generates sub-networks in planning period ¢ in the following
steps.

o Initialize sub-network set and the outlier set: We first initialize
the set of stations (B.) for each sub-network ¢ and the outlier set
O, which is a temporary storing place for outlier stations when we
later adjust sub-networks.

e Compute original total loss from demand flow: In step 3, We
compute the original total loss at each station in each training sce-
nario from the demand flow F*.

e Compute the global AL as a standard of AL: We then calculate
the AL over all stations in step 4 and denote it as AL,. We will
use AL, as a threshold to adjust the clustering result.

e Construct sub-networks based on distance and traffic flow:
We adopt a betweenness based community detection algorithm
[19] to construct sub-networks. Each sub-network is almost inner-
balanced and inter-independent with others sub-networks.

e Select each sub-network’s central station: We select the cen-
troides [ for sub-network c based on K-means algorithm [4].

e Compute and cap AL at AL, by removing a single outlier sta-
tion: We then adjust sub-networks based on AL. For each cluster
¢, we first compute its AL, denoted as AL, in step 8. Then we
compare AL, with the threshold AL,. If AL. exceeds the thresh-
old, we look at stations in c in descending order of distance to the
sub-network’s centre [.. For each station, if removing it from the
sub-network reduces this sub-network’s AL. to below ALy, we
do so and temporarily place the station in the outlier set.

o Try assigning stations in the outlier set to sub-networks with-
out breaking the AL, bound: We then need to assign outlier
stations to different sub-networks. As the purpose is to average
each sub-network’s AL, for each outlier station s, we attempt all
sub-networks in ascending order of AL.. We first find a set of
sub-networks C*"9% in which a sub-network can accept the out-
lier station s without having its AL. exceed the threshold AL,.
Once we find this sub-network set, we assign station s to its near-
est sub-network in the set Ccadidae,
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e Assign remaining stations in the outlier set to sub-networks
of relatively low AL.: Note that there could be stations that will
result in large AL within every cluster. As we need to assign every
station to a sub-network, in steps 35-40, we assign each station to
the sub-network with the lowest current AL., so the excess of
resulted AL, over ALy is as small as possible.

4.2 MINLP Model

In this section, we formulate the objective and constraints of our
MINLP model to generate a feasible repositioning policy for each
sub-network. At the start of rebalancing time slot ¢, the initial bike
distribution d7* and the demand flow F? for sub-network c in all
K training scenarios are given as the input to the MINLP model.
The distribution of operators working in sub-network ¢ (i.e., {af,’s},
v € Ve, s € S) is also the input to our MINLP model.
We define the decision variables in MINLP as follows:

. y;f;f represents the number of bikes picked up from station s € S,
by operator v € V..

. y;;f represents the number of bikes dropped off at station s € S,
by operator v € V..

o bl = 1if operator v € V. picks up bikes from station s € S..

) b;;f = 1 if operator v € V. drops off bikes at station s € S..

Then we present the formulation of the MINLP model for
sub-network ¢ € C in Table 1. The physical meanings of the ob-
jective and constraints in the optimization problem are explained as
follows:

e Objective: Our objective is to minimize the total number of ex-
pected loss bikes and loss docks over K training demand scenar-
ios in sub-network ¢ € C in planning period ¢ . As each scenario
has equal probability [9], we define the expected total loss over all
K training scenarios as ESESC,kGK LB + LDk,

e Compute loss bikes as the deficiency in the supply of bikes:
Constraint (2) ensures that the number of loss bikes at station
s € S. in scenario k is lower bounded by the difference between
demand and supply of bikes at station s. The number of bikes
presents in a station s after accomplishing the repositioning task
is estimated as d7f + vev, (¥si — yai). As we minimize
the sum of loss bikes over all the scenarios, these constraints are
sufficient to compute the exact number of loss bikes.

e Compute loss docks as the excess of bikes over station capac-
ity: Constraint (3) ensures that the number of loss docks at station
s € Sc in scenario k is lower bounded by the difference between
the supply of bikes at station s and its capacity. As we minimize
the sum of loss docks over all the scenarios, these constraints are
sufficient to compute the exact number of loss docks.

e Operator’s capacity is not exceeded while picking up bikes:
Constraint (4) ensures that the number of bikes picked up by op-
erator v € V. from station s € S, is bounded by the minimum
value between the number of bikes available in this station and the
operator’s capacity.

o The total number of bikes picked up from a station does not
exceed the number of available bikes there: Constraint (5) en-
sures that the total number of bikes picked up from a station by
all operators is bounded by the number of bikes presents in this
station.

3 For analytical convenience, we do not consider the cost of repositioning.
Adding the repositioning cost does not change our main insights, as repo-
sitioning is performed by employed operators who are on duty throughout
the day and have a fixed pay.

min Z LBt 4 LDF? . 2)
s€Sc ke
o> Ym0 T ) o
s’'eS. vEV,
Vk,s €S, (4)
ks Y RE <d# LYl - y:,m) _et,
s’'eS. v
Vk,s €S,
(&)
b < b3 - min (dff’t,Cj) , Vs € Se,vE Ve ©)
Syl <dit vses. )
veEV,e
Syl <c¥—dtt vses. ®)
vEV,e
Yo =bi - >y, VsES,veEV 9)
s'€Se
(b:»;f + bs_’,v - 1) : Hs,s/ < Hma)u VS7S/ c S,;/U cV.
(10)
Shi=1 e (11)
sES.
> bii =0, VeV, (12)
s¢Gy
Sbii=1YoeV. (13)
SES.
LB"t LD*t > 0;
0 <yl ys <C5;
bil by € 40,1}, Vk,s € Se,v € Ve (14)

Table 1: MINLP

Station capacity is not exceeded while dropping off bikes: Con-
straint (6) ensures that the total number of dropped off bikes at
station s € S, is bounded by the number of available docks at that
station.

An operator should return the exact number of bikes she/he
has picked up: Constraint (7) enforces that, at the drop-off station
(where b, )} = 1), the number of bikes dropped off by an operator
is exactly the number of bikes she/he has picked up.

An operator can only travel for a bounded distance: We as-
sume there is a maximum distance an operator can travel from
the pick-up station to the drop-off station, which we represent
as Hmax. Constraint (8) enforces that the distance travelled by an
operator is limited by this threshold value Hpay.

An operator can only pick up bikes from one station: We as-
sume, in one planning period, an operator can only complete one
relocating task. Constraint (9) enforces that an operator can only
go to one pick-up station by allowing only one b;ﬁ, s € Se,v €
V. to be set to 1.

An operator can only pick up bikes from a nearby station: We
assume there is a maximum distance an operator can travel to get
to the pick-up station. Therefore, based on the initial location of
an operator, there is a set of stations that the operator can pick
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up bikes from, which we denote as G,. Constraint (10) allows an
operator to pick up bikes from a nearby station only by forcing all
decision variables representing picking up from a station that is
not in the near station set to be 0.

e An operator can only drop off bikes at one station: Similar to
Constraint (9), Constraint (11) enforces that an operator can only
return bikes to one station by allowing only one b, )}, v € Ve, s €
S. tobesetto 1.

Note that, Constraint (7) is not linear. However, as b;;,t is a bi-
nary decision variable, we can use the big-M method [11] for the

linearization. We can replace Constraint (7) as follows:
—t —t
ys,v S C’j : bs,'u
—t +,t
ys,'u S Z ys,v
S

v 2 Dyl = (1=ba3) - €3

Vs € S.,veV. (15
Vs e S.,veEV. (16)

Vse Se,ve Ve (17)

As the operator’s capacity is small (i.e., less than 5), such a lin-
earization does not incur too much computational expense [9]. Then
we solve the MINLP model using IBM ILOG CPLEX Optimization
Studio V12.10 within python code on a 3.2 GHz Intel Core i7 ma-
chine.

4.3 System Simulator

We establish a simulator to evaluate the approach’s performance
on real-world data. We iterate the MINLP model with WA over
planning period ¢ to achieve dynamic bike rebalancing. At the be-
ginning of planning period ¢, we respectively input the distribution
of bike d*** and demand flow F* to WA and WA algorithm gener-
ates sub-networks C for planning period ¢. We then allocate operators
V. for each sub-network c to rebalance bikes among stations belong-
ing to ¢ and find the solution to the MINLP model. The solution of
the MINLP model describes the repositioning policy, including the
routing of operators and the number of bikes that are picked up and
dropped off by operator v at station s in planning period ¢. Following
the repositioning policy, we simulate the reposition, rent and return
process in turn in each planning period, and repeat it until the end of
planning period. For all sub-networks, the above processes are sim-
ulated simultaneously. Algorithm 2 shows the detailed procedure for
planning period ¢.

Algorithm 2 MINLP with WA

: Input: MINLP, cluster number C'
: Generate sub-networks with WA ;
: for cluster ¢ € C do

Y, Y. ,BI, B, « Solve MINLP within ¢;
end for
YT, Y ,B" B  « Y, Y.,BI B forceC;
creturn YT, Y™ ,BT.B™;

R

S Empirical Evaluation

We conduct an empirical study to evaluate the performance of our ap-
proach. This shows how considering both the rebalancing workload
of sub-networks in a BSS and the congestion problem can minimize
the system’s total loss effectively. We compare our method to other
state of the art mechanisms that do not include these two actions.

Real-world Dataset

We evaluate the performance of our approach with respect to the key
performance metric of total loss on a real-world data set from Ningbo
City Bike system®. The data set contains the following information:
(i) customer trip records, from which we compute the demand sce-
narios; (ii) the number of stations, their capacity and initial distribu-
tion of bikes at each of the stations; (iii) geographical locations of
stations (consisted of longitude and latitude), from which we calcu-
late the relative distance between two stations; and (iv) the number
of operators and their capacity. The dataset consists of 240 stations
and 20 operators. We let each operator have a maximal capacity of
3 bikes, a maximum travel distance to pick-up station of 50 km and
a maximum travel distance from pick-up station to drop-off station
of 50 km®. The number of operators in different sub-networks are
the same. And in each sub-network, operators are distributed across
the stations uniformly at the start of the day®. As is common in the
literature (e.g., [7, 13]), we consider 6 hours of planning horizon in
the morning peak (6 AM-12 PM) which is divided into 12 planning
periods, each having a duration of 30 minutes. We generate 16 de-
mand scenarios for the weekdays from one month of historical trip
data. From 16 demand scenarios, 10 scenarios are used for training
purposes and the other 6 scenarios are used for testing.

As the historical trip data ignores the unobserved lost demand, we
employ a micro-simulation model from [8] with one minute of time
discretization to determine the period when a station was empty and
inject artificial demand based on the observed demand at that station
in previous time step.

Note that the actual bike flows by users are restricted by the num-
ber of bikes available at a station, i.e., not all user desired journey
may happen. In simulations, we compute the actual bike flows based
on both users’ demand flows and bike availability. More specifically,
we let z, o+ denote the actual bike flow from station s to s’. Then we
calculate the value of x . based on the following equation:

min (Cf, ZS’ESC Fst,s/)
max (T, es, Flui1)

(18)

Ts,s" = Fs,s’ .

Equation (18) characterizes two possible cases: (i) if the number
of required bikes at a station is less than or equal to the number of
bikes present there, then all the users bike requirements are satisfied
and the actual flow is the same as the demand flow; and (ii) if the
number of required bikes at a station is more than the number of bikes
present there, only a proportion of demand flows can be satisfied.
In each direction (from one specific station to another station), the

. . c#
ratio between actual flow and demand flow is =———=—;—. Hence,

ES,E‘SC Fs s’
the ratio are retained in the ratio between actual flows in different
directions.

Once we compute the actual bike flows, we can update the distri-

bution of bikes at station s € S, for the next planning period based

4 We use this dataset for illustrative purposes. Using other real-world datasets
(e.g., Hubway dataset which is taken from Hubway bike sharing company
of Boston [2] and used by Ghosh and Varakantham [9]) lead to similar
results and thus omitted here.

5 Distances are chosen based on the maximal speed of an electric vehicle and
the length of a planning period. The results for other distances and other
capacities of an operator are broadly similar.

6 We use this setup for illustrative purposes. Other values lead to similar
results and are thus omitted here.
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on the following equation:

A =dl Y (s —ud) = D wew D) ws,

vEVe s'eS. s'eS.
19

which is the sum of unused bikes in planning period ¢, the net amount
of dropped off bikes by the operators and the net amount of incoming
bikes at station s.

However, equation (19) does not characterize the cases where a
user cannot return their bike to a full station. Hence, we transfer ex-
cess bikes (dZ"'*! — C#) to the nearest station with available docks,
where d7 ' is calculated from (19). Note we also count the value
of (d#*+1 — C#) as the number of loss docks. We update the value
of d#*! accordingly, which is then used to compute the reposition-
ing policies for the next planning period.

Experiment Setup

We compare the MINLP with WA approach to other state of the art
mechanisms’:

o Static Repositioning: We simulate the BSS without any system
rebalancing. This approach serves as a baseline and shows the
amount of loss that would occur if no dynamic repositioning is
applied.

o DRRPT: As per Section 2, Ghosh and Varakantham [9] propose
a DRRPT framework to generate the repositioning policy with the
objective of minimizing the loss caused by starvation only. They
do not consider the large-scale bike rebalancing problem, which
makes this approach fail to be implemented in practice.

o DRRPT with WA: This approach combines the method proposed
by Ghosh and Varakantham [9] with WA algorithm, which formu-
lates the DRRPT framework for each sub-network to find reposi-
tioning policy separately.

o MINLP with MFUA: As per Section 2, Wang et al. [24] propose a
clustering method called MFUA by considering both geographical
information of stations and bike flows between stations. However,
MFUA does not consider rebalancing workload across different
sub-networks. As MFUA does not provide the repositioning pol-
icy, we use our MINLP framework in each sub-network that is
generated by MFUA for finding the repositioning policy.

The performance of different approaches are compared in the fol-
lowing aspects:

o Loss-minimizing performance: We compare the total loss that
occurred in the experimental scenarios after applying different
approaches. A lower loss means a better loss-minimizing perfor-
mance, which is the ultimate goal of performing bike rebalancing.

o Runtime performance: We compare the running time of differ-
ent rebalancing approaches to solve the same experiment prob-
lems. We prefer an algorithm that is more efficient and can solve
a problem in a shorter time.

Empirical Results

Loss-minimizing performance: Figure 1 shows the average total
losses at all stations over different testing scenarios at different times

7 All optimization problems involved are solved using IBM ILOG CPLEX
Optimization Studio V12.10 within python code on a 3.2 GHz Intel Core
i7 machine.
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Figure 1: Total loss vs. different hours in a day

in a day. We let the number of sub-networks be 15 for illustrative pur-
poses. The change in the cluster number does not impact the general
loss-minimizing performance of our method.

As we can see, the total loss achieved by MINLP with WA is lower

than that of other approaches at all times. Compared to Static Repo-
sitioning, MINLP with WA decreases the total loss by up to 90%.
Compared to DRRPT and DRRPT with WA which only consider
the starvation problem, the improvement regarding the total loss is
at least 43%. This is because MINLP with WA addresses starva-
tion and congestion problems simultaneously by tracing both docks
and bike information. Compared to MINLP with MFUA which also
addresses the congestion problem, MINLP with WA decreases the
total loss by up to 60%. Because MINLP with WA considers the
amount of rebalancing needed during the decomposition process, it
can avoid the occurrence of sub-networks with unevenly high rebal-
ancing demand and loss. As DRRPT performs global rebalancing, it
outperforms DRRPT with WA which only conducts local rebalanc-
ing within sub-networks.
Runtime performance: Having shown MINLP with WA is perfor-
mance efficiency, we now investigate the runtime performance of our
approach on real-world demand scenarios. For a fair comparison, we
only provide runtimes for DRRPT with WA, MINLP with MFUA
and MINLP with WA as all of them generate rebalancing policy in
each planning period in a round-robin fashion. We let the number
of sub-networks be 15 for illustrative purposes (other values give
broadly similar results).

Figure 2 illustrates the runtime with a different number of
planning periods. The error bars are too small to be visible. As we
can see, MINLP with WA outperforms the other approaches. Com-
pared to MINLP with MFUA, MINLP with WA can reduce the run-
time by up to 36%. This result demonstrates the advantage of WA
over MFUA clustering in the aspect of runtime performance, which
is a result of considering the needed amount of rebalancing dur-
ing sub-network generation. The even distribution of loss among
sub-networks can reduce the average difficulty of rebalancing within
sub-networks so that we can find the rebalancing policy faster within
the MINLP framework. As DRRPT only addresses the starvation
problem, DRRPT with WA consumes much longer time than MINLP
with WA to find the optimal rebalancing solution. Figure 2 shows that
MINLP with WA can reduce the runtime by up to 30%.

Figure 2 also shows that DRRPT with WA takes a shorter runtime
than MINLP with MFUA. This shows that decomposing a BSS into
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Figure 2: (Cumulative) Runtime time vs. different planning periods

small sub-networks plays a more important role than constructing a
rebalancing model in terms of reducing the runtime.

6 Conclusion

We present a new scheme that can efficiently achieve resources
(bikes) rebalance in a large-scale BSS. By jointly addressing the is-
sues of starvation and congestion in a dynamic bike repositioning
problem and considering the needed amount of rebalancing during
the clustering process, MINLP with WA can significantly reduce the
total loss in a BSS within a short running time. We believe that only
by dealing with the interdependencies between bike demand, sup-
ply, operators’ capacity and stations’ geographic information can we
make steps towards developing practical techniques for bike-sharing
systems. MINLP with WA is the first such scheme.

Our next step is to consider a robust setting where the repositioning
strategy is generated in each planning period by considering the de-
mand uncertainties for multiple future time steps. Considering such
robustness will lead to a different formulation and method that will
further the scope of dynamic rebalancing in bike-sharing systems.
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