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Abstract. Offline optimization aims to elaborately construct a solu-
tion that optimizes a black-box function with only access to the offline
dataset. A typical manner of constructing the solution is to train a
surrogate model of the black-box function on the offline dataset and
optimize the solution guided by the surrogate model. However, this
manner often encounters a fundamental challenge that the surrogate
model could erroneously estimate out-of-distribution (OOD) solutions.
Therefore, the optimizer would be misled to produce inferior solu-
tions for online applications, i.e., degradation of performance. To this
end, this paper formalizes the risk of degradation for OOD solutions
and proposes an accumulative risk controlled offline optimization
(ARCOO) method. Specifically, ARCOO learns a surrogate model in
conjunction with an energy model. The energy model characterizes
the risk of degradation by learning on high-risk solutions and low-risk
ones contrastively. In the optimization procedure, the behavior of
the optimizer in each step is controlled by a risk suppression factor
calculated via the energy model, which leads to the controllable ac-
cumulative risk. Theoretically, we justify the efficacy of energy for
accumulative risk control. Extensive experiments on offline optimiza-
tion tasks show that ARCOO surpasses state-of-the-art methods in
both degradation-resistance and optimality of the output solution.

1 Introduction

Black-box optimization has been developed and applied in a wide
range of disciplines, yet the widespread adoption of it in real-world
domains has been hampered by the demand for frequent evaluations.
In many tasks, the objective function evaluation is perilous, expensive,
or even infeasible, such as the design of trauma system [29], blast
furnace [38] and materials [20]. Despite the inaccessibility to actively
evaluating new solutions for an optimization algorithm, the historical
data in the form of solution and the corresponding function value
pair is available. Offline optimization, without actively querying the
solutions online, aims to make full use of the offline data and finally
recommend a potential high-quality solution to be applied online.

Based on the static offline dataset, a typical way of offline optimiza-
tion is to learn a predictive model to surrogate the black-box function
and guide the optimizer to search for the best possible solutions for on-
line applications. Unfortunately, the quality of solutions found in the
optimization procedure has a risk of degrading dramatically because
of the overestimation error in the surrogate model [18]. A well-trained
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surrogate model provides accurate predictions for the solutions in the
vicinity of offline data, but it can make erroneous predictions for OOD
solutions [28, 3, 23]. Due to the exploration nature of global optimiza-
tion, optimizers tend to try unseen OOD solutions for potentially
better performance (i.e., pursue much better solutions than the best
one in the offline dataset). As the optimization procedure proceeds,
the risk of performance degradation increases, and the quality of the
found solutions could continue to decline. Without active evaluation
feedback, it is difficult to determine when to stop the optimization
procedure and return the final solution. Eventually, the optimizers
could be easily driven towards solutions with high estimated quality
but turn out to be poor in the online application. In a nutshell, the
issue of performance degradation becomes particularly critical.

Related Work. To address the issue of performance degradation,
recent studies propose various approaches. Bayesian optimization
(BO) [31, 25] under the offline scenario explicitly assesses uncer-
tainty by the Gaussian process surrogate model and leverages it in
the acquisition function to alleviate the performance degradation in
optimization. Although the latest BO studies have made significant
progress in addressing the curse of dimensionality under certain con-
ditions [26, 36, 4], they still have difficulties in addressing large-scale
offline data. Some existing methods propose to sample solutions from
learned generative models and introduce regularization in the sam-
pling process. MIN [18] learns an inverse mapping using generative
adversarial network [11] from output values to input solutions and
generates new solutions by this mapping according to a reliable score.
CbAS [2] and Autofocus [7] use variational auto-encoder (VAE) [17]
to model a distribution over the solution space and adapt the VAE-
based generative model to the optimal solutions within a trust region.
As a result, output solutions are sampled within an acceptable extent
of uncertainty. The regularization in generative model methods in-
tends to evade sampling OOD solutions and mitigate the performance
degradation issue. However, the applications of generative model
based methods often require elaborate tuning across different tasks.

Benefiting from the powerful learning ability, predictive models
such as deep neural networks, are served as surrogate models in re-
cent work. DDEA-SE [30] applies selective ensemble methods to
perceive uncertainty from multiple surrogate predictions and prevent
the evolutionary optimizer [14, 15] from falling into overestimated
OOD solutions. BDI [3] develops a data distillation [21] technique
that backward maps the searched solutions to offline data and forces
alignment between them. Besides, several studies propose to address
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the performance degradation issue by imposing different priors on the
surrogate model. In this way, the surrogate model can provide predic-
tions for OOD solutions with a penalizing bias and lead the optimizer
to elude highly overestimated solutions. COMs [28] proposes a conser-
vative model training method to depress the prediction of adversarial
solutions. RoMA [35] uses the local smoothness prior to overcome
the non-smooth nature of the surrogate deep neural network models
in order to realize conservatism. NEMO [8] leverages the normalized
maximum likelihood estimation to be aware of the uncertainty in the
conservative surrogate model. By formalizing offline optimization as
domain adaptation [37], IOM [23] enforces invariant representation
in the surrogate model and makes mediocre predictions for OOD
solutions. By involving conservatism in surrogate models, the conser-
vative methods intentionally lower the predictions of overestimated
OOD solutions that are likely to provoke performance degradation.
However, surrogate models could occasionally be too conservative,
resulting in little improvement of the output solution compared with
the best one in the offline dataset.

Motivation and Contribution. Although unseen OOD solutions
inevitably raise the risk of performance degradation in optimization,
they are desired for their potentially better performance than the
historical offline data. One way to realize such a tradeoff is that we
need to optimize for solutions under a certain extent of risk control.
Different from previous methods that control the risk of degradation
in the optimization procedure implicitly via conservative models, a
flexible method that restricts the risk by directly controlling it in the
optimizer is appealing. Through this method, it is expected that, if
the accumulative risk of the optimization procedure is bounded, the
optimizer could be degradation-resistant and the searched solutions
could always be safe for online applications.

Driven by this motivation, this paper proposes an accumulative risk
controlled offline optimization (ARCOO) method based on the energy
model to explicitly characterize the risk of solutions and control the ac-
cumulative risk in the optimization procedure. We first define the risk
of solutions incurring performance degradation. Based on that, in AR-
COO, a dual-head model is developed to not only learn the surrogate
prediction but also explicitly characterize risk via energy. Specifi-
cally, we theoretically analyze the training behavior and demonstrate
that the learned energy is an effective indicator of risk. The output
energy of the developed dual-head model is transformed into a risk
suppression factor in each step, which is proved to be upper bounded.
The risk suppression factor is used to optimize the solution along
with the prediction in each step of the optimization procedure. The
accumulative risk in the whole optimization procedure is controlled
under a certain extent induced by the risk suppression factor. The
behavior of ARCOO is flexibly and adaptively controlled according
to the risk. The efficacy of ARCOO is verified on offline optimization
tasks such as drug discovery, material invention, and robotic design.
Extensive experiment results show that ARCOO surpasses the state-
of-the-art (SOTA) methods with respect to both degradation resistance
and optimality of the output solution. Notably, ARCOO achieves an
average 1.52 times improvement to the best solution in the offline
dataset across all tasks, which is the highest.

The subsequent sections respectively present the problem formal-
ization, introduce the proposed ARCOO method, show the empirical
results, and finally conclude the paper.

2 Problem Formalization

Offline Optimization. Given a black-box objective function f(x) and
an offline dataset D = {(xi, yi)}Ni=1 with yi = f(xi), the goal of

offline optimization is to find a solution xapp in the sololution space X
to approximate argmaxx∈X f(x) for the online application. Since
f(x) is not accessible in this scenario, a practical way to enable offline
optimization is to learn a parameterized surrogate model f̂θ(x) of
the objective function f(x) based on the offline dataset D, i.e., θ� =
argminθ∈Θ LD(θ), where θ ∈ Θ is the surrogate model parameter
and L(·) is the loss function (e.g., mean squared error). The trained
surrogate model f̂θ�(x) (hereinafter referred to as f̂θ(x)) is then
used for providing surrogate evaluations and driving the optimizer to
find solutions with superior performance. The optimizer iteratively
updates the solutions (e.g., gradient ascent) and sets a certain time
step T as the terminating condition to output the solution xT as xapp

for the online application. That is to say,

xt ← xt−1 +∇xf̂θ(x)|x = xt−1, t = 1, ..., T ; xT = xapp. (1)

Challege. The terminating condition time step T is nontrivial to
set. If reliable predictions could be provided for all possible input
solutions, an ideal T should be set to a large enough number. How-
ever, since the surrogate model is learned from D, the generalization
ability is limited to the coverage of the dataset in the solutions space.
Considering that the surrogate model is prone to produce inaccurate
predictions for OOD solutions, the optimizer would be continuously
misled to search for overestimated solutions and bring performance
degradation to the optimization procedure. In this respect, a large T
inevitably suffers from performance degradation, yet a small T leads
to insufficient optimization. This paper proposes that a degradation-
resistant optimization procedure allows large T and risk control is an
effective way to realize it.

Definition of Risk. The risk of a solution is defined as the possi-
bility to provoke performance degradation in the optimization pro-
cedure. As discussed above, performance degradation often emerges
when the surrogate model makes erroneous overestimations on OOD
solutions. Therefore, the OOD solutions that provoke large predic-
tion errors (i.e., |f̂θ(x) − f(x)|) are high risk, and the solutions
x ∈ D are low risk since f̂θ(x) is trained on D and make rel-
atively accurate predictions on these solutions. Consider P as an
empirical distribution over the offline dataset with probability den-
sity function p(x) = ΣN

i=1δx=xi ,xi ∈ D, where δ is a Dirac
delta function that smooths the discrete offline dataset into a con-
tinuous offline data distribution [28], and let S(P) = Ex∼P [f(x)],
Ŝθ(P) = Ex∼P [f̂θ(x)].

Based on the discussion above, for a well-trained model param-
eter θ, it is reasonable to assume that there exists εθ such that
|Ŝθ(P) − S(P)| ≤ εθ . It implies that the surrogate model makes
limited prediction error on P , and P is a low-risk distribution. This
inspires us to defineQ as a distribution over OOD solutions satisfying
|Ŝθ(Q) − S(Q)| > εθ . Herein Q is a high-risk distribution due to
the large prediction error produced by the surrogate model. Let q(x)
denote the probability density function ofQ. A solution x with high
density q(x) is also high risk.

3 The Proposed Method

This section presents ARCOO, which is an energy model based risk-
control offline optimization method. An illustration of ARCOO is
shown in Figure 1. Typical offline optimization methods utilize su-
pervised learning approaches to build a surrogate model and produce
predictions of input solutions. In order to explicitly model the risk
of solutions, ARCOO additionally applies a self-supervised energy
model and regards the learned energy as an estimation of risk. In-
stead of training separate models, ARCOO applies a dual-head neural
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Figure 1. An overview of ARCOO. The dual-head model first learns the
surrogate prediction and risk indicator from the offline dataset. For the

surrogate head, supervised learning is applied to fit the unknown objective
function. For the energy head, a self-supervised energy model drives the

modeled distribution to approximate low-risk solutions distribution and drift
away from high-risk solutions distribution sampled by Langevin dynamics. In

the optimization procedure, the output energy is normalized into a risk
suppression factor to guide the behavior of an optimizer together with the

surrogate prediction under risk control. ARCOO finally outputs a high-quality
solution for the online application.

network and desires heterogeneous output of two different heads,
terms surrogate head f̂θ(x) and energy head Eφ(x) respectively. For
f̂θ(x), similar to most offline optimization methods, a supervised
learning procedure equipped with mean squared error (MSE) loss
is used to fit the actual unknown objective function, i.e., minimiz-
ing LD(θ) = 1

N

∑N
i=1(f̂θ(xi) − yi)

2 where (xi, yi) ∈ D. In the
optimization procedure, a risk suppression factor is first calculated
from energy to indicate the risk of the input solution. Then, a gradient
ascent optimizer is driven by not only the surrogate prediction but
also the risk suppression factor to search for solutions with preferable
surrogate values while preventing the optimization from performance
degradation. The procedure of ARCOO is shown in Algorithm 1.

In the rest of this section, we first perform the contrastive training
strategy of energy based model and show that energy is an efficient risk
indicator, then demonstrate how the information from the surrogate
and energy model is used to guide the optimizer.

3.1 Modeling Risk with Energy

Based on the definition of risk in Section 2, a straightforward way to
assess the risk of OOD solutions is learning to model a distribution
hφ(x) to approximate p(x) of the low-risk distribution. We employ
the energy based model (EBM) [19, 5] to characterize the risk explic-
itly. EBM represents the likelihood of a probability distribution for
solution x as

hφ(x) =
exp(−Eφ(x))

Z(φ)
, (2)

where Z(φ) =
∫
X exp(−Eφ(x))dx is the partition function, Eφ(x)

denotes the energy function, and φ ∈ Φ is the energy model param-
eters. As the main building block in EBM, the energy function is a
mapping from input to a scalar, i.e., Eφ : RN → R, and thus it can be
represented by a neural network that takes solution x ∈ R

N as input
and outputs energy Eφ(x) ∈ R. The ability to identify low-risk and

high-risk solutions is desired in energy model training. To realize that,
we apply Contrastive Divergence (CD) [13] to train EBM,

LCD(φ) = KL(p(x)‖hφ(x))−KL(q(x)‖hφ(x)) , (3)

where KL(·||·) denotes the Kullback-Leibler (KL) divergence of two
given distributions. As shown in Figure 1, on the one hand, LCD(φ)
minimizes the divergence between p(x) and hφ(x), driving hφ(x)
to approximate p(x). On the other hand, the divergence between q(x)
and hφ(x) is maximized inLCD(φ), pushing hφ(x) away from q(x).
For any given input x, a high probability density hφ(x) indicates that
p(x) is also high, meanings that x is likely to be a low-risk solution,
and vice versa.

Although hφ(x) can evaluate the risk of solutions, it cannot be
reliably computed since the Z(φ) part involves integration over the
entire input space. Alternatively, we show that the energy Eφ(x) can
also indicate the risk of input solution x effectively, and it is easy to
be utilized.

Algorithm 1 Accumulative Risk Controlled Offline Optimization
(ARCOO)
Input: Offline dataset D, learning rate η, maximum Langevin dy-
namics step K, Langevin dynamics stepsize λ, and initial momentum
m.

1: Initialize dual-head model that consists of surrogate head f̂θ(x)
and energy head Eφ(x).

2: for each training epoch do

3: Update f̂θ(x) using MSE loss:
θ ← θ − η∇θLD(θ).

4: Sample high-risk distribution q(x) by Langevin dynamics:
q(x) = LDθ(p(x);K), i.e.,
xk ← xk−1 + λ∇xf̂θ(xk−1) + ωk, k = 1, . . . ,K,
where ωi

k ∼ N (0, λ), and x0 ∼ p(x). Sampling starts from
the low-risk empirical distribution p(x) over the offline dataset.

5: Update Eφ(x) using contrastive divergence loss:
φ ← φ − η∇φ[KL(p(x)‖hφ(x)) − KL(q(x)‖hφ(x))],
where hφ is derived from Eφ(x).

6: end for

7: Let P̃ be an empirical distribution over a batch of the high-quality
solutions in D, and Q̃ = LDθ(P̃;K).

8: Calculate the risk suppression factor:
Rφ(x) = m(E

˜Q − Eφ(x))(E ˜Q − E
˜P)

−1.
9: for t = 1 to T do

10: xt ← xt−1 +Rφ(xt−1)∇xf̂θ(xt−1).
11: end for

12: Return Final solution xapp = xT for online application.

Theorem 1. (Equivalent form of LCD(φ)) Given a low-risk distribu-
tion P and a high-risk distribution Q, LCD(φ) in Equation (3) has
an equivalent form of Ex∼P [Eφ(x)]− Ex∼Q[Eφ(x)].

The proof of Theorem 1 is in Appendix A.1. The equivalent form
of LCD(φ) implies that training the modeled distribution hφ(x) is
corresponding to directly training on the output of Eφ(x). Guided
by the alternative training strategy, the training process lowers the
energy of solutions from the low-risk distribution P and raises the
energy of solutions from the high-risk distributionQ. In this way, the
energy model can extract information from both p(x) and q(x) to
estimate the risk of any given solution. Therefore, a low-risk solution
is expected to have low energy and vice versa. Namely, the output
energy could be seen as a representation of the risk for input solutions.
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By now we have shown how the EBM is trained to model the risk of
solutions. However, the training process of EBM involves a high-risk
distribution Q that remains unfulfilled. Considering Q is identified
as a distribution over OOD solutions that are easily overestimated,
Markov Chain Monte Carlo (MCMC) [10, 32] methods can be applied
to sample such OOD solutions and constructQ. To achieve this, we
utilize Langevin dynamics LDθ [22, 6] as the kernel of MCMC
sampling. LetQ = LDθ(P;K), x0 ∼ P , xk ∼ Qk, andQk is the
distribution sampled in the k-th step of LDθ , then

xk ← xk−1 + λ∇xf̂θ(xk−1) + ωk, k = 1, . . . ,K , (4)

where ωi
k denotes the i-th element of ωk and ωi

k ∼ N (0, λ), and
K denotes the maximum Langevin dynamics time step. LDθ(P;K)
starting from the low-risk distribution P and applying K steps of
noisy gradient ascent on it to pursue a distribution over overestimated
OOD solutions and return as high-risk distribution Q. Intuitively,
distribution with high risk is expected to be sampled with a large K.
We now show that the risk of Qk sampled in each step of Langevin
dynamics is ascending, and ultimately, the returnQK is high risk.

Let ‖g‖∞ = sup{|g(x)| : x ∈ X}. Denote the total variation
(which is a distance measure) of two probability distributions U and
V as TV (U ;V) = ∫

X |u(x) − v(x)|dx, where u(x) and v(x) are
the probability density functions of distributions U and V .

Theorem 2. (Upper Bound of the Prediction Error in Langevin Sam-
pling) For any distribution Qk sampled in the Langevin dynamics
procedure, if ‖f‖∞ and ‖f̂θ‖∞ exist, the prediction error of f̂θ(x)
onQk is upper bounded

Ŝθ(Qk)− S(Qk) ≤ Ŝθ(P)− S(P) + Cf ;fθ · TV (Qk;P), (5)

where Cf ;fθ = 2(‖f̂θ‖∞ + ‖f‖∞).

The proof of Theorem 2 is in Appendix A.2. Theorem 2 confirms
the effectiveness of the self-supervised learning in ARCOO by show-
ing the obtained P andQk are highly contrastive in terms of the risk
level. It indicates that, as Langevin dynamics proceeds, the distance
between the sampled OOD solutions distribution Qk and low-risk
distribution P is getting longer, so the total variance TV (Qk;P) is
getting larger. Therefore, the large predictive error is more likely to
emerge on Qk. The final sampled distribution QK has the largest
upper bound for Ŝθ(Qk) − S(Qk) and is highly possible to make
large prediction error, and thus it is a high-risk distribution over OOD
solutions according to the corresponding definition in Section 2.

3.2 Risk-Control Optimization

ARCOO aims to explicitly apply risk in the optimizer and perform
degradation-resistance in optimization. Although the energy produced
by Eφ(x) could be a representation of risk, independently using it is
infeasible due to the contrastive energy learning making the output
energy an absolute quantity. To this end, we introduce a normalization
method to map the energy into a specific range and propose a risk
suppression factor Rφ(x) as Equation (6). Rφ(x) suppresses the risk
to a corresponding level in each step of the optimization procedure.

Rφ(x) =
m(E

˜Q − Eφ(x))

E
˜Q − E

˜P
, (6)

where E
˜Q = Ex′∼ ˜Q[Eφ(x

′)], E
˜P = Ex′∼ ˜P [Eφ(x

′)], and m de-
notes the initial momentum. Similar to P , P̃ is an empirical distri-
bution over the high-quality batch of solutions in the offline dataset.

Correspondingly, Q̃ = LDθ(P̃;K) is a high-risk distribution sam-
pled by K steps Langevin dynamics starting from P̃ . The reason
for using P̃ in Rφ(x) is that the optimization begins from the high-
quality batch of solutions in offline data, and P̃ is set to be the low-risk
distribution to keep align with this setting. Note that although we ap-
ply a step of K to keep consistent with the training process, one may
set different K to alter the Q̃ in the risk suppression factor.
Rφ(x) normalizes the energy of solutions found by the optimizer

into the range of m → 0 as E
˜P → E

˜Q. And then Rφ(x) is ap-
plied along with surrogate prediction in gradient ascent optimizer to
perform risk-control offline optimization,

xt ← xt−1 +Rφ(xt−1)∇xf̂θ(xt−1) . (7)

Intuitively, Rφ(x) plays a similar role as the adaptive step size
in online optimization methods (e.g., Adam [16]). Different from
online methods that could tune the step size according to the gradient
information of true evaluation feedback, offline optimizers are not
allowed to query new evaluations. Instead, this paper proposes to attain
risk information from the offline dataset and perform adaptive offline
optimization using Rφ(x). To be specific, the initial momentum m
decides how fast the optimizer can behave at the beginning, and E

˜Q
decides how soon the Rφ(x) drops to zero. Hence, the risk-control
optimizer can adapt the behavior according to the current risk situation.
If the risk is large, Rφ(x) can suppress the risk of degradation to a
low level. We further show that Rφ(x) has an upper bound correlate
to the distance away from the high-risk distribution Q̃.

Theorem 3. (Upper Bound of the Risk Suppression Factor) Given
a solution x, consider a Gaussian distribution N (x;σ) where σ is
the standard deviation, if ‖E‖∞ exists, then Rφ(x) in Equation (6)
is upper bounded

Rφ(x) ≤ m
TV (Q̃;N (x;σ))

TV (Q̃; P̃)
. (8)

The discussion of Theorem 3 is in Appendix A.3. Theorem 3 dis-
closes that the risk suppression factor on each step of the risk-control
optimization is constrained by the distance from the high-risk dis-
tribution Q̃. Once the current found solution is close to high-risk
distribution Q̃, the bound will shrinkage and suppress the risk to
induce performance degradation.

As discussed in Section 2, the risk control of the entire optimization
procedure is essential for offline optimization to avoid performance
degradation. One principal insight of ARCOO is to constrain the
optimizer with respect to the accumulative risk. The behavior of
ARCOO is flexibly and adaptively controlled under a certain level
of risk. During the optimization, the risk suppression factor Rφ(x)
converges to 0 as the energy Eφ(x) approaches E

˜Q, which means for
any time step T in Equation (1), the accumulation of Rφ(x), called
accumulative risk, can be upper bounded. That is, no matter how many
time steps the optimizer goes, the overall risk is controlled under a
certain level. However, since accumulating Rφ(x) in each step is
mathematically intractable, we instead turn the accumulation into the
integration of Rφ(x) as the Eφ(x) increases from E

˜P to E
˜Q, i.e.,

∫ E
˜Q

E
˜P

Rφ(x)dEφ(x) ≤ m · ‖E‖∞ · TV (Q̃; P̃) . (9)

The proof of Inequality (9) is in Appendix A.4. As shown above, in
ARCOO, the accumulative risk is upper bounded jointly by initial
momentum m and the distance between P̃ and Q̃. Conceptually, it
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means a larger accumulative risk bound is related to larger initial
momentum and a high-risk Q̃ further from P̃ , and vice versa. More-
over, it is implied that as long as the accumulative risk of optimizers
is upper bounded to a comparable extent, the behavior of each step
in T can be trade-offed by m and Q̃, which could be seen as the
maximum tolerance of risk. The empirical analysis in the following
section supports the conclusions.

We would like to point out that, due to the absence of online feed-
back and information about the optimal solution x∗, in the offline
optimization scenario, it is difficult to develop a bound of the distance
between xT and x∗ or simple regret f(x∗)−f(xT ) which is usually
desired in online optimization. Instead, one of the main theoretical
results of this paper is that ARCOO can control the accumulative
risk, and thus it produces xT with more reliability, which is also an
important quality in offline optimization in addition to optimality.

4 Experiments

In this section, we first describe our experimental tasks, comparison
methods, and implementation details. Then, elaborate comparative
experiments are conducted to verify the effectiveness of ARCOO, and
further comparison with conservative methods in terms of degradation
resistance is performed. Next, an ablation study is presented to exam-
ine the capability of key components of ARCOO. Finally, we analyze
the accumulative risk control via a pair of key hyperparameters in the
risk suppression factor, and another crucial hyperparameter is studied.
The implementation of ARCOO and the appendix of this paper can
be found from https://github.com/luhuakang/ARCOO.

4.1 Experimental Setup

Offline Optimization Tasks. The experiments are conducted on three
discrete offline optimization tasks and three continuous ones from
Design-bench [27], which is an offline optimization benchmark that is
widely used in recent work [8, 35, 3]. The employed tasks are based on
the problems of DNA optimization, drug discovery, material invention,
and robotic design. For some offline optimization tasks, the ground-
truth function, i.e., black-box objective function, for new solution
evaluation is intractable, and various oracles need to be designed
according to the properties of specific tasks. We briefly depict the
goal and dataset of each task as follows, and more details about the
employed tasks and oracles are described in Appendix B.

(1) TF Bind 8 task aims to design a length-8 DNA sequence for
human transcription factor SIX6_REF_R1 with maximum binding
activity. The dataset consists of 32898 data, and each datum is a length-
8 sequence of categorical variables that take one of 4 nucleotides.

(2) ChEMBL task designs a molecule for assay CHEMBL3885882
with maximum MCHC value, which is derived from a large-scale
drug property database [9]. The dataset consists of 1093 data, and
each datum is a length-31 SMILES string of categorical variables that
take one of 591 elements.

(3) UTR task aims to design a length-50 DNA sequence with maxi-
mum expression level, which is derived from work [24]. The dataset
consists of 140000 data, and each datum is a length-50 sequence of
categorical variables that take one 4 nucleotides.

(4) Superconductor task aims to optimize the chemical for-
mula for a superconducting material with maximum critical tem-
perature. The dataset consists of 21263 data, and each datum is an
86-dimensional vector of continuous variables that represents the
number of atoms in the superconductor chemical formula.

(5) Dkitty task aims to optimize Dkitty robot morphologies for
navigation with maximum efficiency. The dataset consists of 25009
data, and each datum is a 56-dimensional vector of robot parameters
such as size and orientation.

(6) Hopper task aims to optimize the weights of a neural network
policy with maximum Hopper-v2 Gym [1] return. The dataset consists
of 3200 data, and each datum is a 5126-dimensional parameter of
neural network weights.

Baselines and SOTA. We compare ARCOO with various offline
optimization baseline methods. We consider Bayesian optimization
equipped with quasi expected improvement acquisition function (BO-
qEI) [34], CMA-ES [12], REINFORCE [33], and gradient ascent.
Note that the above methods are unable to solve offline optimization
problems directly since none of them is proposed for the offline
setting. Therefore, an ensemble of 5 surrogate models trained with
bootstrapping is applied to provide surrogate prediction and guide the
optimization methods. The SOTA methods are also involved: DDEA-
SE [30], CbAS [2], MIN [18], IOM [23], COMs [28] and NEMO [8].

Implementation Details and Hyperparameters. The dual-head
surrogate and energy model in ARCOO has the same architecture
across all the experiments, which consists of one shared hidden layer,
one hidden layer surrogate head, and one hidden layer energy head.
The size is set to 2048 and the activation function is ReLU for all
hidden layers. Adam optimizers [16] with the same learning rate
η = 0.001 (Line 3 and 5, Algorithm 1) are used to train each model.

For the hyperparameters, they are implemented universally for all
tasks unless otherwise specified: The Langevin dynamics steps K is
set to 64 according to the results in Section 4.4 showing it is enough to
sample high-risk distribution for energy model training. We set initial
momentum m = 0.02 for all continuous tasks and m = 2 for all
discrete tasks with respect to the complexity of different kinds of tasks.
The Langevin dynamics stepsize λ (Line 4, Algorithm 1) is set to be
the same number of m as a reasonable value for MCMC sampling
in the input space. As analyzed in Section 3.2, for any optimization
steps T > 0 (Line 9, Algorithm 1), the accumulative risk of the whole
optimization procedure is controlled and upper bounded. Thus, we set
the optimization steps as a sufficiently large number, i.e., T = 200.

The evaluation setup follows recent studies [28, 8, 2, 18]. Instead of
starting from only the best solution in the offline dataset, we maintain
and optimize a batch of 128 candidate solutions (Line 7, Algorithm 1)
and output the best among them as the final solution. The experimental
results are averaged over 8 trials and the standard deviation is reported.
All the experiments are processed with dual NVIDIA RTX 3090 GPUs
and dual Intel Xeon Gold 6354 CPU @3.00GHz CPUs. It should be
noted that any experimental trial exceeding a duration of 48 hours is
deemed to be unsuccessful.

4.2 Comparative Experiment

Optimality of Output Solution for Online Application. The results
of comparative experiments are provided in Table 1. In addition to
the output solutions scores on each task, the average of improvements
to the best solution in offline dataset x�

OFF = argmaxxi yi, where
(xi, yi) ∈ D, on all 6 tasks are also reported, i.e., score/x�

OFF .
In the Hopper task, which is relatively hard to optimize with a

high searching dimension of 5126, all the conservative methods (i.e.,
NEMO, COMs, and IOM) and ARCOO show significantly greater
improvements to offline dataset (1.84× in average) than other meth-
ods (1.08× at most). These suggest that restricting the exploration
to OOD solutions is an effective way to deal with the performance
degradation issue. Among these methods, although IOM outperforms
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Table 1. Comparisons on the quality of output solutions for online application with the baseline and SOTA methods on each task. x�
OFF

indicates the best solution
in each offline dataset. The mean and standard deviation of performance are reported. The symbol “-" means that the algorithm cannot complete the corresponding

task within 48 hours. The last column reports the average performance improvement to x�
OFF

. The best mean scores on each task are marked to be bold.

Discrete Tasks Continuous Tasks

TF Bind 8 ChEMBL UTR Superconductor Dkitty Hoppper Avg.

x�
OFF

0.44 383700.00 7.12 73.90 199.40 1361.60 1.00×
BO-qEI 0.86±0.06 401910.23±3719.47 8.04±0.13 94.89±1.90 213.80±0.00 763.77±136.89 1.18×

CMA-ES 0.93±0.04 386032.58±3448.00 9.04±0.20 89.16±4.22 5.11±1.88 938.68±240.50 1.05×
REINFORCE 0.93±0.04 402077.50±3132.94 8.17±0.07 89.34±3.65 -142.71±227.30 29.13±40.68 0.81×

Gradient Ascent 0.97±0.01 397463.75±3125.75 8.11±0.41 92.94±3.07 186.18±21.99 1465.71±930.18 1.28×
CbAS 0.90±0.05 397757.52±3984.75 8.25±0.10 83.57±6.77 214.33±9.13 262.78±13.38 1.11×
MINs 0.86±0.07 396902.52±2440.44 8.25±0.08 85.34±6.98 269.01±7.41 294.79±160.36 1.15×

DDEA-SE 0.91±0.03 383736.25±3197.65 9.01±0.18 87.99±3.82 5.34±1.77 686.33±265.55 1.01×
IOM 0.94±0.04 389105.00±1659.29 – 86.51±12.41 262.26±8.73 2764.13±516.22 1.44×

NEMO 0.90±0.06 393908.75±4644.34 8.25±0.13 92.55±3.66 267.90±8.90 2225.52±209.68 1.41×
COMs 0.93±0.04 397572.50±2657.84 8.29±0.25 81.36±6.95 268.05±5.96 2573.25±537.03 1.44×

ARCOO 0.97±0.01 399826.25±4256.49 9.48±0.19 95.56±3.62 277.23±8.38 2485.62±304.78 1.52×

in some tasks, it fails to complete the UTR task within the time limita-
tion (i.e., 48 hours). Due to the relatively large-scale property of UTR,
adding complicated conservative regularization to the surrogate model
may dramatically increase the computational complexity. ARCOO
is the only method that achieves the best score on four out of six
tasks and within a standard deviation margin of the best score in the
rest tasks. These results are promising in that the adaptation ability
of ARCOO with the risk-control optimizer is substantially greater
than conservative model based methods across a variety of tasks with
respect to the optimality of output solutions for online applications.

Degradation-Resistance in Optimization Procedure. The results
above indicate that NEMO, COMs, and ARCOO are promising meth-
ods to deal with offline optimization problems. While all of them
benefit from constraining the optimizer from searching for OOD so-
lutions, the main difference among them is the way to perform this
constraint. As NEMO and COMs impose conservatism prior to the
surrogate models, ARCOO directly suppresses the risk in the opti-
mization procedure and performs accumulative risk control. To further
illustrate this discrepancy, we conduct an experiment on the Hopper
task with a large number of optimization steps (i.e., T = 200) to
show the behavior of optimizers in different methods.

The visualization results are shown in Figure 2. In the early stage

Figure 2. Comparison among conservative methods and ARCOO in the
ability of performance degradation resistance on the Hopper task. The vertical
axis signifies the true evaluation score of solutions, which are only shown for

visualization purposes and are inaccessible for offline optimization.

of optimization, all three methods search for better solutions stably
under low-risk situations. As all the methods reach the highest online
evaluation score of their own optimization procedure, it comes to a
point where both the surrogate prediction and the risk are large, be-
cause it is already far from the offline dataset. For NEMO and COMs,
since the goal of the optimizers is to pursue better solutions, it has to
continue to perform gradient ascent with a constant learning rate even
if the risk is relatively high at this point. Consequently, the optimizers
break the implicit conservative constraint in the surrogate model and
lead to degradation of performance at the later stage of optimization.
Conversely, ARCOO acts as fast as COMs at the beginning of the
optimization procedure but searches slower as the procedure goes on.
That is because when the optimizer gets further outside the observed
area, the energy rises up and Rφ(x) tends to suppress the risk of
degradation to a lower level since the surrogate model would probably
produce overestimated results. Since the accumulative risk is con-
trolled to a certain extent. the Rφ(x) would eventually approach 0,
and the optimizer would not go further to avoid performance degrada-
tion. With the ability of degradation resistance, setting the termination
condition T as a large number becomes innocuous.

4.3 Ablation Study

The results of previous experiments suggest that ARCOO can out-
perform the SOTA offline optimization methods and carry out risk
control in the offline optimizer effectively. We further examine how
the key components of ARCOO work by conducting an ablation study
on the Hopper task. To be specific, we compare our original ARCOO
with (1) SE-GA that uses gradient ascent (GA) as optimizer but still
involves the whole training process, and (2) S-GA that only applies
training on f̂θ(x) and is equipped with GA optimizer.

The results are shown in Figure 3. Compared with ARCOO, SE-
GA fails on performance degradation which is caused by high-risk
overestimated OOD solutions at the later stage of optimization. It
should be noted that GA can be regarded as a risk-ignore version
of ARCOO, and this confirms the significance of the risk-control
optimizer in offline optimization. Intriguingly, it is also observed that
SE-GA is more stable than S-GA in terms of mitigating performance
degradation, despite both of them employing GA as optimizers. Since
SE-GA additionally trains Eφ(x), the predictions made by f̂θ(x)
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Figure 3. Ablation of key components in ARCOO on the Hopper task. The
vertical axis signifies the true evaluation score of solutions.

could benefit from the shared layer, to which Eφ(x) embeds risk
information in the training time. This reveals that ARCOO not only
utilizes risk in the optimizer explicitly but also in f̂θ(x) implicitly.

4.4 Hyperparameter Analysis

Analysis of the Accumulative Risk Control. As in Section 3.2, the
accumulative risk is controlled under a certain level by the upper
bound, which can be seen as the level of total risk tolerance. To
verify it, we empirically study the accumulative risk control mecha-
nism through the hyperparameters that contribute to this upper bound
(i.e., m and Q̃). Since Q̃ is sampled by LDθ(P̃;K), different K
are used to derive different high-risk distributions. Specifically, five
(m, Q̃) settings for ARCOO are investigated on the Hopper task.
We set m = 0.02 and Q̃2 = LDθ(P̃;K) with K = 64. Then,
we have Q̃1 = LDθ(P̃;K/2) and Q̃3 = LDθ(P̃; 2K), and notice
that TV (P̃; Q̃1) < TV (P̃; Q̃2) < TV (P̃; Q̃3). Finally, five hyper-
parameter settings are chosen as s1: (m/2, Q̃1), s2: (m/2, Q̃3),
s3: (m, Q̃2), s4: (2m, Q̃1), and s5: (2m, Q̃3).

From Figure 4 (a), we observe that ARCOOs1 shows the strongest
risk control as it searches for a sub-optima solution with too low risk
in the final output. On the contrary, ARCOOs5 shows the weakest
risk control that it is misled by the overestimated surrogate prediction
and falls into performance degradation. The other ARCOO settings
show comparative performance as they are constrained with a proper
accumulative risk control upper bound. These results fit the analyses
in Section 3.2 that m and Q̃ can flexibly control the accumulative risk

(a) Expected return in the
optimization procedure

(b) Rφ(x) in the optimization
procedure

Figure 4. Accumulative risk control hyperparameters analysis on different
combinations of m and ˜Q. Figure (a) shares the same legend with (b). We
draw the mean and standard deviation of true evaluation score and Rφ(x).

to desired level. We further consider the tradeoff between m and Q̃
by comparing ARCOOs2, ARCOOs3, and ARCOOs4. Although all
three settings lead to similar results, the optimizers behave differently
during the procedure.

As shown in Figure 4 (b), ARCOOs4 has the largest Rφ(x) at the
very beginning and behaves radically to reach the best solution firstly,
while ARCOOs4 starts with a small Rφ(x) then slowly search for the
optimal solution and ARCOOs3 is in the middle of them. Accordingly,
the tradeoff between m and Q̃ is a way to control the behavior of
every step in the optimization procedure under a certain level of
accumulative risk control across the whole optimization procedure.

Figure 5. Comparison of ARCOO optimization performance under different
Langevin dynamics steps K values on the Hopper task. The vertical axis

signifies the true evaluation score of solutions.

Choice of Langevin Dynamics Steps K. Intuitively, the Langevin
dynamics steps K (Line 4, Algorithm 1) determine how far the high-
risk solutions are from the observed solutions. A proper number of
K allows the dual-head surrogate model to assign high energy to
solutions with high risk in the energy training phase. In order to study
the sensitivity of ARCOO to K, we compare the optimization perfor-
mance (the true evaluation score) of ARCOO under five K values,
i.e., K ∈ {2, 4, 8, 16, 32, 64, 128} on the Hopper task. As can be
observed from Figure 5, the robustness of ARCOO to overestimated
surrogate prediction improves as K increases from 2 to 32. However,
when K continues to increase from 32 to 128, all three curves turn out
to be substantially similar, in terms of avoiding performance degra-
dation at the later stage of optimization. The results demonstrate that
Langevin dynamics is capable of finding the high-risk solutions for
energy training with any sufficiently large K. Thus, we empirically
set K = 64 for ARCOO in all experiments.

5 Conclusion

This paper addresses the performance degradation in offline optimiza-
tion. We formalize the risk of degradation for OOD solutions and
propose an accumulative risk controlled offline optimization (AR-
COO) method based on the energy model, in which the accumulative
risk in the optimization procedure is controlled by a risk suppression
factor. Theoretical and empirical results show that ARCOO possesses
the merit of risk tolerance, and the behavior of ARCOO can be flexibly
and adaptively controlled. The future work includes extending AR-
COO to the online Bayesian-like optimization scenario, developing
more powerful theoretical analysis tools to reveal the simple regret
bound, and exploring more real-world applications.
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