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Abstract. Matching problems with group-fairness constraints and
diversity constraints have numerous applications such as in allocation
problems, committee selection, school choice, etc. Moreover, online
matching problems have lots of applications in ad allocations and
other e-commerce problems like product recommendation in digital
marketing.

We study two problems involving assigning items to platforms,
where items belong to various groups depending on their attributes;
the set of items are available offline and the platforms arrive online.
In the first problem, we study online matchings with proportional
fairness constraints. Here, each platform on arrival should either be
assigned a set of items in which the fraction of items from each group
is within specified bounds or be assigned no items; the goal is to
assign items to platforms in order to maximize the number of items
assigned to platforms.

In the second problem, we study online matchings with diversity
constraints, i.e. for each platform, absolute lower bounds are spec-
ified for each group. Each platform on arrival should either be as-
signed a set of items that satisfy these bounds or be assigned no
items; the goal is to maximize the set of platforms that get matched.
We study approximation algorithms and hardness results for these
problems. The technical core of our proofs is a new connection be-
tween these problems and the problem of matchings in hypergraphs.

Our experimental evaluation shows the performance of our algo-
rithms on real-world and synthetic datasets exceeds our theoretical
guarantees.

1 Introduction

Matchings in graphs is an important problem in both theory and prac-
tice, and has received a lot of attention in literature over several years.
Computing a maximum matching in a bipartite graph under various
constraints is the core of many allocation applications like schedul-
ing [36], school choice [2], ad-auctions [37, 38], resource allocation
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[28], healthcare rationing [4] etc. The terminology in these papers
varies, and we refer to the two parts of the underlying bipartite graph
with the terms items and platforms. In real-world applications, items
may be classified into different groups based on various properties
they possess. Seeking to optimize just the cost or utility of an allo-
cation can be unfair to certain groups or may not serve the intended
purpose. For instance, while forming committees from a pool of can-
didates, it is necessary that each committee contains candidates with
expertise from all the relevant areas. This is the case, for example,
while forming program committees of conferences, teams to work on
projects, or expert committees to evaluate project proposals where it
is required that a minimum number of members are picked from each
of the relevant sub-areas. Additionally, each committee may have a
limit on the maximum number of members it can accommodate from
a particular sub-area.

In this paper, we consider the scenario where items need to be
assigned to platforms, items are classified into groups, and the plat-
forms have certain fairness constraints on the set of items that gets
assigned to them from each group. The fairness constraints can be
specified in terms of lower bounds on the number items that get
assigned to a platform from each group. However, in many appli-
cations, stating the fairness constraints in terms of absolute lower
bounds is inadequate. For example, in case of school choice, the total
number of applications may not be the same each year (see e.g. [17]).
Thus, some schools may not fill up all their seats, and specifying
constraints on the number of students with each race, ethnicity, and
economic background in terms of absolute values do not achieve the
desired balance. Similarly, while selecting committees, the number
of available candidates and their backgrounds may vary each year.
To address this, we consider the notion of proportional fairness. For-
mally, our model and the problem definition are as follows:
Our model: The input instance consists of a bipartite graph G =
(A∪P,E) where A is the set of items and P is the set of platforms,
and (a, p) ∈ E if and only if item a can be assigned to platform p.
Let N(pj) denote the set of items adjacent to pj in G. Moreover,
depending on the properties or attributes they possess, the items are
classified into m groups C1, . . . , Cm where each Ci ⊆ A.

An assignment or matching M of items to platforms is a subset of
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E. For a platform pj , define Mj = {a ∈ A | (a, pj) ∈ M}. Thus
Mj denotes the set of items assigned to pj in M .

We define two problems on this model, depending on the way fair-
ness constraints are specified. The following problem has propor-
tional fairness constraints:
Proportionally fair matching problem: The input instance is as
described above. Every platform pj ∈ P has a lower bound �j and
upper bound uj , respectively denoting the minimum and maximum
number of items that can be assigned to pj . Further, each platform pj

has associated balance parameters α(i)
j , β

(i)
j for each group Ci. It is

essential that, when N(pj) ∩ Ci = ∅, α(i)
j , β

(i)
j = 0. A platform pj

is said to be satisfied by M if the following holds:

�j ≤|Mj | ≤ uj and for every i s.t. Ci ∩N(pj) �= ∅
α
(i)
j |Mj | ≤ |Mj ∩ Ci| ≤ β

(i)
j |Mj |

The goal is to compute an assignment M of items to platforms such
that the number of items assigned to satisfied platforms is maxi-
mized.

Additionally, we also consider the problem where the fairness con-
straints are specified in terms of absolute lower bounds, and the goal
is to maximize the number of platforms whose lower bounds are
met. We refer to this as the diverse matching problem. The objective
of maximizing the number of satisfied platforms is motivated by its
real-world applications like committee selection, where a committee
cannot be set up unless all the constraints are met, or setting up teams
to work on projects, as experts from all the areas are necessary for
the completion of a project. The objective of maximizing the number
of committees or teams formed is a natural one here. The problem is
formally defined below.
Diverse matching problem: The input instance is the same as de-
scribed previously. Each platform specifies a lower bound �

(i)
j on the

number of items it needs from the groups Ci. It is essential that
�
(i)
j ≤ |N(pj) ∩ Ci|. A platform pj is said to be satisfied if, for

the set of items Mj assigned to it, the following holds:

|Mj | ≥ �j , and ∀ i,|Mj ∩ Ci| ≥ �
(i)
j .

The goal is to compute an assignment of items to platforms such that
the number of satisfied platforms is maximized.
The online setting: In many practical applications like ad-allocation,
selecting teams from available pool of candidates, assigning item re-
views to customers, ride sharing etc., all the platforms may not be
known in advance. Our algorithms have the added advantage that
they work in this setting where platforms arrive online over time and
items are known in advance.

Even though our problem formulations are of immense impor-
tance as exemplified by the numerous aforementioned special cases
they generalize, there doesn’t seem to be any prior work studying
these problems at the level of generality of our formulations; see Sec-
tion 1.3 for brief summary of the related work.

1.1 Our Contributions

We give hardness and approximation algorithms for the Proportion-
ally Fair Matching and Diverse Matching problems. Recall that �j
is the minimum number of items required to be assigned to a plat-
form pj , and define � = maxj�j taken over all platforms. We state
our results for the online setting, clearly they also apply to the offline
setting, where the platforms and items both are known upfront.

The main result of our paper is as follows:

Theorem 1. There is an O(n2)-time online algorithm that outputs
an assignment M of items to platforms such that the number of items
that get assigned in M is a 2(� + 1)-approximation to the optimum
solution of the Proportionally Fair Matching problem, and the fair-
ness constraint for any platform pj may be violated by at most a
fraction O

(
1
�j

)
.

Formally, for a group Ci and a platform pj we have

|Mj |
(
α
(i)
j − 3

�j

)
≤|Mj ∩ Ci| ≤|Mj |

(
β
(i)
j +

3

�j

)

Here n is the number of vertices in the underlying bipartite graph G.

The theorem is proved in Section 2.
We give a slightly better approximation guarantee for the Diverse

Matching problem, without any violation of constraints, even when
an item can belong to multiple groups. Following is our result for the
Diverse Matching problem, proved in Section 3.

Theorem 2. There is an online algorithm with competitive ra-
tio (� + 1) for the Diverse Matching problem where � =

maxpj (max(�j ,
∑

i �
(i)
j )).

We show that the approximation ratios in Theorems 1 and 2 are
almost tight by showing that it is NP-Hard to get an approximation
ratio larger than O( �

ln �
). Theorem 3 gives hardness of approximation

for the Proportionally Fair Matching and Diverse Matching prob-
lems. The proof is given in Section 4.

Theorem 3. The Proportionally Fair Matching and the Diverse
Matching problems are NP-hard to approximate in polynomial time
to within a factor of O

(
�

ln �

)
where � = maxpj �j . The hardness re-

sult holds even when there is a trivial group containing all the items.

Experimental evaluation: An experimental evaluation of our al-
gorithms shows that their performance on real-world and synthetic
datasets significantly exceeds our theoretical guarantees. Our syn-
thetic datasets are generated using a model that loosely resembles a
random graph generated from an Erdős-Rényi model, and show that
our algorithms perform very well even for small values of average
degree of items. This performance is explained by the high theoreti-
cal guarantees obtained in Theorem 4 above. In particular, our algo-
rithm for the Proportionally Fair Matching problem outperforms the
optimal solution in terms of size, owing to the allowed violation in
fairness constraints.

Motivated by the above experimental results, we analyze our al-
gorithm for the Diverse Matching problem on Erdős-Rényi random
graphs. This is similar in spirit to the work of [21], where they
show that the greedy matching algorithm obtains an almost-optimal
matching on Erdős-Rényi random graphs, which are used as one
of the models for real-world instances. In our theoretical analysis
of the algorithm for the Diverse Matching problem on an Erdős-
Rényi random graph, we see a similar behaviour in the presence of
lower bounds. The random graph model involves a bipartite graph
G = (A ∪ P,E) where for every a ∈ A, p ∈ P , the edge (a, p) ex-
ists in E with probability ρ. We consider a simplistic scenario where
there are Δ groups, each item belongs to one of the Δ groups, and
the lower bound of each group is �.

Theorem 4. For any constant ε > 0, the greedy algorithm from
Theorem 2 achieves a (1 − ε)-approximation with probability

(
1 −

1
nc

)
for instances of the Diverse Matching problem where all the

lower bounds are fixed to a constant �, and the underlying graph
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is an Erdős-Rényi random graph with an edge probability of ρ =
Ω( logn

n
).

Here, the constant c depends on ρ and ε. The proof appears in the
full version of the paper [33].

1.2 Our Techniques

The technical core of our theoretical results is a new connection be-
tween our problems and the hypergraph matching problem defined
below.

Definition 1 (Hypergraph Matching). Given a k-uniform hypergraph
H = (V,E), find the largest matching, viz. a subset of edges that do
not intersect.

In this paper, we use the folklore greedy algorithm for hypergraph
matching which involves repeatedly choosing a hyperedge that is dis-
joint from the edges already included in the matching, and adding it
to the matching.

Proposition 1. The greedy algorithm achieves an approximation ra-
tio of Δ on hypergraphs with hyperedges of size ≤ Δ.

1.3 Related Work

The problem of matchings with fairness constraints has been well-
studied in recent years and the importance of fairness constraints
has been highlighted in literature e.g. [42, 34, 19, 14, 32, 16, 12].
A lot of work in literature has focused on group fairness constraints,
modeled as upper bounds on the number of items from each group
that can be allocated to a platform. This is referred to as restricted
dominance in literature [10]. Constraints that are specified in terms
of lower bounds constraints have also been considered for different
problems like clustering, minimum cut, knapsack (see e.g. [3, 5, 29]
for some recent results). Bera et. al [10] consider proportional fair-
ness constraints for clustering problems, and give an algorithm with
additive violation of constraints. In this work, we consider them in
the context of matchings. In [41] the authors consider upper bounds
for problems similar to ours. However, the techniques required for
the setting with lower bounds in our work are different from the ones
used in [41].

There has been more recent work where different models of fair-
ness in matchings have been considered. In [26], individual fairness
is addressed, in [7], two-sided fairness is considered in terms of util-
ities, whereas in [35], group-fairness in terms of the minimum ser-
vice rate across all groups is studied. In [24], the authors consider
group and individual Rawlsian fairness criteria in an online setting,
where fairness is attained at the cost of a drop in operator’s profit. In
[22], group fairness constraints have been considered for the entity-
resolution problem.

Proportional fairness has been considered for the candidate selec-
tion problem in [8]. In their setting, the input consists of n candi-
dates and m properties. Each candidate can posses a subset of the
m properties and a property pj is associated with proportional fair-
ness constraints αj , βj . Additionally, the input contains a threshold
k. The goal is to output a set of at most k candidates which satisfies
the proportionality constraints. The authors show that even deciding
whether there exists a non-empty feasible set of candidates is NP-
hard. They complement the hardness by providing polynomial-time
approximation algorithms with a slight violation of the proportional
fairness constraints.

Our proportionally fair matching problem can be viewed as select-
ing multiple committees instead of a single committee / subset. Thus
their hardness and inapproximability hold for our problem as well.
We therefore consider a special case where every candidate belongs
to exactly one group. In this case, if we are interested in selecting
a single committee, the problem becomes tractable, however, it re-
mains NP-hard when there are multiple committees to be selected
(Theorem 3).

An advantage of our algorithms is that they simply follow the
greedy paradigm, and work in online setting as well. On the contrary,
those of Bei et al. [8] involve solving an LP or ILP.

In a recent work, [6] consider the proportional fairness model in
case of non-bipartite graphs. Their model involves colors on edges,
and the proportional fairness constraints are stated in terms of two
parameters α, β. The goal is to construct a matching that has at least
α and at most β fraction of edges of each color. The running time of
their algorithm is exponential in the number of colors, and the viola-
tion of proportional fairness parameters also depends on the number
of colors. In another work, [39], the authors consider fairness con-
straints in terms of lower and upper bounds for each group, and addi-
tionally consider individual fairness constraints denoting the bounds
on probabilities with which an item must be matched to a subset
of platforms. They output a distribution on group fair matchings so
that a randomly picked matching satisfies the individual fairness con-
straints.

We note that the term proportional fairness has also been used in
literature in a way different from ours. For instance, in [43], online
matchings for ride-hailing platforms have been considered, and the
term proportional fairness is used to indicate that the utility that each
agent gets should be proportional to the time that the agent spends
on the ride-hailing platform. Also, the term diversity has been used
in various ways in literature (see e.g. [13, 25]). In [9], both sides
of the bipartition belong to various groups, referred to as types and
blocks. They give a max-utility assignment that satisfies all the fair-
ness constraints, given only in terms of upper bounds.

The online model for the bipartite matching problem was studied
in [31] and they gave a randomized algorithm with a competitive ra-
tio 1− 1/e. This was later generalized to online bipartite matchings
with concave returns in [18]. In [20], fairness and diversity in online
bipartite matchings has been achieved via submodular weight func-
tion.

Apart from matchings, fairness constraints have been considered
in clustering problems [23], where fair clustering has been reduced
to assignment problems and bicriteria approximations are shown [11,
10].

2 The Proportionally Fair Matching Problem

We discuss the Proportionally Fair Matching problem in this section.
Here, we want to maximize the number of items matched to those
platforms whose proportional fairness constraints are met.

2.1 Algorithm with no violation of constraints

Given an instance G of the Proportionally Fair Matching problem,
the algorithm involves constructing an instance of the hypergraph
matching problem on a hypergraph H with vertex set V and edge set
F as follows: V = {vt | at ∈ A} ∪ {pj | pj ∈ P} Thus, cor-
responding to an item at ∈ A, we add a vertex vt to the set V . For
every platform pj we add a vertex pj to V . We denote by pj for a ver-
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tex in the hypergraph corresponding to the platform pj . Furthermore,
we let C(i)

j = Ci ∩N(pj).
The edge set is F = {{pj} ∪ S | S ⊆ N(pj), �j ≤ |S| ≤

uj ∀i ∈ [m] α
(i)
j |S| ≤

∣∣∣S ∩ C
(i)
j

∣∣∣ ≤ β
(i)
j |S|}

Thus, there is a hyperedge in H corresponding to each possible
assignment of items to pj that meets the proportional fairness con-
straints of pj and all its groups. Further, by the above construction,
observe that any assignment that satisfies the platform must corre-
spond to a hyperedge. The size of the largest hyperedge in H is u
where u = maxj uj .

By Proposition 1, this naive reduction to hypergraph matching de-
scribed above leads to an approximation ratio of O(u) without vio-
lating any of the proportional fairness constraints. Given the hardness
of approximation for hypergraph matching we do not expect to im-
prove the approximation guarantee using this reduction.

2.2 Improved approximation with violation of
constraints:

We would like an approximation factor that depends on �j instead
of uj since the former is typically much smaller than the latter e.g.
in student course allocation, the number of students required to of-
fer a course is typically small whereas the maximum capacity of the
course may be much larger. In order to get an improved approxi-
mation factor, we pay a price in terms of a slight violation of the
fairness constraints. In the proof of Theorem 1 below, we construct a
hypergraph H such that the hyperedges corresponding to a platform
pj have size �j , thereby resulting in an approximation factor O(�)
where � = maxj �j .

Proof of Theorem 1. We reduce the given instance G to a hypergraph
matching problem on a suitably constructed hypergraph H . We then
use the greedy algorithm to compute a maximal matching MH in H .
However, owing to rounding errors, the corresponding matching M
in G may not exactly satisfy the constraints.

Construction of the hypergraph H: Recall that in this problem,
we only consider the case where each item belongs to exactly one
group per platform. For every item ai, we create a vertex vi in H .
For every platform pj , we create t vertices u(1)

j , . . . , u
(t)
j where t =⌊

uj

�j

⌋
. We add the following hyperedges for platform pj .

{
{u(k)

j } ∪ S | 1 ≤ k ≤ t, S ⊆ N(pj),|S| = �j , S satisfies Eqn 1
}
.

α
(i)
j �j − 3 ≤

∣∣∣S ∩ C
(i)
j

∣∣∣ ≤ β
(i)
j �j + 3. (1)

We need to find a set S satisfying the above property. For this, we
keep adding items from a group C

(i)
j to S until |S∩C

(i)
j | ≥ α

(i)
j �j−

3. We repeat this for all the groups. To ensure |S| = �j , we add items
arbitrarily so that |S ∩ C

(i)
j | ≤ β

(i)
j �j + 3 for each group C

(i)
j . It is

easy to see that if such a set S exists, the above process must find it,
and the disjointness of groups is crucial here.
Improving the running time to O(n2): The construction of H
needs time n�. However, we improve it to O(n2) as follows. Instead
of explicitly constructing all the hyperedges of H , we create a collec-
tion of disjoint hyperedges by constructing hyperedges one by one,
ensuring that the hyperedge being created is disjoint from the previ-
ously created ones. This results in a simple greedy matching MH of
H . Algorithm 1 shows this directly for the instance G.

Algorithm 1 Improved algorithm for Proportionally Fair Matching
1: for every platform pj that arrives online do

2: while ∃ S ⊆ N(pj) of size �j satisfying Equation 1 do

3: Match all items from S to pj and remove them.
4: end while

5: end for

Let the matching MH contain t′ ≤ t hyperedges corresponding
to platform pj , each containing a distinct vertex from u

(1)
j , . . . u

(t)
j .

Note that the items in these hyperedges are assigned to pj in the cor-
responding matching M in G. Let this set be Mj . By the construction
of H , we observe that if t′ ≥ 1, we have �j ≤ |Mj | ≤ uj . Moreover
since every hyperedge satisfies Eq. 1, we can add Equation 1 across
all the t′ hyperedges to get

α
(i)
j |Mj | − 3t′ ≤

∣∣∣Mj ∩ C
(i)
j

∣∣∣ ≤ β
(i)
j |Mj |+ 3t′(

α
(i)
j − 3

�j

)
|Mj | ≤

∣∣∣Mj ∩ C
(i)
j

∣∣∣ ≤
(
β
(i)
j +

3

�j

)
|Mj | .

Thus, we violate the constraints by at most a factor of 3
�j

.
We show the desired approximation ratio of 2(�+1) as follows. In

Lemma 2 below, we show that for any optimum matching MOPT in
G, there exists a matching SH in G such that |SH | ≥ |MOPT |

2
. Then

we give a transformation to get a matching SH in H . The 2(� + 1)
approximation then follows from Proposition 1. The final solution
satisfies the relaxed fairness constraints in Equation 1.

Lemma 2. The hypergraph H contains a matching SH such that
the number of items covered by hyperedges in SH is at least half
the value of the optimum of original instance of Proportionally Fair
Matching and violates the fairness constraints by at most a factor of
3
�j

for each platform pj .

Proof. Let MOPT be the optimum matching in G. We focus our
attention on some platform pj . Let it be matched to a set MOPT,j of
items in MOPT . Let |MOPT,j | = q�j + r for non-negative integers
q, r where r < �j and q > 0. We construct a solution S whose
restriction to the neighbours of pj , Sj , satisfies |Sj | = q�j matched
items. Further, for each group C

(i)
j of pj , S(i)

j satisfies the following

slightly relaxed constraint. For each i, let M (i)
OPT,j = MOPT,j ∩

C
(i)
j . Then Sj needs to satisfy|Sj | = q�j and

∣∣∣S(i)
j

∣∣∣ =
⌈

q�j
q�j + r

∣∣∣M (i)
OPT,j

∣∣∣
⌉

or
∣∣∣S(i)

j

∣∣∣ =
⌊

q�j
q�j + r

∣∣∣M (i)
OPT,j

∣∣∣
⌋
.

This can easily be done by removing vertices one by one from
M

(i)
OPT,j for various i. Then we have

q�j
q�j + r

∣∣∣M (i)
OPT,j

∣∣∣− 1 ≤
∣∣∣S(i)

j

∣∣∣ ≤ q�j
q�j + r

∣∣∣M (i)
OPT,j

∣∣∣+ 1

=⇒ α
(i)
j q�j − 1 ≤

∣∣∣S(i)
j

∣∣∣ ≤ β
(i)
j q�j + 1. (2)

Thus, there is a solution of size q�j that violates the lower and upper
bounds by at most 1. Note that we can repeat this for each satisfied
platform, and this process may possibly reduce the size of the match-
ing by a factor of 2, i.e.,|S| ≥ 1

2
|MOPT |. This is because, the loss is

r ≤ q�j+r

2
because r < �j and q > 0.

Now, we want to construct a matching SH in H from the solution
S. To do this, we divide the above q�j items in Sj into q hyperedges
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of size �j each such that each hyperedge satisfies Equation 1. These
hyperedges together form the matching SH in H . Through the argu-
ments given below, we show that this is possible.

We do this by setting up a bipartite matching instance between
items and hyperedges. We create a vertex for each item and hyper-
edge. Consider the x items from some group C

(i)
j that we need to

assign to q hyperedges. We fractionally match xi/q items from that
group to each hyperedge.

Observe that this can be done in a way so that each hyperedge has
at most two fractional items matched to it from one group: We imag-
ine this as dividing the real interval between [0, x] into q divisions.
Each division can then be viewed as the union of a set of ‘integral’
intervals of the form [z, z + 1] for some integer z along with at most
two ‘fractional’ intervals (corresponding to items being fractionally
being matched). We then repeat this for all the groups. For example,
to assign 7 items {i1, . . . , i7} to 3 hyperedges f1, f2, f3, we assign
i1, i2 and 1

3
of i3 to f1, the remaining 2

3
of i3, whole i4, and 2

3
of i5

to f2, and the remaining 1
3

of i5 and whole of i6, i7 to f3
Now, we consider the fractional bipartite matching between the

items and hyperedges. The edges have weight corresponding to the
fraction of the item that was assigned. Observe that this graph ad-
mits a fractional matching with the property that on the item side,
the weights of edges adjacent to a vertex sum up to 1 and on the
side of hyperedges, the weights of the adjacent edges of every vertex
sum up to �j . From the integrality of the bipartite matching polytope
[40], there is an underlying integral matching such that every item
is assigned to exactly 1 hyperedge and every hyperedge is assigned
exactly �j items. We create our hyperedges based on this matching.

Since there are only two fractional items from a group with an
edge to a hyperedge, it can only violate the constraints by at most an
additive factor of 2. Thus, we end up with hyperedges S that satisfy
the constraint

∣∣∣S(i)
j

∣∣∣
q

− 2 ≤
∣∣∣S ∩ C

(i)
j

∣∣∣ ≤
∣∣∣S(i)

j

∣∣∣
q

+ 2

=⇒ α
(i)
j �j − 1

q
− 2 ≤

∣∣∣S ∩ C
(i)
j

∣∣∣ ≤ β
(i)
j �j +

1

q
+ 2.

The hyperedges here, with addition of a distinct u(i)
j vertex, 1 ≤

i ≤ q, form a disjoint collection of hyperedges in H , thus giving the
matching SH in H . Since our algorithm will not know the value of q
beforehand, we choose the worst case of q = 1. Thus, the hyperedges
satisfy

α
(i)
j �j − 3 ≤

∣∣∣Z ∩ C
(i)
j

∣∣∣ ≤ β
(i)
j �j + 3.

We note that the high-level idea of breaking a problem with group-
fairness constraints into “smaller” problems has been studied in the
context of other problems as well such as fair clustering [15], fair
rankings [27] etc. However, doing so is problem specific and there is
no known generic way of doing this for any problem.

3 Matchings with Diversity Constraints

We give a reduction from the Diverse Matching problem to the Hy-
pergraph Matching Problem which implies an approximation algo-
rithm for the Diverse Matching problem, and thereby prove Theo-
rem 2. As in Section 2, we use the notation C

(i)
j = N(pj) ∩ Ci.

Algorithm 2 Algorithm for Diverse Matching
1: for platform pj that arrives online do

2: Greedily construct a set S ⊆ N(pj) such that

�j ≤|S| ≤ max(�j ,
∑
i

�
(i)
j ) and

∣∣∣S ∩ C
(i)
j

∣∣∣ ≥ �
(i)
j ∀ i ∈ [m]

3: Match all items from S to pj and remove them.
4: end for

Proof of Theorem 2. Given an instance of Diverse Matching on a bi-
partite graph G with parts (A,P ), we construct an instance of the
hypergraph matching problem on a hypergraph H with vertex set V .
We add one vertex vi in V corresponding to every item ai ∈ A,
and a new vertex uj in V for each platform pj ∈ P . Let N(pj) be
the neighbourhood of platform pj in G. Then we add the following
hyperedges to the graph

{
{uj} ∪ S | S ⊆ N(pj),�j ≤|S| ≤ max(�j ,

∑
k

�
(k)
j )

∀ k,
∣∣∣S ∩ C

(k)
j

∣∣∣ ≥ �
(k)
j

}
.

Thus, there is a hyperedge in H corresponding to each possible
assignment of items to pj that satisfies the lower bounds of pj and
all its groups. Observe that the largest hyperedge in the resulting hy-
pergraph has size � + 1. It is immediate that every hyperedge in the
matching corresponds to an assignment of items to a platform that
satisfies the platform. Further, observe that any assignment that sat-
isfies the platform must correspond to a hyperedge.

As stated earlier, we can now use the hypergraph matching greedy
algorithm.Observe that the number of hyperedges can be as large as
O(n�) and hence the time complexity would be as high too. How-
ever, we achieve O(n2) time complexity as follows. Instead of ex-
plicitly constructing all the hyperedges, we keep constructing and
picking one arbitrary hyperedge at a time that is disjoint from the
previous ones. This is given in Algorithm 2 in terms of the setting in
Diverse Matching. Thus for each platform pj , we keep adding items
from each group to a set Sj until the lower bound of the group is
met by the items in Sj . Once the lower bounds of all the groups are
met, if |Sj | < �j , we add items arbitrarily to Sj until |Sj | = �j .
We ensure that an item is picked at most once. In the worst case,
|Sj | = max(�j ,

∑
k �

(k)
j ). The theorem then follows via Proposi-

tion 1.

4 Hardness Results

We prove Theorem 3 by giving a reduction from the hypergraph
matching problem to Diverse Matching. The hardness of approxi-
mation for hypergraph matching, shown in [30], then implies that the
Diverse Matching is NP-hard to approximate within a factor of �

ln �
.

This hardness result holds even when there are no groups, and all the
platforms have the same lower bound �.

Proof of Theorem 3. The hardness reductions are described below.
Reduction for the Diverse Matching problem: The reduction

involves constructing an instance of the Diverse Matching problem
from a given hypergraph matching instance H = (F, V ), which is
a k-uniform hypergraph. We construct a bipartite graph G with parts
(A,P ) as follows: Set � = k. The set A contains an item ai for every
vertex vi ∈ V , the set P contains a platform pj for every ej ∈ F ,
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and the edges of G are all pairs (ai, pj) such that vi ∈ ej The lower
bound of pj is set to the size of ej i.e. �, and we have no groups in
this case.

Now we show that, for every matching M in H of size r, there is
an assignment of items to platforms that satisfies the lower bounds
of r platforms and vice versa. Suppose there is a matching M in
H of size r. Then for every hyperedge ej ∈ M , we assign items
{ai | vi ∈ ej} to the corresponding platform pj . This meets the
lower bound of pj , since the size of ej is equal to the lower bound
of pj for each j. Thus, since every ej has exactly k vertices, and the
edges in M do not share vertices, we get an assignment of items to
platforms that satisfies the lower bounds of r platforms. Similarly,
suppose there is an assignment of items to platforms that satisfies
the lower bounds of r platforms. Hence the assignment results in r
platforms that are satisfied. Let pj be some platform that is satisfied.
Then we choose the corresponding hyperedge ej into the solution.
Since each item is matched to exactly one platform, corresponding
hyperedges in the solution are disjoint. This gives us a matching in
the hypergraph, thereby establishing a one-to-one correspondence
between matchings in H and the matchings in G satisfying all the
lower bounds.
Reduction for the Proportionally Fair Matching problem: The
above reduction also gives a hardness for the Proportionally Fair
Matching problem as follows. After constructing the bipartite graph
G as above, for each platform pj , set uj = �j = k. Further, set the
number of groups to be 1. Thus we have C

(1)
j = N(pj) for each

platform pj . Also, set α(1)
j = 0, β

(1)
j = 1. It can be easily seen

that the number of items matched to satisfied platforms is precisely k
times the number of satisfied platforms. The one-to-one correspon-
dence between the set of matchings in H and the set of matchings in
G that satisfy the proportional fairness constraints can be established
as in the case of the Diverse Matching problem.

5 Experiments

We present the results of our experiments for Algorithm 1 and Algo-
rithm 2 for the Proportionally Fair Matching and the Diverse Match-
ing problems respectively. We evaluate the algorithms on two kinds
of datasets. The first one is a smaller dataset containing anonymized
data of the course allocation process at IIT Madras, labelled Real-1
through Real-3. The second is synthetic data generated using a ran-
dom process resembling a random graph generated from an Erdős-
Rényi model. Our code and dataset are available at [1].
Data Sets and Setup: Each of the three real-world datasets (Real-1,
Real-2, Real-3), have around 3000 students and 100 courses. Each
course has a lower quota of 5, denoting the minimum number of stu-
dents needed to operate the course. As an instance of Diverse Match-
ing, we would like to maximize the number of courses that satisfy
this requirement. The courses are all from an elective category, so
each student is assigned only one course. Students are partitioned
into groups based on their majors, and there are 5 groups overall. The
synthetic datasets contain 250 courses and 10,000 students. These
were generated as follows. For every student, a degree was chosen
uniformly at random between 1 and an input parameter. All experi-
ments were done on a desktop running 64-bit Windows using a 3.6
GHz Intel i7-7700 processor with 32.0 GB RAM.

In our experiments for both problems our algorithm is denoted as
ALG1 in the respective sections. We use two standard heuristics that
improve the performance in practice, though they do not improve
the worst-case theoretical guarantees because of the hardness results.
The first heuristic (denoted as ALG2) is to prioritize matching the

lowest-degree item to a platform when considering its neighbors. The
second one (denoted as ALG3) is to use augmenting paths when a
platform is left with no unmatched items among its neighbors. We
compare the optimum value obtained via solving an ILP with the
output of our algorithm. We present our ILPs for the two problems
in the sections below.

5.1 Proportionally Fair Matching

We use the following ILP for the proportionally fair matching prob-
lem: The input bipartite graph is G = (A ∪ P,E)

Maximize
∑

(a,p)∈E

x(a,p) subject to

α(k)
p ·

∑
(a,p)∈E

x(a,p) ≤
∑

(a,p)∈E,a∈C
(k)
p

x(a,p) (3)

∑
(a,p)∈E,a∈C

(k)
p

x(a,p) ≤ β(k)
p ·

∑
(a,p)∈E

x(a,p) (4)

∑
(a,p)∈E

x(a,p) ≤ 1 for each a ∈ A (5)

x(a,p) ∈ {0, 1} for each (a, p) ∈ E

The proportional fairness constraints (3) and (4) are for every
group C

(k)
p for each platform p whereas the constraint (5) encodes

that each applicant is matched to at most one platform.1 We run our
experiments for Proportionally Fair Matching on a smaller dataset
owing to a limitation in computational resources. We have 100
courses and 2000 students. Every course has the same set of groups.
There are 20 groups, each containing 100 students. Every course
has a lower bound of 10 students overall. Every course pj and ev-
ery group k have α

(k)
j = 0.025 and β

(k)
j = 0.1. We note that our

algorithms solve a relaxed instance. This explains the strange phe-
nomenon that our algorithm outperforms the OPT in some instances.
The OPT is the optimal solution to a more constrained instance.

Figure 1. Proportionally Fair Matching: Solution value vs average degree
of the random graph.

5.2 Diverse Matching

Following is the ILP for the diverse matching problem:

1 This ILP can be found in the file named ILP_student_max.py in our sub-
mitted source code.
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Figure 2. Proportionally Fair Matching: Running time vs average degree
of the random graph.

Maximize
∑
p∈P

yp subject to

∑
(a,p)∈E

x(a,p) ≥ �p · yp for each p ∈ P

∑
(a,p)∈E,a∈C

(k)
p

x(a,p) ≥ �(k)p · yp for each group C(k)
p of p

∑
(a,p)∈E

x(a,p) ≤ 1 for each a ∈ A

yp ∈ {0, 1} for each p ∈ P

x(a,p) ∈ {0, 1} for each (a, p) ∈ E

We run our experiments for Diverse Matching on real world and
synthetically generated instances where the number of courses is 250
and the number of students is 10,000. There are 20 groups, each con-
taining 500 students. Every course has a lower bound of 2 for each
group. We vary the average degree of the students from 1 through
125.

All values were averaged over 15 runs. See Table 1 and Table 2 for
solution value and running time comparison between our algorithms
and OPT.

Dataset OPT ALG1 ALG2 ALG3

Real-1 34 29.53 31.73 33.20
Real-2 31 27.73 29.40 30.86
Real 3 31 26.07 28.73 30.00

Table 1. Diverse Matching: Comparison of solution values of (ALG1,
ALG2, ALG3) and an ILP that finds the Optimum (OPT).

Dataset OPT1 ALG1 ALG2 ALG3

Real-1 0.37 0.11 0.12 0.12
Real-2 0.34 0.11 0.12 0.12
Real 3 0.42 0.13 0.12 0.12

Table 2. Diverse Matching: Runtime (in seconds) comparison between
ALG1, ALG2, ALG3 and an ILP that finds the optimum (OPT).

We observe that beyond a small threshold, the algorithm per-
formed almost as well as the ILP. Our algorithm is much faster the
ILP, particularly for dense graphs. See Figure 4 for a trend on perfor-
mance of algorithm vs the average degree.

Figure 3. Diverse Matching: Solution value vs average degree of the
random graph for synthetic datasets.

Figure 4. Diverse Matching: Running time vs average degree of the
random graph for synthetic datasets.

6 Discussion

In this paper, we studied bipartite matching problems with propor-
tional fairness constraints and diversity constraints. To the best of
our knowledge, these constraints have not been considered particu-
larly with the objective to maximize the number of platforms whose
constraints are satisfied. Our algorithms exploited a connection to the
hypergraph matching problem. Our algorithms generalize to the set-
ting where each platform defines its own groups on the set of items.

Our approximation algorithm for the Proportionally Fair Match-
ing problem violates the fairness constraints by a small amount; ob-
taining a polynomial-time O(�)-approximation algorithm without vi-
olating the fairness constraints is an interesting open question.
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