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Abstract. Coordination and joint ability are important problems in
representation and reasoning about multi-agent systems. Ghaderi et
al. presented a formalization of joint ability of coalitions in the ex-
pressive first-order language of the situation calculus. Essentially, a
coalition has joint ability to achieve a goal if after iterated elimina-
tion of dominated strategies, any remaining joint strategy achieves
the goal. Based on their work, Liu et al. proposed JAADL, a modal
logic for joint abilities under strategy commitments. In this paper, we
propose EJAADL, an epistemic extension of JAADL, for imperfect
information games where agents may have incomplete knowledge or
even false beliefs about the world. Like Ghaderi et al.’s work, elim-
ination of dominated strategies is now based on beliefs about the
world, rather than facts about the world as in JAADL. Strategies are
required to be uniform, i.e., they select the same action in all ac-
cessible histories. We illustrate EJAADL with examples, analyze its
properties, and show that model checking memoryless EJAADL is in
EXPTIME. Moreover, we consider the fragment of EJAADL without
the iterated elimination operator, and show that model-checking the
memoryless version of this fragment can be done in PSPACE.

1 Introduction

Representation and reasoning about strategic abilities has been an
active research area in AI and multi-agent systems. The foundational
work is Alternating-time Temporal Logic ATL/ATL∗ [1] where for-
mula ⟨⟨A⟩⟩φ expresses that coalition A has a group strategy to en-
sure temporal goal φ holds no matter what the other agents do. How-
ever, strategies are treated implicitly in ATL. Treating strategies as
explicit first-order objects, Mogavero et al. proposed Strategy Logic
SL [19], a very expressive logic for strategic reasoning that strictly
contains ATL∗ and can express many game-theoretic notions such as
existence of Nash equilibria. However, in reality, players often have
imperfect information about the game states. To deal with imper-
fect information games, Alternating-time Temporal Epistemic Logic
(ATEL) and its variations have been proposed [13, 14, 15, 9, 5]. Re-
cently, SL has been extended to take into account of imperfect in-
formation [8, 2, 4, 6] and allow for epistemic reasoning under the
uninformed or informed semantics [18, 3], depending on whether
agents know other agents’ strategies. EGDL [16] also concerns rep-
resenting and reasoning about imperfect information games: it has
the standard epistemic operators, but without the until or coalition
operators, and provides an imperfect recall semantics, thus reducing

∗ Corresponding Author. Email: ymliu@mail.sysu.edu.cn

the model checking complexity. In these logics, imperfect informa-
tion is captured by equipping the models with accessibility relations
which are usually equivalence relations. Strategies are then required
to be uniform, i.e., they select the same action in all indistinguishable
histories.

Coordination and joint ability are important problems in represen-
tation and reasoning about multi-agent systems. “A team of agents is
jointly able to achieve a goal if despite any incomplete knowledge or
even false beliefs that they may have about the world or each other,
they still know enough to be able to get to a goal state, should they
choose to do so” [11]. Many strategic logics ignore the coordina-
tion problem: a coalition may have many group strategies to ensure a
goal, yet a player may not know others’ choices, hence the coalition
may end up with a group strategy which may not ensure the goal.

Nonetheless, there have been works on developing logical theories
of coordination and joint abilities. Ghaderi et al. studied the coordi-
nation problem for imperfect information games where agents may
have incomplete knowledge or even false beliefs about the world,
and presented a formalization of joint ability of coalitions [11] based
on the idea of iterated elimination of dominated strategies [20]. Es-
sentially, a coalition has joint ability to achieve a goal if after iter-
ated elimination of dominated strategies, any remaining joint strategy
achieves the goal. However, their work uses the very expressive situa-
tion calculus [22], making it difficult to explore computational prop-
erties of the logic. Based on coalition logic [21], Hawke proposed
a logic of joint ability in two-player tacit games with a joint ability
modality ((A))ϕ [12]: two players have joint ability to achieve a goal
if after elimination of punishment strategies, i.e., those strategies that
fail to achieve the goal no matter what other agents do, any remaining
joint strategy achieves the goal. So they only eliminate punishment
strategies, hence their concept of joint ability is much weaker than
that of [11]. Recently, based on Ghaderi et al.’s idea, Liu et al. pro-
posed JAADL [17], a modal logic for joint abilities under strategy
commitments, which extends ATL∗. Firstly, they introduce an opera-
tor (A)∞ψ ϕ, meaning ϕ holds after iterated elimination of dominated
strategies w.r.t. group A and goal ψ, with which they can represent
joint abilities of coalitions. Secondly, their logic is based on linear
dynamic logic LDL [23], so that they can use regular expressions
to represent commitments to structured strategies. However, unlike
Ghaderi et al.’s work, JAADL is for perfect information games.

In this paper, we propose EJAADL, an epistemic extension of
JAADL, for imperfect information games where agents may have in-
complete knowledge or even false beliefs about the world. To model
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beliefs, we equip the models with accessibility relations that are se-
rial, Euclidean, and transitive. Strategies are then required to be uni-
form in the sense that they select the same action in all accessible
histories. Like Ghaderi et al.’s work, elimination of dominated strate-
gies (EDS) is now based on beliefs about the world, rather than facts
about the world as in JAADL. In particular, an agent eliminates a
strategy if she believes there is a better strategy; an agent i believes
among her strategies, σ′ is better than σ if for each group strategy σ−i
that i believes the other agents keep, σ works with σ−i to achieve the
goal implies σ′ does too. Note that the strategies agent i keeps might
be different from those agent j believes agent i keeps. We illustrate
the syntax and semantics of EJAADL with examples from the lit-
erature. Then we analyze properties of EJAADL. We show that two
sufficient conditions and one necessary condition for joint abilities in
JAADL can be modified to hold in EJAADL. Finally, we show that
model checking memoryless EJAADL can be solved in EXPTIME.
Moreover, we consider the fragment of EJAADL without the iterated
elimination operator, and show that model-checking the memoryless
version of this fragment can be done in PSPACE.

2 Preliminaries

In this section, we introduce JAADL. We begin with the concepts of
concurrent game structures and strategies.

Let AP be a finite non-empty set of atoms, AC a finite non-empty
set of actions, and let AG = {1, . . . , n} be a finite non-empty set of
agents. We use ∅ to denote the empty set.

Definition 1 (Concurrent Game Structures) A concurrent game
structure (CGS) is a tuple G = ⟨W,L,P, τ,w0⟩, where

● W is a finite non-empty set of states; w0 ∈ W is a designated
initial state; L is a labeling function mapping each state to a subset
of AP; τ is a transition function mapping a state w and a decision
at w to a new state;

● for each agent i, Pi is a possible action function mapping each
state to a subset of AC; a decision at state w is a function mapping
each agent i to an action from Pi(w); we use D(w) to denote the
set of decisions at w;

Example 1 (Robots and Carriage from [7]) As shown in Figure 1
(we ignore the dotted lines for now), each robot can either push or
wait. Moreover, they both use the same force when pushing. Thus, if
the robots push simultaneously or wait simultaneously, the carriage
does not move. When only one of the robots is pushing, the carriage
moves accordingly. We formalize the example as a CGS G:

● AG = {1,2}, AP = {pos0, pos1, pos2}, AC = {push,wait},
W = {q0, q1, q2}, w0 = q0;

● L(q0) = {pos0}, L(q1) = {pos1}, L(q2) = {pos2};
● Pi(w) = AC for each i ∈ AG and each w ∈W ;
● τ is described directly in Figure 1.

We now define tracks and paths. Tracks (resp., path) are finite
(resp., infinite) state-decision sequences, they are used to define
strategies (resp., interpret path formulas).

Definition 2 A track h in a CGS G is a finite state-decision sequence
w0d0w1d1...wk s.t. for all i (0 ≤ i < k), di ∈ D(wi), and wi+1 =
τ(wi, di). We use last(h) to denote wk.

Figure 1. Robots and Carriage

Definition 3 A path λ in a CGS G is an infinite state-decision se-
quence w0d0w1d1... s.t. for all i ≥ 0, di ∈ D(wi), and wi+1 =
τ(wi, di).

Definition 4 A strategy for agent i starting from state w is a func-
tion mapping each track h beginning from w to an action from
Pi(last(h)). We let Stri(w) denote the set of all strategies for agent
i starting from w.

To handle elimination of strategies, Liu et al. introduce the con-
cept of strategy spaces. A strategy space specifies the set of possible
strategies for each agent [17].

Definition 5 A strategy space s starting from state w is a function
mapping each agent i to a subset of Stri(w). The full strategy space
fs(w) starting from state w maps each agent i to Stri(w).

For a group A of agents, sA means the restriction of s to group A.

Definition 6 A memoryless strategy for agent i is a function map-
ping each state w to an action from Pi(w). The full memoryless
strategy space, denoted by fms , maps each agent i to the set of all
memoryless strategies for i.

We use σ to range over strategies. A group strategy of A ⊆ AG
is a mapping from A to strategies. We use σA to range over group
strategies of A, σi to range over strategies for agent i. We use −A to
denote AG −A. For i ∈ AG, we use −i to denote AG − {i}. A joint
strategy is a group strategy of AG. We use σall to range over joint
strategies. Thus (σA, σ−A) stands for the joint strategies composed
of σA and σ−A.

Definition 7 A state w and a joint strategy σall determine a unique
path w0d0w1d1w2d2 . . . as follows: w0 = w, and for each j ≥ 0, dj
is the decision associated to the track w0 . . .wj , i.e., for each agent i,
dj(i) = σi(w0 . . .wj), and wj+1 = τ(wj , dj). We use out(w,σall)
to denote this path.

We begin with the syntax of JAADL. We use ϕ to denote state for-
mulas, ψ path formulas, φ propositional formulas, and ρ path expres-
sions, which are regular expressions over propositional formulas and
tests of path formulas. Other than atomic propositions from AP, there
are atomic propositions of the form ai where a ∈ AC and i ∈ AG,
meaning agent i does action a. We use ⊺ to denote true.

Definition 8 JAADL formulas are built as follows:

ϕ ∶∶= p ∣ ¬ϕ ∣ ϕ1 ∧ϕ2 ∣ ⟨⟨A⟩⟩ψ ∣ (A)ψϕ ∣ (A)
∞
ψ ϕ

ψ ∶∶= ϕ ∣ ¬ψ ∣ ψ1 ∧ψ2 ∣ ⟨ρ⟩ψ
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ρ ∶∶= φ ∣ ψ? ∣ ρ1 + ρ2 ∣ ρ1;ρ2 ∣ ρ
∗

φ ∶∶= p ∣ ai ∣ ¬φ ∣ φ1 ∧ φ2

where p ∈ AP , and A ⊆ AG.

Intuitively, ⟨ρ⟩ψ means that from the current state in the path there
exists an execution satisfying the path expression ρ such that its last
state satisfies ψ. We use [ρ]ψ as abbreviation for ¬⟨ρ⟩¬ψ.

Intuitively, ⟨⟨A⟩⟩ψ means group A has a strategy to achieve ψ.
We usually write ⟨⟨i1, . . . , ik⟩⟩ instead of ⟨⟨{i1, . . . , ik}⟩⟩ where
i1, . . . , ik ∈ AG. For a special case, ⟨⟨∅⟩⟩ψ means ψ holds no matter
how the agents play. (A)ψϕ (resp., (A)∞ψ ϕ) means ϕ holds after one
step (resp., iterated) elimination of dominated strategies w.r.t. group
A and the goal ψ. We use (A)2ψϕ to denote (A)ψ(A)ψϕ, and simi-
larly for (A)kψϕ, where k ∈ N.

We use ((A))kψ to abbreviate for (A)kψ⟨⟨∅⟩⟩ψ. When k = 1, we
simply write ((A))ψ. Intuitively, ((A))kψ means after k-round elim-
ination of dominated strategies, ψ holds no matter how the agents
play, and we say group A has stage k joint ability to achieve ψ. We
use ((A))∞ψ to abbreviate for (A)∞ψ (⟨⟨A⟩⟩ψ ∧ ⟨⟨∅⟩⟩ψ). Here we
need ⟨⟨A⟩⟩ψ because when the strategy space is infinite, it might be-
come empty after iterative EDS, as illustrated by Example 3 from
[17]. Intuitively, ((A))∞ψ means group A has joint ability to ensure
ψ, i.e., after iterative EDS, ψ holds no matter how the agents play.

We now provide the semantics of JAADL. We begin with the se-
mantics of propositional formulas, which are interpreted over state-
decision pairs.

Definition 9 Given a CGS G, a state w, and a decision d at w, we
interpret propositional formulas (we omit the cases of ¬ and ∧) in-
ductively:

● w,d ⊧ p if p ∈ L(w);
● w,d ⊧ ai if d(i) = a;

When interpreting state formulas w.r.t. a strategy space, we make use
of two operators on strategy spaces: RA,ψ,w(s) (resp., R∞A,ψ,w(s))
means the reduction of s via one step (resp., iterated) elimination of
dominated strategies.

Definition 10 (JAADL Semantics) Given a CGS G, a state w, a
strategy space s, and a path λ, we interpret state formulas and path
formulas (we omit the cases of ¬ and ∧) and define the operators
RA,ψ,w(s) and R∞A,ψ,w(s) inductively:

● w, s ⊧ p if p ∈ L(w).
● w, s ⊧ ⟨⟨A⟩⟩ψ if there exists a group strategy σA ∈ sA such that

for all strategies σ−A ∈ s−A, we have out(w, (σA, σ−A)), s ⊧ ψ.
● w, s ⊧ (A)ψϕ if w,RA,ψ,w(s) ⊧ ϕ.
● w, s ⊧ (A)∞ψ ϕ if w,R∞A,ψ,w(s) ⊧ ϕ.
● λ, s ⊧ ϕ if w0, s ⊧ ϕ, where λ = w0d0w1 . . ..
● λ, s ⊧ ⟨φ⟩ψ if w0, d0 ⊧ φ and λ′, s ⊧ ψ, where λ = w0d0w1 . . .

and λ′ = w1d1 . . ..
● λ, s ⊧ ⟨ψ1?⟩ψ2 if λ, s ⊧ ψ1 and λ, s ⊧ ψ2.
● λ, s ⊧ ⟨ρ1 + ρ2⟩ψ if λ, s ⊧ ⟨ρ1⟩ψ or λ, s ⊧ ⟨ρ2⟩ψ.
● λ, s ⊧ ⟨ρ1;ρ2⟩ψ if λ, s ⊧ ⟨ρ1⟩⟨ρ2⟩ψ.
● λ, s ⊧ ⟨ρ0⟩ψ if λ, s ⊧ ψ.
● λ, s ⊧ ⟨ρk+1⟩ψ if λ, s ⊧ ⟨ρk;ρ⟩ψ for k ∈ N.
● λ, s ⊧ ⟨ρ∗⟩ψ if there exists k ∈ N such that λ, s ⊧ ⟨ρk⟩ψ.

For σi ∈ si, we define the set of strategies of −i that work
with σi to ensure ψ w.r.t. state w and strategy space s as fol-
lows: Mψ,w,s(σi) = {σ−i ∈ s−i ∣ out(w, (σi, σ−i)), s ⊧ ψ}. For

σi, σ
′
i ∈ si, we write σi ≥ψ,w,s σ′i if Mψ,w,s(σi) ⊇ Mψ,w,s(σ

′
i),

and we say σi weakly dominates σ′i; we write σi >ψ,w,s σ′i if
Mψ,w,s(σi) ⊃Mψ,w,s(σ

′
i), and we say σi dominates σ′i.

For a strategy space s, we define the reduction of s w.r.t. group
A, goal ψ and state w: RA,ψ,w(s) = s′ s.t. if i ∉ A, s′i = si; oth-
erwise, s′i = {σi ∈ si ∣ ¬∃σ

′
i ∈ si. σ

′
i >ψ,w,s σi}. For k ≥ 2,

we define RkA,ψ,w(s) = RA,ψ,w(R
k−1
A,ψ,w(s)). Finally, we define

the iterative reduction of s: R∞A,ψ,w(s) = s′ s.t. for i ∈ AG,
s′i = ⋂

∞
k=0R

k
A,ψ,w(s)i.

Note that the comparison of σi and σ′i at w is based on facts about
w. Since we consider perfect information games, each agent in A is
able to compute the k round elimination of dominated strategies for
herself and each other agent in A.

Definition 11 A state formula ϕ is valid if for all CGS G, we have
G ⊧ ϕ, meaning w0, fs(w0) ⊧ ϕ, where w0 is the initial state of G.

Recall fs(w) is the full strategy space starting from state w.
Example 1 cont’d. We have G ⊧ ((1,2))⟨⊺⟩pos1, meaning that
agents 1 and 2 have stage-1 joint ability to bring the carriage to pos1
in the state. Since the goal ⟨⊺⟩pos1 only concerns the next state, at
q0, each agent has two strategies: push and wait. The first table of
Figure 3 shows whether each joint strategy can achieve the goal. Thus
for agent 1, push dominates wait, which is eliminated; for agent 2,
wait dominates push, which is eliminated. The only remaining joint
strategy achieves the goal. Hence there is stage-1 joint ability.

We now introduce some terminology about strategies, which are
used in analyzing properties of JAADL.

Definition 12 We say σ is a winning strategy for i w.r.t. ψ,w, s if
Mψ,w,s(σ) is s−i. We say σ is a punishment strategy for i w.r.t.
ψ,w, s if Mψ,w,s(σ) = ∅. We say σ is an optimal strategy for i
w.r.t. ψ,w, s, if for any σ′ ∈ si, σ ≥ψ,w,s σ′.

Thus σ is a winning strategy for i if σ works with any strategy of
−i. The formula ⟨⟨i⟩⟩ψ represents that i has a winning strategy w.r.t.
goal ψ. Similarly, σ is a punishment strategy for i if σ works with no
strategy of −i. The formula ⟨⟨i⟩⟩¬ψ expresses that i has a punishment
strategy w.r.t. goal ψ.

Definition 13 We say that two strategies σ and σ′ are equivalent
w.r.t. ψ,w, s if Mψ,w,s(σ) =Mψ,w,s(σ

′). We say that two strategies
σ and σ′ are incomparable w.r.t. ψ,w, s if Mψ,w,s(σ) ⊈Mψ,w,s(σ

′)
and Mψ,w,s(σ

′) ⊈Mψ,w,s(σ).

Definition 14 Given a CGS G, a state w, a strategy space s, and a
goal ψ, the payoff matrix for ψ, denoted Cψ is a 0-1 matrix defined
as follows: for each σall ∈ s, Cψ(σall) = 1 iff out(w,σall), s ⊧ ψ.

Intuitively, in the 0-1 matrix, the payoff for a joint strategy is 1 if it
achieves the goal, and 0 otherwise.

3 Syntax and Semantics of EJAADL

In this section, we propose EJAADL, an epistemic extension of
JAADL, for imperfect information games where agents may have
incomplete knowledge or even false beliefs about the world. Like
in Ghaderi et al.’s work, elimination of dominated strategies is now
based on beliefs about the world, rather than facts about the world as
in JAADL.

First, we introduce an epistemic extension of concurrent game
structures to model imperfect information games where agents may
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Figure 2. Strategy comparison according to beliefs

have false beliefs. Note that unlike in usual epistemic extensions, we
require the accessibility relations to be KD45 relations rather than
equivalence relations.

Definition 15 An epistemic concurrent game structure (ECGS) is a
CGS G = ⟨W,L,P, τ,w0⟩ extended with →, where for each agent i,
→i is a binary relation on W that is serial, Euclidean, and transitive.

Example 2 (Robots and Carriage with imperfect information)

Figure 1 shows an ECGS where the dotted lines represent the
accessibility relations. Intuitively, agent 1 mistakes q0 as q2, and
agent 2 mistakes q0 as q1; but both agents have complete information
about q1 and q2. It is easy to check that the accessibility relations are
serial, Euclidean, and transitive.

The →i relation on states can be extended to histories:

Definition 16 Let h = w0d0w1d1...wk and h′ = w′0d
′
0w
′
1d
′
1...w

′
k be

tracks of the same length. We write h →i h
′, if for each j ≤ k, we

have wj →i w
′
j and dj = d′j .

It is easy to show that the→i relation on histories is Euclidean and
transitive, but not serial. For the Robots and Carriage example, we
have q0(w,w)q0 →1 q2(w,w)q2.

Strategies are now required to be uniform in the sense that they
select the same action in all accessible histories.

Definition 17 A strategy σ for agent i is uniform if when h1 →i h2,
then σ(h1) = σ(h2). We let Ustri(w) denote the set of all uniform
strategies for agent i starting from w. A memoryless strategy σ for
agent i is uniform if when w1 →i w2, then σ(w1) = σ(w2).

Since the accessibility relations on states or histories are Euclidean
and transitive, the above notions of uniform strategies are well-
defined.

Since elimination of dominated strategies is now based on beliefs,
we need to extend the concept of strategy space from JAADL. In
JAADL, in order to decide if group A has joint ability to achieve ψ
at state w, each agent in A first considers all her possible strategies
from w, and then in an iterative manner, each agent in A compares
the strategies she keeps at w and eliminates those dominated ones
given what strategies the other agents keep. Thus in JAADL, for a
state w, a strategy space specifies the set of possible strategies for
each agent. However, in EJAADL, at a state w, each agent in A com-
pares the strategies she keeps at w and eliminates those she believes
are dominated given her beliefs about what strategies the other agents
keep. So as shown in Figure 2, an agent i in A has to compare two
strategies σi and σ′i she keeps at w, i.e., consider each state w′ ac-
cessible from w, check if σ′i ≥ σi at w′, i.e., for each group strategy
σ−i the other agents keep at w′, check if whenever σi works with σ−i
to achieve the goal at w′, so does σ′i. Thus, in EJAADL, a strategy
space specifies the set of possible strategies for each agent and each
state.

Definition 18 A uniform strategy space s is a function mapping each
agent i and state w to a subset of Ustri(w). The full uniform strategy
space fus maps each (i,w) to Ustri(w).

Let s be a uniform strategy space. Let i ∈ AG, A ⊆ AG, and w a
state. We use si,w to denote s(i,w). We use sA,w to denote the set of
σA s.t. for each i ∈ A, σi ∈ si,w. We will simply write sw for sAG,w.

We now present the syntax and semantics of EJAADL.

Definition 19 (EJAADL Syntax) EJAADL adds to JAADL two be-
lief constructors ϕ ∶∶= Biϕ, and ψ ∶∶= Biψ, where i ∈ AG, ϕ is a state
formula, and ψ is a path formula.

Intuitively, Biϕ (resp., Biψ) means agent i believes ϕ at a state
(resp., path), We let B̂i stand for the dual operator of Bi, i.e., B̂iφ
stand for ¬Bi¬φ, where φ is a state or path formula. Intuitively, B̂iφ
means agent i believes it is possible that φ.

Definition 20 (EJAADL Semantics) Given an ECGS G, a state w,
a uniform strategy space s, and a joint uniform strategy σall ∈ sw,
we interpret state formulas and path formulas (we omit the cases of ¬
and ∧) and define the operators RA,ψ(s) and R∞A,ψ(s) inductively:

● w, s ⊧ p if p ∈ L(w).
● w, s ⊧ ⟨⟨A⟩⟩ψ if there exists a uniform group strategy σA ∈

sA,w such that for all uniform strategies σ−A ∈ s−A,w, we have
w, (σA, σ−A), s ⊧ ψ.

● w, s ⊧ (A)ψϕ if w,RA,ψ(s) ⊧ ϕ.
● w, s ⊧ (A)∞ψ ϕ if w,R∞A,ψ(s) ⊧ ϕ.
● w, s ⊧ Biϕ if for all w′ s.t. w →i w′, w′, s ⊧ ϕ.
● w,σall, s ⊧ Biψ if for all w′ s.t. w →i w

′, for all σ′all ∈ sw′ s.t.
σi = σ′i, w

′, σ′all, s ⊧ ψ.
● for the other cases of path formulas, the interpretation is similar as

that in JAADL.

For a uniform strategy space s, we define the reduction of s w.r.t.
group A and goal ψ as follows: RA,ψ(s) = s′ s.t. for any state w, if
i ∉ A, then s′i,w = si,w; otherwise,

s′i,w = {σi ∈ si,w ∣ ¬∃σ
′
i ∈ si,w.Bi(σ

′
i >ψ,w,s σi)},

where Bi(σ
′
i >ψ,w,s σi) represents

[∀w′ s.t. w →i w
′.σ′i ≥ψ,w′,s σi]∧

[∃w′ s.t. w →i w
′ and σ′i >ψ,w′,s σi],

here σ′i ≥ψ,w′,s σi means

∀σ−i ∈ s−i,w′ , if w′, (σi, σ−i), s ⊧ ψ, then w′, (σ′i, σ−i), s ⊧ ψ.

R∞A,ψ(s) is similarly defined as in JAADL.

Intuitively, Bi(σ′i >ψ,w,s σi) means agent i believes that σ′i domi-
nates σi at state w, i.e., for all w′ accessible from w by i, σ′i weakly
dominates σi at w′, and there exists a w′ accessible from w by i s.t.
σ′i dominates σi at w′.

The interpretations of Biϕ and Biψ deserve some explanations.
Biϕ (resp., Biψ) is a state (resp., path) formula and it is evaluated
w.r.t. a state (resp., a state and a joint strategy σall). Here we assume
an agent does not know other agents’ strategies. So we are adopting
the uninformed semantics in a strategic context [18]. We will give an
example of Biψ formulas in Example 2.

Below is an easy property of RA,ψ(s).
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q0

1\2 p w

p × ✓
w × ×

q1

1\2 p w

p ✓ ×
w × ✓

q2

1\2 p w

p × ×
w ✓ ×

Figure 3. Payoff matrices for Robots and Carriage

Round 1
q0, q2,1: w

q1,1 ∶ p,w
q0, q1,2 ∶ p,w

q2,2 ∶ p

Round 2
no change

�⇒ no joint abilityq0,1 ∶ w
q0,2 ∶ p,w

Figure 4. Iterative EDS for Robots and Carriage

Proposition 1 Let i ∈ AG, w →i w′, and si,w = si,w′ . Let s′ =
RA,ψ(s). Then s′i,w = s′i,w′ .

Proof: Since→i is Euclidean and transitive, for any w′′, w →i w′′ iff
w′ →i w

′′. By the definition of RA,ψ(s), s′i,w = s′i,w′ .

Definition 21 We say a state formula ϕ is valid if for all ECGS G,
we have G ⊧ ϕ, meaning w0, fus ⊧ ϕ, where w0 is the initial state ,
and fus is the full uniform strategy space.

Example 2 cont’d. We consider whether G satisfies the following
three formulas:

1. B1⟨⟨1,2⟩⟩⟨⊺⟩pos1, meaning that agent 1 believes that agents 1 and
2 have a strategy to bring the carriage to pos1 in the next state;

2. ⟨⟨1,2⟩⟩B̂1⟨⊺⟩pos1, meaning that agents 1 and 2 have a strategy to
ensure that agent 1 believes that the carriage is possibly in pos1 in
the next state;

3. ((1,2))⟨⊺⟩pos1, which is the formula we have considered for Ex-
ample 1 and does not hold there.

Since both goals ⟨⊺⟩pos1 and B̂1⟨⊺⟩pos1 only concern the next state,
at each state, each agent has two strategies: push and wait. Figure 3
shows at each state, whether each joint strategy can achieve the goal
⟨⊺⟩pos1.

Since q0 →1 q2 and q2, fus ⊧ ⟨⟨1,2⟩⟩⟨⊺⟩pos1, we get q0, fus ⊧
B1⟨⟨1,2⟩⟩⟨⊺⟩pos1.

To check if q0, fus ⊧ ⟨⟨1,2⟩⟩B̂1⟨⊺⟩pos1, we consider if
q0, (w,w), fus ⊧ B̂1⟨⊺⟩pos1, i.e., at q0, when both agents do w, does
1 believe it possible that ⟨⊺⟩pos1? Since agent 1 mistakes q0 as q2,
and believes it possible that 2 does p, we consider if q2, (w,p), fus ⊧
⟨⊺⟩pos1, which holds. Thus q0, fus ⊧ ⟨⟨1,2⟩⟩B̂1⟨⊺⟩pos1.

Figure 4 shows the procedure of iterative EDS for coalition {1,2}
and goal ⟨⊺⟩pos1. For example, Figure 3 shows at q2 for agent 1,
w dominates p. Thus at q0 and q2, agent 1 believes w dominates p,
so p is eliminated. Since agent 1 has complete information about q1,
and at q1, for agent 1, p and w are incomparable, thus no strategy is
eliminated. We now move to Round 2. At q1, 1 compares her two kept
strategies p and w. Since agent 1 has complete information about q1,
and at q1, 2 keeps both p and w, so for agent 1, p and w remains
incomparable, thus no strategy is eliminated. It turns out at round 2,
no strategy can be eliminated.

Now at q0, 1 keeps p, and 2 keeps p and w. By the first table of
Figure 3, q0, fus ⊭ ((1,2))⟨⊺⟩pos1. This contrasts to q0, fs(q0) ⊧

Figure 5. The initial beliefs of agents for Examples 3 and 4

Figure 6. Goals for Examples 3 (left) and 4 (right)

((1,2))⟨⊺⟩pos1 in JAADL in Example 1. The reason is that at q0,
agent 1’s beliefs about domination of strategies do not match the
truth, neither do agent 2’s beliefs.

4 More Examples

In this section, we illustrate the syntax and semantics of EJAADL
with two examples from [11]. Our presentation of the examples dif-
fers from theirs in that they give incomplete specifications of agents’
beliefs, while we give complete specifications in terms of Kripke
models so that we can give the complete processes of iterative elimi-
nation of dominated strategies. Moreover, we consider not only joint
abilities, but also beliefs about joint abilities.

In both examples, there are two agents 1 and 2, a single atom F .
Agent 1 acts first and then agent 2 acts. Each agent can do one of
two actions: a and a′. Both actions are public and can always be
executed. The atom F is unaffected by any action. The goals concern
what agent 1 does first and then what agent 2 does.

Example 3 (Example 2 from [11]) The initial beliefs of the agents
are as shown in Figure 5. For example, 1 correctly believes that F
is true, 2 does not believe that F is true, neither does 2 believe that
F is false, but 2 believes that 1 believes that F is true or 1 believes
that F is false. The goal is: if F is true, 1 does a and 2 doesn’t do a,
otherwise 1 does not do a and 2 does a (see Figure 6). This goal can
be represented with the following EJAADL formula

ψ1 ∶ F ∧ [¬a1;⊺]� ∧ [⊺;a2]� ∨ ¬F ∧ [a1;⊺]� ∧ [⊺;¬a2]�.

Intuitively, the two agents can achieve the goal. Since 2 believes that
1 believes that F is true or 1 believes that F is false, 2 will do the
opposite of the action of 1, which serves as a signal to 2. Since 1
believes that F is true, 1 will do a. Thus they achieve the goal.

We now give formal analysis of this. Given the goal, at each of the
initial states, agent 1 has two strategies: a and a′; and then at each of
the following states, agent 2 has 4 strategies: (a, a), (a, a′), (a′, a),
and (a′, a′), where (a1, a2) means after seeing a do a1, and after
seeing a′ do a2.

Figure 7 shows at each initial state, whether each joint strategy can
achieve the goal. Figure 8 shows the procedure of iterative EDS. At
round 1, for example, at v0, u0, and x0, for agent 2, the accessible
states are u0 and x0, (a, a′) dominates all other strategies, which are
eliminated. Moving to Round 2, at w0, 2 keeps (a′, a) and (a′, a′);
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1\2 (a, a) (a, a′) (a′, a) (a′, a′)

u0, v0,w0 a × × ✓ ✓
(F ) a′ × × × ×

x0 a × × × ×
(¬F ) a′ ✓ × ✓ ×

Figure 7. Payoff matrices for Example 3

Round 1
w0, v0,1 ∶ a

u0,1 ∶ a
x0,1 ∶ a′

w0,2 ∶ (a′, a), (a′, a′)
v0, u0, x0,2 ∶ (a′, a)

Figure 8. Iterative EDS for Example 3

since 2 has complete information at w0 and 1 keeps a, (a′, a) and
(a′, a′) are equivalent, and are both kept. Thus there is no change at
Round 2. By Figure 7, joint ability holds at all states. Thus

v0, fus ⊧ ((1,2))ψ1 ∧B1((1,2))ψ1 ∧B2((1,2))ψ1.

Example 4 (Example 3 from [11]) The initial beliefs of the agents
are the same as in Example 3. The goal is different now: if F is true,
1 does anything and 2 doesn’t do a, otherwise 1 does anything and 2
does a (see Figure 6). This goal can be represented with the following
EJAADL formula

ψ2 ∶ F ∧ [⊺;a2]� ∨ ¬F ∧ [⊺;¬a2]�.

In a sense, the goal ψ2 is easier to achieve than the goal ψ1 in Exam-
ple 3, since it does not require any specific action from 1. Yet, in this
case, there is no joint ability to achieve the goal. Intuitively, 1 can not
help 2 figure out what to do.

Figure 9 shows at each initial state, whether each joint strategy can
achieve the goal. Figure 10 shows the procedure of iterative EDS.
The only change from Round 1 to 2 is that at u0, 1 eliminates a.
This is because: the only accessible state from u0 is itself; at u0, 2
only keeps (a, a′) and (a′, a′); now a′ dominates a. The only change
from Round 2 to 3 is that at v0, u0, and x0, 2 eliminates (a′, a′). This
is because: the accessible states from any of these states are u0 and
x0 and now at u0, 1 only keeps a′; now (a, a′) dominates (a′, a′).
Going to Round 4, at w0 and v0, 1 keeps a and a′; the only accessible
world is w0, at w0, 2 only keeps (a′, a′), so a and a′ are equivalent,
and are both kept. Similarly, at x0, 1 keeps both a and a′. Thus there
is no change at Round 4. By Figure 9, joint ability holds at all states
except v0. Thus

v0, fus ⊧ ¬((1,2))ψ2 ∧B1((1,2))ψ2 ∧B2((1,2))ψ2.

5 Properties of EJAADL

In this section, we analyze basic properties of EJAADL, and adapt
the sufficient/necessary conditions for joint abilities from JAADL.

The first property shows that if agent i has a strategy to ensure she
believes ψ, then any coalition including herself has joint ability to
achieve ψ.

1\2 (a, a) (a, a′) (a′, a) (a′, a′)

u0, v0,w0 a × × ✓ ✓
(F ) a′ × ✓ × ✓

x0 a ✓ ✓ × ×
(¬F ) a′ ✓ ✓ × ×

Figure 9. Payoff matrices for Example 4

Round 1
w0, v0,1 ∶ a, a′

u0,1 ∶ a, a′

x0,1 ∶ a, a′

w0,2 ∶ (a′, a′)

v0, u0, x0,2 ∶
(a, a′),
(a′, a′)

Round 2
w0, v0,1 ∶ a, a′

u0,1 ∶ a′

x0,1 ∶ a, a′

w0,2 ∶ (a′, a′)

v0, u0, x0,2 ∶
(a, a′),
(a′, a′)

Round 3
w0, v0,1 ∶ a, a′

u0,1 ∶ a′

x0,1 ∶ a, a′

w0,2 ∶ (a′, a′)
v0, u0, x0,2 ∶ (a, a′)

Figure 10. Iterative EDS for Example 4

Proposition 2 ⟨⟨i⟩⟩Biψ → ((A))ψ, i ∈ A, is valid.

Proof: Let G be an ECGS, w its initial state. Let w, fus ⊧ ⟨⟨i⟩⟩Biψ.
Then there is a strategy σi ∈ fusi,w s.t. for all σ−i ∈ fus−i,w,
w, (σi, σ−i), fus ⊧ Biψ. By the semantics of Biψ, for all w′ s.t.
w →i w

′, for all σ′−i ∈ fus−i,w′ , w′, (σi, σ′−i), fus ⊧ ψ. So σi is a win-
ning strategy at w′. So σi is kept at w. Now suppose σ′i is also kept
at w. Then we have for any w′ s.t. w →i w′, σ′i is a winning strategy
at w′. So σ′i is also a winning strategy at w. So w, fus ⊧ ((A))ψ.

It is easy to prove the second property, which states that in order
to have joint abilities, any agent in the coalition cannot believe a
punishment strategy to be a dominating strategy.

Proposition 3 ((A))ψ → (A)ψ⋀i∈A ¬⟨⟨i⟩⟩¬ψ is valid.

Now we show that two sufficient conditions for joint abilities in
JAADL can be modified to hold in EJAADL. Essentially, we add
the condition that a strategy is a winning/optimal strategy iff it is be-
lieved to be a winning/optimal strategy. The idea of proof is similar
to that of Proposition 2.

Theorem 1 If at stage k, agent i has a winning strategy and a strat-
egy is a winning strategy iff i believes it to be a winning strategy, then
there is joint ability at stage k + 1.

Proof: Suppose i has a stage k winning strategy σi. Then i believes
it to be a winning strategy, so σi remains at stage k + 1. For every
strategy σ′i which remains at stage k + 1, i must believe it to be a
winning strategy at stage k, otherwise, i believes σi dominates σ′i,
hence it is already eliminated. So σ′i is a stage k winning strategy.
Thus there is joint ability at stage k + 1.

Theorem 2 If ⟨⟨A⟩⟩ψ holds, and at stage k, each agent in A has
an optimal strategy and a strategy is optimal iff it is believed to be
optimal, then there is joint ability at stage k + 1.

Proof: Suppose ⟨⟨A⟩⟩ψ holds, and at stage k, each agent in A has
an optimal strategy. Then for each joint strategy σall where for each
a ∈ A, σa is an optimal strategy, σall achieves ψ. Each non-optimal
strategy is believed to be non-optimal and will be deleted at the next
stage. Hence, there is joint ability at stage k + 1.

Finally, the necessary condition for joint abilities in JAADL can
be modified to hold in EJAADL.
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Theorem 3 Suppose at some stage, no agent in A has a winning
strategy, and any two strategies are belief-wise either equivalent or
incomparable, then there is no joint ability.

Proof: When any two strategies are belief-wise either equivalent or
incomparable, no elimination is possible. Since no agent in A has a
winning strategy, there is no joint ability.

6 Model Checking Memoryless EJAADL

In this section, we first adapt the algorithm to model-check memory-
less JAADL to EJAADL, and show that model checking memoryless
EJAADL is in EXPTIME. Then we give a PSPACE algorithm for
model-checking the memoryless version of the fragment of EJAADL
without the iterated elimination operator.

6.1 Memoryless EJAADL

We first review the main idea of model checking memoryless JAADL
from [17]. Recall JAADL path formulas are LDL formulas over
JAADL state formulas. The algorithm essentially follows the seman-
tic definition, and is a labeling algorithm which returns the set of all
states satisfying a given state formula. When checking a path formula
ψ w.r.t. a state w and a joint strategy σall, we first label each maximal
state sub-formula ϕ of ψ, introduce a fresh atom pϕ to represent ϕ,
and so get a pure LDL formula ψldl. The infinite path out(w,σall)
can be viewed as a finite Kripke model with initial state w, denoted
as Kripke(w,σall). To verify whether Kripke(w,σall) ⊧ldl ψldl,
we call the LDL model-checking algorithm [10], which is polyno-
mial time in the model size and exponential time in the formula size.

The main idea of adapting the model-checking algorithm from
JAADL to EJAADL is as follows. In EJAADL, there is an additional
path formula constructor Biψ. To handle this constructor, we also
give a labeling algorithm for path formulas: given a path formula ψ,
a state w and a joint strategy σall, the algorithm returns the set of
states satisfying ψ under σall. We label Biψ formulas separately;
when labeling a non-Biψ path formula, we also introduce a fresh
atom for each maximal Biψ sub-formula.

We now formally state the model checking problem for memory-
less EJAADL: Given an ECGS G, and an EJAADL formula ϕ, de-
cide if w0, fmus ⊧ ϕ, where w0 is the initial state of G, and fmus
denotes the full memoryless uniform strategy space of G. We give the
whole algorithm where we use the image function: img(w,→i) =
{w′ ∣ w →i w

′}. Sub(ϕ) denotes the subformulas of ϕ. To compute
StrS∞(A,ψ,w, s), we repeat s ← StrS(A,ψ,w, s) until there is
no change to s.

Theorem 4 Model-checking memoryless EJAADL can be done in
time exponential in the model size and formula size.

Proof: Let n be the model size and l the formula size. Then the num-
ber of different joint memoryless uniform strategies is O(2n). The
computationally demanding parts of the algorithm are the evaluation
of the ⟨⟨A⟩⟩ψ and Biψ operators, the calculation of the reduction
and iterative reduction of a strategy space, and calling LDL model-
checking. Each of these parts takes time exponential in either the
model size or the formula size. Thus, by induction on the size of the
formula, the whole algorithm takes time O(2nl).

Algorithm 1: Labeling State Formulas

1 function Label(G, s, ϕ)
2 foreach ϕ′ in Sub(ϕ) do

3 case ϕ′ = p do [ϕ′]s ← {w ∈W ∣ p ∈ L(w)};
4 case ϕ′ = ¬ϕ do [ϕ′]s ←W − [ϕ]s;
5 case ϕ′ = ϕ1 ∧ϕ2 do [ϕ′]s ← [ϕ1]s ∩ [ϕ2]s;
6 case ϕ′ = ⟨⟨A⟩⟩ψ do

7 [ϕ′]s ← {w ∣ ∃σA ∈ sA,w∀σ−A ∈ s−A,w.
8 w ∈ PathL(G, (σA, σ−A), s, ψ)};
9 case ϕ′ = (A)ψϕ1 do [ϕ′]s ← [ϕ1]StrS(A,ψ,s);

10 case ϕ′ = (A)∞ψ ϕ1 do [ϕ′]s ← [ϕ1]StrS∞(A,ψ,s);
11 case ϕ′ = Biϕ1 do [ϕ′]s ← {w ∣ img(w,→i) ⊆ [ϕ1]s};

12 return [ϕ]s

Algorithm 2: Labeling Path Formulas

1 function PathL(G, σall, s, ψ)
2 if ψ = Biψ

′ then

3 return {w ∣ ∀w′ ∈ img(w,→i)∀σ
′
−i ∈ s−i,w′ .

4 w′ ∈ PathL(G, (σi, σ
′
−i), s, ψ

′)}

5 Max(ψ)← the set of maximal state or Biψ′ subformulas in ψ;
6 foreach φ ∈ Max(ψ) do

7 define a fresh atom pφ;
8 let pφ ∈ L(w) iff w ∈ Label(G, s, φ) or

w ∈ PathL(G, σall, s, φ);

9 replace each occurrence in ψ of φ ∈ Max(ψ) by pφ to get a
pure LDL formula ψldl;

10 return {w ∈W ∣Kripke(w,σall) ⊧ldl ψldl}

6.2 Memoryless Infinity-free EJAADL

We are interested in exploring fragments of EJAADL with lower
computational complexity. Note that when joint abilities hold, we of-
ten have low-order joint abilities, i.e., after a few round of elimination
of dominated strategies, any joint strategy of the coalition achieves
the goal. This motivates us to consider the infinity-free fragment of
EJAADL, i.e., the fragment without the iterated elimination operator
(A)∞ψ . We denote this fragment by EJAADL−.

In the following, we give a PSPACE algorithm for model-checking
memoryless EJAADL−. The main idea of the algorithm is as fol-
lows: Let R(fmus,⊕1⋯⊕k) denote the strategy space obtained from

Algorithm 3: Calculating Reduced Strategy Space

1 function StrS(A,ψ, s)
2 foreach w ∈W do

3 foreach i ∈ A do

4 foreach σi ∈ si,w and w′ ∈ img(w,→i) do

5 compute Mψ,w′,s(σi), i.e.,
{σ−i ∈ s−i,w′ ∣ w

′ ∈ PathL(G, (σi, σ−i), s, ψ)}

6 foreach σi, σ
′
i ∈ si,w do

7 if for all w′ ∈ img(w,→i),
Mψ,w′,s(σi) ⊇Mψ,w′,s(σ

′
i) and there is

w′ ∈ img(w,→i) s.t.
Mψ,w′,s(σi) ⊃Mψ,w′,s(σ

′
i) then

8 si,w ← si,w − {σ
′
i};

9 return s
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fmus by applying a sequence ⊕1⋯⊕k of elimination operators of
the form (A)ψ . Instead of using exponential space to explicitly store
R(fmus,⊕1⋯⊕k), we just store ⊕1⋯⊕k. When we need a strategy
from R(fmus,⊕1⋯⊕k), we enumerate strategies σi from fmus in
lexicographical order, and check if it is in R(fmus,⊕1⋯⊕k), which
is done recursively by checking if it is in R(fmus,⊕1⋯⊕k−1) and
retained after applying ⊕k. Let σA be a group uniform strategy of A.
We use NextU(σA) to represent the next group uniform strategy of
A in lexicographical order.

There are three functions. Function MLabel(G,⊕1⋯⊕k, ϕ) re-
turns the set of states satisfying ϕ w.r.t. the strategy space
R(fmus,⊕1⋯⊕k). Given an ECGS G, and an EJAADL− formula ϕ,
to decide if w0, fmus ⊧ ϕ, we check if w0 ∈ MLabel(G, nil, ϕ).
Function MPathL(G, σall,⊕1⋯⊕k, ψ) returns the set of states
where the unique path determined by σall satisfies ψ w.r.t.
R(fmus,⊕1⋯⊕k). Function Keep(G,w, σi,⊕1⋯⊕k) determines
if σi ∈ si,w where s = R(fmus,⊕1⋯⊕k). Finally, we use
Keep(G,w, σA,⊕1⋯⊕k) for ⋀i∈AKeep(G,w, σi,⊕1⋯⊕k).

Algorithm 4: Labeling EJAADL− State Formulas

1 function MLabel(G,⊕1⋯⊕k, ϕ),
2 where ϕ is in the scope of ⊕1⋯⊕k
3 foreach ϕ′ in Sub(ϕ) do

4 case ϕ′ = p do [ϕ′](⊕1⋯⊕k) ← {w ∈W ∣ p ∈ L(w)} ;
5 case ϕ′ = ¬ϕ do [ϕ′](⊕1⋯⊕k) ←W − [ϕ](⊕1⋯⊕k) ;
6 case ϕ′ = ϕ1 ∧ϕ2 do

7 [ϕ′](⊕1⋯⊕k) ← [ϕ1](⊕1⋯⊕k) ∩ [ϕ2](⊕1⋯⊕k);

8 case ϕ′ = ⟨⟨A⟩⟩ψ do

9 [ϕ′](⊕1⋯⊕k) ← ∅;
10 foreach w ∈W do

11 if there is σA enumerated by NextU s.t.
Keep(G,w, σA,⊕1⋯⊕k) = true and for all
σ−A enumerated by NextU s.t.
Keep(G,w, σ−A,⊕1⋯⊕k) = true, we have
w ∈MPathL(G, (σA, σ−A),⊕1⋯⊕k, ψ) then

12 [ϕ′](⊕1⋯⊕k) ← [ϕ′](⊕1⋯⊕k) ∪ {w};

13 case ϕ′ = (A)ψϕ1 do

14 [ϕ′](⊕1⋯⊕k) ← [ϕ1](⊕1⋯⊕k (A)ψ);

15 case ϕ′ = Biϕ1 do

16 [ϕ′](⊕1⋯⊕k) ←
17 {w ∣ img(w,→i) ⊆ [ϕ1](⊕1⋯⊕k)};

18 return [ϕ](⊕1⋯⊕k)

Theorem 5 Model-checking memoryless infinity-free EJAADL can
be done in polynomial space in both the model size and formula size.

Proof: A single MLabel(G,⊕1⋯⊕k, ϕ) function call (excluding re-
cursions) requires polynomial space w.r.t. the model size and formula
size to maintain its parameters, a group strategy, and state space. Sim-
ilarly, single function calls about MPathL(G, σall,⊕1⋯⊕k, ψ) and
Keep(G,w, σi,⊕1⋯⊕k) require polynomial space too. Here note
that the LDL model-checking algorithm takes polynomial space in
the model size and formula size. In each recursive call about any
one of the three functions, either formulas are decomposed, or oper-
ator sequences are reduced, the recursion depth cannot be more than
polynomial size about the size of model and formula. So the whole
procedure MLabel(G, nil, ϕ) requires only polynomial space.

Algorithm 5: Labeling EJAADL− Path Formulas

1 function MPathL(G, σall,⊕1⋯⊕k, ψ)
2 where ψ is in the scope of ⊕1⋯⊕k
3 if ψ = Biψ

′ then

4 S ← ∅;
5 foreach w ∈W do

6 if for w′ ∈ img(w,→i),
7 for all σ′−i enumerated by NextU s.t.

Keep(G,w′, σ′−i,⊕1⋯⊕k) = true, we have
w′ ∈MPathL(G, (σi, σ

′
−i),⊕1⋯⊕k, ψ

′) then

8 S ← S ∪ {w};

9 return S;

10 Max(ψ)← the set of maximal state or Biψ′ subformulas in ψ;
11 foreach φ ∈ Max(ψ) do

12 define a fresh atom pφ;
13 let pφ ∈ L(w) iff w ∈MLabel(G,⊕1⋯⊕k, φ) or

w ∈MPathL(G, σall,⊕1⋯⊕k, φ);

14 replace each occurrence in ψ of φ ∈ Max(ψ) by pφ to get a
pure LDL formula ψldl;

15 return {w ∈W ∣Kripke(w,σall) ⊧ldl ψldl}

Algorithm 6: Checking Strategy Retaining

1 function Keep(G,w, σi,⊕1⋯⊕k)
2 if k = 0 then return true;
3 let ⊕k = (A)ψ;
4 if i /∈ A then

5 return Keep(G,w, σi,⊕1⋯⊕k−1);

6 if Keep(G,w, σi,⊕1⋯⊕k−1) = false then

7 return false;

8 if there is σ′i enumerated by NextU s.t.
Keep(G,w, σ′i,⊕1⋯⊕k−1) = true then

9 if for all w′ ∈ img(w,→i) we have
w′ ∈MPathL(G, (σ′i, σ−i),⊕1⋯⊕k−1, ψ) when
w′ ∈MPathL(G, (σi, σ−i),⊕1⋯⊕k−1, ψ),

10 and, there exists w′ ∈ img(w,→i) s.t.
w′ ∈MPathL(G, (σ′i, σ−i),⊕1⋯⊕k−1, ψ) but
w′ /∈MPathL(G, (σi, σ−i),⊕1⋯⊕k−1, ψ) then

11 return false;

12 return true;

7 Conclusions

In this paper, by extending JAADL, we propose a modal logic
EJAADL for joint abilities for imperfect information games where
agents may have false beliefs about the world. The main idea is that
elimination of dominated strategies is now based on beliefs about the
world, rather than facts about the world. In comparison to Ghaderi et
al.’s work, which uses the expressive first-order language of situation
calculus to formalize joint abilities, our contributions are as follows:
we give a clean semantics for EJAADL, illustrate it with several ex-
amples by giving the complete processes of iterative elimination of
dominated strategies, and finally give an EXPTIME algorithm for
model-checking memoryless EJADDL and a PSPACE algorithm for
memoryless infinity-free EJAADL. In the future, we are interested
in extending EJAADL by specifying for each agent the set of agents
whose strategy she is informed of, following [3].
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