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Abstract. Recent researches have shown that the success of Trans-
formers comes from their macro-level framework and advanced com-
ponents, not just their self-attention (SA) mechanism. Comparable
results can be obtained by replacing SA with spatial pooling, shift-
ing, MLP, fourier transform and constant matrix, all of which have
spatial information encoding capability like SA. In light of these find-
ings, this work focuses on combining efficient spatial information en-
coding technology with superior macro architectures in Transform-
ers. We rethink spatial convolution to achieve more efficient encod-
ing of spatial features and dynamic modulation value representations
by convolutional modulation techniques. The large-kernel convolu-
tion and Hadamard product are utilizated in the proposed Multi-
orders Long-range convolutional modulation (MOLRCM) layer to
imitate the implementation of SA. Moreover, MOLRCM layer also
achieve long-range correlations and self-adaptation behavior, simi-
lar to SA, with linear complexity. On the other hand, we also ad-
dress the sub-optimality of vanilla feed-forward networks (FFN) by
introducing spatial awareness and locality, improving feature diver-
sity, and regulating information flow between layers in the proposed
Spatial Awareness Dynamic Feature Flow Modulation (SADFFM)
layer. Experiment results show that our proposed efficient infor-
mation modulation network (EIMN) performs better both quanti-
tatively and qualitatively. Codes and supplementary materials link:
https://github.com/liux520/EIMN.

1 Introduction

Single Image Super-Resolution (SISR), as a crucial low-level com-
puter vision task, aims to reconstruct high-resolution (HR) clear im-
ages from their low-resolution (LR) counterparts. It is proved to be
a significant part in image transformation tasks and has become in-
creasingly important in both industry and academia fields. Over time,
SISR has evolved from interpolation-based, reconstruction-based,
learning-based to deep learning algorithms gradually.

Recently, the Transformer has attracted significant interest in the
computer vision community, thanks to its powerful representation ca-
pabilities. However, several works have found that the excellence of
Transformer comes from the macro-level framework and advanced
components rather than its self-attention (SA) mechanism to some
extent [38, 36, 12]. Surprisingly, comparable results on multiple
mainstream computer vision tasks can still be obtained by replac-
ing SA with spatial pooling [38], spatial shifting [36], spatial MLP
[33, 32, 34, 13, 23], fourier transform [31, 17] and constant matrix
[12], all of which have spatial information encoding capability sim-
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Figure 1: Trade-off between performance and model complexity on
Set5 ×4 dataset. Multi-Adds are calculated on 1280 × 720 HR im-
ages.

ilar to SA. This observation raises question about the true source of
Transformer’s superiority and highlights the importance of macro-
level architectures and advanced training setups and components.
These explorations encourage more researchers to rethink the design
of Transformer framework by combining the superior macro archi-
tectures in Transformer with efficient spatial information encoding
technology.

Following this motivation, our mainly purpose is to design a new
spatial information encoder for encoding spatial features efficiently
by introducing large kernel convolution operation and convolutional
modulation technology to realize long-range correlations and self-
adaptive behavior like SA, within the powerful Transformer macro
framework. The basic idea is to replace the SA with the multi-order
Long-range convolutional modulation (MOLRCM) layer and inte-
grate the re-weighting process into the large kernel convolutional
modulation technology for enhancing spatial information encoding
ability, where extracted long-range and multi-order convolutional
features act as weight matrices to self-adaptively modulate the value
features. Our method is fully convolutional, enabling linear compu-
tational complexity rather than quadratically, which makes it more
suitable for vision tasks, such as SISR. Further, building on MOL-
RCM and Spatial Awareness Dynamic Feature Flow Modulation
(SADFFM), we propose the efficient information modulation net-
work (EIMN) for SISR.

Our contributions can be summarized as follows: (1) We present a
novel approach, named EIMN, to achieve efficient SISR that lever-
ages the potential of large kernel ConvNets and advanced Trans-
former macro framework. Specifically, we introduce a Transformer-
style ConvNet by replacing the SA and FFN with the proposed
MOLRCM and DFFM layers for enhancing spatial- and channel-
wise information encoding ability. (2) MOLRCM and SADFFM
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modules are designed based on the analysis of the generation pro-
cess of SA and the sub-optimality of vanilla FFN. The former uti-
lizes large kernel convolution modulation technology to encode long-
range and multi-order spatial information as a weight matrix, and
self-adaptively realibrates value features. The latter introduces spa-
tial awareness and locality, improves feature diversity, and dynami-
cally regulates the flow of information between layers compared to
vanilla FFN. (3) The experiments on five popular benchmark datasets
demonstrate that our method performs better than other recently ad-
vanced transformer-based methods both in quantitative and qualita-
tive results.

2 Related Work

2.1 Efficient SISR

Both ConvNets and Transformers have gained high performance in
the SISR field. Although the results of SISR networks have been
enhanced with the increase in depth and width, large architectures
tend to be slow and power hungry. These excellent models require
massive computational resources, memory and battery and not suit-
able for edge devices. Therefore, in order to overcome these issues,
a number of efficient networks have been proposed to balance recon-
struction performance and model complexity. A2N [3] consisted of
a non-attention branch and a coupling attention branch, which fuse
by the weights generated by the dynamic attention module. LMAN
[35] exploited group convolution to extract and fuse multi-scale fea-
tures before a channel attention layer to obtain discriminative fea-
tures. SMSR [37] explored the sparsity in SISR to improve inference
efficiency. DRSDN [4] proposed a plug-and-play NAS method to ex-
plore diverse architectures for SISR. These remarkable works have
promoted the development of efficient SISR. However, our work re-
thinks the design of efficient SISR by introducing large kernel convo-
lution and convolutional modulation techniques, thus making better
utilization of spatial convolution, which remains a hot research topic.

2.2 Transformers

IPT was the first attempt to introduce Transformers-based backbone
into the low-level image restoration, which is pre-trained with multi-
task manner on ImageNet and finetuned to the desired task. Since
then, it has been difficult to apply the SA mechanism to the SISR
due to its quadratic computational cost. Therefore, there exist a host
of works aiming to decrease complexity to make Transformer more
suitable for vision tasks. e.g., Swin Transformer[25] and SwinIR [19]
limited SA calculation in non-overlapped local windows instead of
global and introduced shift operation to perform cross-window inter-
action, which significantly reduces the computational complexity on
HR feature map while capturing local context. Recently, it has been
observed that the superiority of Transformer does not derive from the
SA mechanism, but from its macro framework as well as advanced
components [38, 36, 33, 32, 34, 13, 23]. Therefore, based on the
macro framework and advanced components of Transformer archi-
tecture, our work effectively uses large kernel convolution to gener-
ate a modulation matrix to self-adaptively realibrate value features.
This approach avoids the quadratic complexity of SA, enabling pow-
erful inductive biases and highly parallel optimization of ConvNets.

2.3 Large Kernel Convolutional Modulation

The convolutional modulation technology can be viewed as an adap-
tive selection process that adaptively emphasizes important regions

and suppresses irrelevant regions by mining the underlying relevance
of feature representations sufficiently. The SA mechanism uses simi-
larity score matrices to recalibrate the value representations, which
is similar to the modulation technique. Although SA provides an
intrinsic benefit in capturing long-range pixel inter-relationships,
the 2D structure images are flattened into 1D sequences for inter-
relationship learning, which not only compromises the integrity of
the 2D images but also impairs image-specific neighborhood rela-
tionships. Recent studies have explored the advantages of incorporat-
ing large kernel convolutions, which can facilitate the construction of
inter-pixel correlations by gathering responses from a larger region.
VAN [11] proposed to decompose a large kernel convolution opera-
tion to capture long-range relationships. SegNeXt [10] decomposed
large kernel convolutions to depth-wise strip convolutions for obtain-
ing multi-scale context information and extracting strip-like features
such as human and telephone poles. RepLKNet exhibited superior
scalability for ConvNets with large kernels (up to 31×31). SLaK [24]
studied extremely large kernels from the perspective of sparsity and
proposed a pure CNN architecture equipped with sparse factorized
51×51 kernels which performs better than state-of-the-art (SOTA)
hierarchical Transformers and modern ConvNet architectures. Con-
vNeXt [26] modernized a standard ResNet towards the design of a vi-
sion transformer and presented a powerful ConvNet with 7×7 depth-
wise convolution.

3 Methodology

3.1 Overall Architecture

Recent investigations have demonstrated that the excellence of
Transformers mainly results from the macro framework and ad-
vanced components [38, 36, 12]. Consequently, our structure is based
on Transformer framework and simulates the execution of resource-
consuming SA to propose MOLRCM layer with linear complexity.
The pipeline of our method is shown in Figure 2, which consists of:
(1) feature extraction, (2) nonlinear mapping, and (3) image recon-
struction. The input and output of the model are illustrated as ILR

and ISR.
Feature extraction: Coarse features are extracted from low-

resolution image ILR by a 3 × 3 convolution layer.

Fshallow = fext(ILR) (1)

where fext indicates the convolution operation for coarse features
extraction, Fshallow is the extracted coarsed shallow features.

Nonlinear mapping: The extracted shallow features are flowed
to a stack of EIMB for refining the feature mappings. Each of these
blocks can be decomposed into two components: MOLRCM layer
MOLRCM(·) and SADFFM layer SADFFM(·),

Fdeep = fn
EIMB(f

n−1
EIMB(· · · f0

EIMB(Fshallow) · · · )) (2)

X
′
= X +MOLRCM(Norm(X)) (3)

Y = X
′
+ SADFFM(Norm(X

′
)) (4)

where fEIMB and Fdeep indicate the building block and output fea-
ture mappings, Norm(·) represents a normalization operation, e.g.,
LayerNorm (LN), BatchNorm (BN). Notably, the proposed EIMB
in our work shares similar macro architecture with Transformer:
LN −→ SA −→ LN −→ FFN . The difference is that we replace
SA and FFN with the proposed MOLRCM layer and DFFM layer
for enhancing spatial and channel information encoding capabilities,
respectively.
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Figure 2: (a) and (b): The comparison of the SA and our MOLRCM. MOLRCM reconsiders spatial convolution to achieve efficient modeling
of spatial features, enabling share similar advantages like SA. (c) and (d): The comparison of the FFN and ours SADFFM. SADFFM address
the sub-optimality of FFN by introducing spatial awareness and locality, improving feature diversity, and regulating information flow between
layers. (e) The architecture of the proposed PMSDSEN. It mainly consists of three parts: feature extraction, non-linear mapping and recon-
struction.

Image reconstruction: Refined features are delivered to recon-
struction layer for upsampling to the HR size. It is denoted as:

ISR = frec(Fshallow + Fdeep) (5)

where frec indicates the reconstruction module including a 3 × 3
convolution layer and a sub-pixel layer.

3.2 MOLRCM

We first analyze the execution process of SA in detail and then pro-
pose the MOLRCM layer to imitate and replace this process in a lin-
ear complexity manner. The main technique employed in the MOL-
RCM layer is multi-order long-range convolutional modulation oper-
ation which effectively integrates the modeling of large-range spatial
relationships and the features re-weighting process.

3.2.1 The Limitations of SA

� Details of SA. Firstly, let’s revisit the vanilla SA. In SA, we
suppose that the input token is X ∈ R

N×d, where N and d represent
the number of tokens and dimensionality, respectively.

• step 1: The input token X is linearly embeded to queries Q,
keys K and values V by weight matrices W q ∈ R

d×dq , W k ∈
R

d×dk and W v ∈ R
d×dv , such that Q = XW q , K = XW k

and V = XW v respectively. Q and K are used to compute at-
tention scores A(Q,K) which determine the degree of attention
that one is supposed to give other tokens when encoding the token
in current position, where, A(Q,K) = Q ·K�.

• step 2: Normalization attention scores for train gradient stability
and position encoding is also applied to incorporate the order of
sequences. Here, processed scores are translated into the proba-
bilities by softmax function. Finally, the output of SA could be
obtained by multiplying the attention weights A(Q,K) with val-
ues V , hence, the original SA operation Attention(·) is defined as:

Attention(Q,K,V ) = A(Q,K) · V

= Softmax(
Q ·K�
√
dk

+B) · V
(6)

� Sub-optimality of SA. By analyzing the execution process of
SA, we consider that it has the following shortcomings:

(1) Quadratically complexity: The SA involves extensive inter-
actions between query-key, followed by the aggregation of query-
value. This process results in a quadratic growth of computational
complexity with respect to sequence length N , as expressed by the
O(2N2D). As a result, SA can be computationally expensive and
memory-intensive, especially for large inputs [19, 39].

(2) Damage in spatial structure: The process of converting 2D
structure images into 1D squences for pairwise similarities calcu-
lation in SA leads to a damage of 2D image integrity and image-
specific neighborhood relationships, which contains the resolution,
sharpness, and color accuracy, as well as other distorted or modified
of the images in an unintended way [11, 10].

(3) Weak modeling in local information: The SA operates on a
sequence of inputs, where the attention weights are calculated based
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on the pairwise interactions between all the elements in the sequence.
Compared to convolutional operations, SA is indeed better at pro-
cessing global information but weaker at handling local information.
However, in the field of SISR, both local and global information are
important to help models better understand and reconstruct HR im-
ages. For instance, local information can help the model better under-
stand the structure and features of the image, and global information
can help the model better understand the semantic and contextual
relationships of the image [19, 39].

3.2.2 The Proposed MOLRCM layer

� Motivations and solutions. The purpose of our proposed MOL-
RCM layer based on the spatial convolutional modulation technology
is to solve the problem of SA as discussed above while preserving its
merits including long-range spatial relationships and dependencies
modeling and input content adaptation. Specifically, we rethink spa-
tial convolution for taking advantage of convolution to achieve more
efficient encoding of spatial features and realize dynamic modula-
tion value representations by convolutional modulation techniques.
The advantages of our method are discussed below:

(1) It is well-known that convolution operations can effectively
capture local features because they have local connections with
shared weights [39, 19, 25]. In addition, we also introduce large ker-
nel convolution to encode long-range relationship dependencies to
enable long-range relationship modeling similar to SA [11, 10, 6].

(2) The complexity of convolution is linear because the operation
involves sliding a fixed-size kernel over the input feature and per-
forming a dot product operation at each position. The complexity of
convolution operation can be expressed as O(2K2C2HW ), where
K, C, H and W denote kernel size, the number of input/output chan-
nel, the height and width of feature map. Since the kernel size is usu-
ally small compared to the image size, the computational complexity
is linear with respect to the input size.

(3) Since convolution processes two-dimensional images, it uses
two-dimensional convolution operation that preserves local informa-
tion in the input feature and enable to exploit the spatial relation-
ships between neighboring pixels. This process can preserve the two-
dimensional structure in the input image.

� Details of MOLRCM layer. On the basis of the fundamen-
tal observation that SA is calculated by a matrix dot-product oper-
ation between query and key to generate attention scores, and then
the recalibrated value representations are obtained via a weighted
sum of all other positions. We propose that these two procedures can
also be mimicked using large-kernel convolution and hadamard prod-
uct. Specifically, large kernel can aggregate spatial contextual infor-
mation from a larger region. Therefore, we employ depth-wise and
depth-wise dilated convolutions with large kernel size k × k (k >
3) to generate context scores in a long-range and multi-order manner
because of fewer parameters and computational burden, followed by
hadamard product between the output of large-kernel convolutions
and the value representations to re-weight value representations. In
ConvNets, we prefer to describe these processes as convolutional
modulation technology. By doing so, the proposed MOLRCM layer
enables a flexible and effective modulation of the feature represen-
tation, promoting the modeling of complex image patterns with high
adaptability and representational power. Specific details are as fol-
lows: As shown in Fig. 2b, given the input X ∈ R

H×W×C , the
latent space features Q ∈ R

H×W×Cq and V ∈ R
H×W×Cv can

be generated by two linear project layers represented by matrices
W q ∈ R

C×Cq and W v ∈ R
C×Cv , respectively. Then, the gener-

ation of the attention weight matrices for the proposed convolution

modulation operation consists of the following four steps:

• step 1: Regionality perception. In order to effectively extract fea-
tures from coarse input features that typically exhibit local struc-
ture and spatial redundancy, it is necessary to introduce structural
induction bias. To achieve this, a single depth-wise convolution
(DW-Conv) is employed, utilizing a kernel size of 5× 5 to extract
more valuable features from the initial coarse features. This pro-
cess can be expressed mathematically as a transformation of the
input feature Fin, allowing for subsequent feature refinement.

Fregion = DW-Conv(Fin) (7)

• step 2: Multi-order large-range contextual information extraction.
In order to effectively capture large-range [7] and multi-order [30]
contextual information for visual tasks, it is important to con-
sider both local and global features. To achieve this, three parallel
branches utilizing depth-wise dilation convolution (DW-D-Conv)
are employed to implement multi-order interactions. Specifically,
the low-order feature Fregion is divided into three parts along
the channel dimension, denoted as Fl ∈ R

H×W×Cl , Fm ∈
R

H×W×Cm , and Fh ∈ R
H×W×Ch , where Cl +Cm +Ch = C.

Subsequently, DW-D-Conv5×5,d=2 and DW-D-Conv7×7,d=3 are
applied to the features Fl and Fh, with 5× 5 and 7× 7 denoting
different kernel sizes and d ∈ {2, 3} representing dilation ratios.
Finally, the responses from multiple branches are concatenated to
extract large-range and multi-order context information. This pro-
cess can be represented mathematically using the following equa-
tion:

Fmulti = Concat(DW-D-Conv5×5,d=2(Fl),Fm,

DW-D-Conv7×7,d=3(Fh))
(8)

• step 3: Feature integration. The extracted high-quality large-range
and multi-order representations are delivered into the last projec-
tion layer for two purposes: (1) cross-channel information integra-
tion and (2) estimating the importance of each point and generat-
ing attention weight. This is achieved using a standard convolution
operation with kernel size 1× 1.

Fintegration = Conv1×1(Fmulti) (9)

• step 4: Gating activation. Following the design paradigm of
common attention techniques [14], a gating mechanism is im-
plemented to capture long-range spatial statistical characteristics
from the aggregated information. For this purpose, we employ
Sigmoid Linear Unit (SiLU) gating, which is an advanced version
of sigmoid and known for its self-stabilizing property. The gating
function is defined as: x · Sigmoid(x). Finally, the last spatial
convolution modulation weight can be generated, as described in
following formula:

A(Q) = SiLU(Fintegration) (10)

At last, we obtain finally self-adaptively modulation output by
Hadamard product between A(Q) and values V and the implemen-
tation process of MOLRCM layer can be expressed as:

MOLRCM(Q,V ) = A(Q)� V (11)

3.2.3 Analysis and Conclusion
In summary, our MOLRCM layer presents comparable benefits to
SA employed in Transformer models, while requiring only linear
complexity.
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(1) Large-range spatial information modeling: The incorpora-
tion of large kernel size convolution, such as 7 × 7 and 9 × 9, en-
ables the aggregation of information from a larger spatial area in an
efficient manner, facilitating the learning of distance spatial relation-
ships and dependencies modeling. This approach bears similarity to
the SwinIR [19] and Swin Transformer [25] methods, which perform
spatial information encoding within a local window typically of size
7 × 7. Furthermore, our methodology introduces a potent inductive
bias and obviates the need for positional embedding due to the unique
advantages inherent to the convolution operation. In summary, our
method enables effective long-range spatial relationships modeling
and multi-order features interaction similar to that achieved by the
Transformer method.

(2) Input self-adaptation: Following the modeling of long-range
and multi-order feature relationships through large kernel convolu-
tion modulation technology, the extracted convolution features gen-
erated is utilized as an attention weight matrix to self-adaptive re-
calibrate value representations similar to SA in the Transformer. By
mining the underlying relevance of its own feature representations
sufficiently, high-scoring positions will be given adequatlye focus,
and insignificant positions will be suppressed to the extent. This
process enables the identification of crucial features and facilitates
their effective utilization in subsequent processing steps. Through
this mechanism, our method is able to adaptively compute represen-
tations that capture complex relationships from input elements.

(3) Linear complexity: Our method utilizes pure convolution op-
eration to generate attention maps instead of SA. Following many
classic ConvNets, this design choice makes our method fully convo-
lutional, resulting in linear computational complexity with the input
size. Compared SA, our method is more suitable for resource-limited
devices and HR input images.

3.3 SADFFM

3.3.1 The Limitations of FFN

� Details of FFN. As shown in the Figure 2(c), the FFN, the only
non-linear unit in the vanilla Transformer, plays an important effect
in channel aggregation. According to the observation, just two linear
transform layers with channel expand or squeeze ratio r are used
to implement channel aggregation in mainstream methods. The first
layer expands the channel dimensions from C to rC, and the second
layer projects high-dimensional features from rC back to C. A non-
linear activation function is inserted between these two linear layers.
These steps can be expressed as a formula:

FFN(X) = fproj2(σ(fproj1(X))) (12)

where fproj1 and fproj2 indicate two linear transform layers. σ rep-
resents non-linear activation function, such as Gaussian Error Linear
Unit (GELU).

� Sub-optimality of FFN. We argue that the vanilla FFN suffers
from sub-optimality in two key aspects. First, the FFN lacks local-
ity awareness, meaning that it fails to explicitly model local patterns
in the input features. As a result, information aggregation may only
occur at individual positions, leading to a lack of feature interaction
between adjacent pixels or regions. This limitation can be particu-
larly problematic for tasks that require the modeling of spatial rela-
tionships, such as SISR. To overcome this limitation, incorporating
spatial awareness layers in the FFN has been shown to be an effective
solution since they can learn local features and spatial relationships.
Second, the FFN suffers from channel redundancy when equipped

with a large number of channels in the intermediate layers. This oc-
curs when different channels within a layer carry similar or redun-
dant information, leading to increased computational cost without
improving performance.

3.3.2 The Proposed SADFFM layer

� Motivations and solutions. For the above two issues, we design
a new channel information encoder named SADFFM layer including
spatial awareness layer (SAL) and dynamic feature flow modulation
(DFFM) layer layer for introducing spatial awareness and locality,
improving feature diversity, and dynamically regulating the flow of
information between layers, as shown in Figure 2(d).

� Details of SADFFM layer. For the above two issues, we design
a new channel information encoder named SADFFM layer, as shown
in Fig. 2d.

(1) Spatial awareness: The FFN lacks the ability to model local
patterns and spatial relationships, which can be important for SISR.
The inverted residual block (IRB) employs a depth-wise convolu-
tion between two linear transform layers. This allows for local in-
formation to be aggregated between nearby pixels on each channel.
The proposed DFFM layer adopts the IRB’s design paradigm by re-
placing the point-wise convolutional layers in the vanilla FFN with
a combination of depthwise separable convolutions and excitation-
and-squeeze modules, which reduces the number of parameters and
computation while still capturing local patterns and structures.

(2) Dynamic feature flow modulation: We introduce a novel ap-
proach to explicitly model channel and spatial feature relationships
in order to reduce channels redundancy in our SADFFM layer, which
is named DFFM. As depicted in Fig. 2d, our modulation mechanism
involves two branches, one for channel and the other for spatial fea-
ture relationship modeling. To model inter-channel relationships, we
apply a global average pooling operation across spatial dimensions
on the input feature F ∈ R

H×W×C to obtain global context repre-
sentations Fc ∈ R

1×1×C , which are used to aggregate inter-channel
relationships. The global context Fc then passes through squeeze and
expansion layers with ratio r and a non-linear activation function to
obtain global inter-channel relationships. Finally, sigmoid gating is
used to compute the modulation output Âc ∈ R

1×1×C . To model
spatial feature relationships, we first squeeze the channel dimensions
with ratio r by a linear layer followed by a non-linear activation func-
tion to obtain Fs ∈ R

H×W×C
r . Then, global representations Fc

are broadcasted to the spatial branch for channel and spatial infor-
mation fusion. The concatenated features in the channel and spatial
levels, denoted as Fsc ∈ R

H×W× 2C
r , are then flowed through a

linear transform layer for further dimension compression, followed
by a sigmoid gating. This results in Âs ∈ R

H×W×1. Finally, the
last DFFM is obtained by element-wise product: Âc·s = Âc · Âs.
Ultimately, the proposed SADFFM layer can be described as:

SADFFM(X) = DFFM(f2(σ(SAL(f1(X))))) (13)

where f1 and f2 mean linear layer, respectively. σ indicates the non-
linear activation function GELU. Notably, the proposed SADFFM
layer not only realize the modulation adaptability in the spatial di-
mension but also in the channel dimension. These modifications en-
hance the efficiency and performance of the network in modeling
both long-range dependencies and local information.

4 Experiments

4.1 Experimental Setup

Datasets and Evaluation Metrics. Following previous works, the
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Table 1: Quantitative comparison with SOTA methods on five popular benchmark datasets. Red text indicates the best and blue text indicates
the second best PSNR/SSIM results, respectively. ‘Multi-Adds’ is calculated with a 1280 × 720 HR image.

Method Scale #Params(K) Multi-Adds(G) Set5 Set14 BSDS100 Urban100 Manga109

EDSR-baseline [20] ×2 1370 316 37.99/0.9604 33.57/0.9175 32.16/0.8994 31.98/0.9272 38.54/0.9769
SRFBN-S [18] ×2 282 574.4 37.78/0.9597 33.35/0.9156 32.00/0.8970 31.41/0.9207 38.06/0.9757

SMSR [37] ×2 985 131.6 38.00/0.9601 33.64/0.9179 32.17/0.8990 32.19/0.9284 38.76/0.9771
A2N [3] ×2 1036 247.5 38.06/0.9608 33.75/0.9194 32.22/0.9002 32.43/0.9311 38.87/0.9769

LMAN [35] ×2 1531 347.1 38.08/0.9608 33.80/0.9023 32.22/0.9001 32.42/0.9302 38.92/0.9772
SwinIR [19] ×2 878 195.6 38.14/0.9611 33.86/0.9206 32.31/0.9012 32.76/0.9340 39.12/0.9783

B-GSCN 10 [22] ×2 1490 343 38.04/0.9606 33.64/0.9182 32.19/0.8999 32.19/0.9293 38.64/0.9771
DRSDN [4] ×2 1055 243.1 38.06/0.9607 33.65/0.9189 32.23/0.9003 32.40/0.9308 -
FPNet [8] ×2 1615 - 38.13/0.9619 33.83/0.9198 32.29/0.9018 32.04/0.9278 -
PILN [29] ×2 580 - 38.08/0.9607 33.72/0.9181 32.23/0.9003 32.38/0.9306 38.92/0.9771

NGswin [5] ×2 998 140.4 38.05/0.9610 33.79/0.9199 32.27/0.9008 32.53/0.9324 38.97/0.9777
EIMN-A(Ours) ×2 860 186.3 38.26/0.9619 34.12/0.9222 32.40/0.9034 33.15/0.9373 39.48/0.9788

EIMN(Ours) ×2 981 212.7 38.26/0.9620 34.14/0.9227 32.41/0.9034 33.23/0.9381 39.42/0.9786
EDSR-baseline [20] ×3 1555 160 34.37/0.9270 30.28/0.8417 29.09/0.8052 28.15/0.8527 33.45/0.9439

SRFBN-S [18] ×3 375 686.4 34.20/0.9255 30.10/0.8372 28.96/0.8010 27.66/0.8415 33.02/0.9404
SMSR [37] ×3 993 67.8 34.40/0.9270 30.33/0.8412 29.10/0.8050 28.25/0.8536 33.68/0.9445

A2N [3] ×3 1036 1175 34.47/0.9279 30.44/0.8437 29.14/0.8059 28.41/0.8570 33.78/0.9458
LMAN [35] ×3 1718 173.8 34.56/0.9286 30.46/0.8439 29.17/0.8067 28.47/0.8576 34.00/0.9470
SwinIR [19] ×3 886 872 34.60/0.9289 30.54/0.8463 29.20/0.8082 28.66/0.8624 33.98/0.9097

B-GSCN 10 [22] ×3 1510 154 34.30/0.9271 30.35/0.8425 29.11/0.8035 28.20/0.8535 33.54/0.9445
DRSDN [4] ×3 1071 109.8 34.48/0.9282 30.41/0.8445 29.17/0.8072 28.45/0.8589 -
FPNet [8] ×3 1615 - 34.48/0.9285 30.53/0.8454 29.20/0.8086 28.19/0.8534 -
PILN [29] ×3 588 - 34.39/0.9269 30.34/0.8415 29.08/0.8048 28.09/0.8500 33.68/0.9446

NGswin [5] ×3 1007 66.6 34.52/0.9282 30.53/0.8456 29.19/0.8078 28.52/0.8603 33.89/0.9470
EIMN-A(Ours) ×3 868 83.58 34.70/0.9299 30.65/0.8481 29.31/0.8121 28.87/0.8660 34.45/0.9492

EIMN(Ours) ×3 990 95.2 34.76/0.9304 30.70/0.8490 29.33/0.8127 29.05/0.8698 34.60/0.9502
EDSR-baseline [20] ×4 1518 114 32.09/0.8938 28.58/0.7813 27.57/0.7357 26.04/0.7849 30.35/0.9067

SRFBN-S [18] ×4 483 852.9 31.98/0.8923 28.45/0.7779 27.44/0.7313 25.71/0.7719 29.91/0.9008
SMSR [37] ×4 1006 41.6 32.12/0.8932 28.55/0.7808 27.55/0.7351 26.11/0.7868 30.54/0.9085

A2N [3] ×4 1047 72.4 3230/0.8966 28.71/0.7842 27.61/0.7374 26.27/0.7920 30.67/0.9110
LMAN [35] ×4 1673 122.0 32.40/0.8974 28.72/0.7842 27.66/0.7388 26.36/0.7934 30.84/0.9129
SwinIR [19] ×4 897 49.6 32.44/0.8976 28.77/0.7858 27.69/0.7406 26.47/0.7980 30.92/0.9151

B-GSCN 10 [22] ×4 1530 88 32.18/0.8950 28.60/0.7821 27.59/0.7364 26.12/0.7872 30.50/0.9080
DRSDN [4] ×4 1095 63.1 32.28/0.8962 28.64/0.7836 27.64/0.7388 26.30/0.7933 -
FPNet [8] ×4 1615 - 32.32/0.8962 28.78/0.7856 27.66/0.7394 26.09/0.7850 -
PILN [29] ×4 600 - 32.22/0.8949 28.62/0.7813 27.59/0.7365 26.19/0.7878 30.54/0.9086

NGswin [5] ×4 1019 36.4 32.33/0.8963 28.78/0.7859 27.66/0.7396 26.45/0.7963 30.80/0.9128
EIMN-A(Ours) ×4 880 47.78 32.53/0.8993 28.89/0.7882 27.79/0.7447 26.68/0.8027 31.22/0.9148

EIMN(Ours) ×4 1002 54.37 32.63/0.9008 28.94/0.7897 27.82/0.7458 26.88/0.8084 31.52/0.9183

DF2K dataset containing 3450 images is utilized as the training
images, including 2650 images from Flick2K[21] and 800 images
from DIV2K[1]. During testing, five standard benchmark datasets:
Set5[2], Set14[40], BSD100[27], Urban100[15] and Manga109[28]
are used to evaluate our method. We evaluate the average peak-
signal-to-noise ratio (PSNR) and the structural similarity (SSIM) on
the luminance (Y) channel of YCbCr color space. More implemen-
tation details are described in the Table 2.

Table 2: Hyper-parameters of the training process.

Training Config Settings
Dataset DF2K (Flick2K [21]+DIV2K [1])

Random rotation (90◦, 180◦, 270◦)
Random flipping Horizontal

Patch size 64×64
Batch size 16
Optimizer Adam [16]

Base learning rate 5e−4

Optimizer mementum β1=0.9, β2=0.999
Weight decay 1e−4

Learning rate schedule Cosine decay
Learning rate bound 1e−7

Loss function L1

4.2 Comparison with SOTA Methods

Quantitative Results. In Table 1, we compare the proposed method
with recent SOTA efficiently SISR approaches for upscale factor
of ×2, ×3 and ×4. Notably, SwinIR [19] and NGswin [5] is the
recently advanced transformer-based method. Obviously, our ap-
proach achieves the best performance with comparable parameters
and Multi-Adds. Specifically, we obtain 0.1∼0.47dB improvement
on five benchamrk datasets respectively compared the second-best
approach SwinIR [19] with lower complexity, which indicates re-
placing the SA with the proposed MOLRCM layer based on the

multi-order large-range convolutional modulation technology lead to
better results.

Qualitative Results. In Figure 3, we display the ×4 SR results vi-
sualization. For the images “img 062”, our method reconstructs the
clearest lattice, stripe and text patterns with the minimal blurry ef-
fects and artifacts compared to other methods, which validates the
usefulness and effectiveness of our method. Take the image “img
062” as an example, only our method generates stripes with accu-
rate direction and minimal blurry, while the other methods produce
incorrect stripes and a large range blurring effects.

Figure 3: Qualitative comparison of SOTA methods on Urban100
(×4).

Figure 4: Results of Local Attribution Maps. A more widely red area
and higher DI represent a larger range pixels utilization.

LAM Results. In Figure 4, we analyze local attribution maps
(LAM) [9] results between AAN [3], EDSR [20], LMAN [35] and
our method to investigate pixels utilization range in the input image
when reconstructing the selected area. Diffusion index (DI), an eval-

X. Liu et al. / Efficient Information Modulation Network for Image Super-Resolution 1549



Table 3: Ablation study on the subordinate components of the proposed SADFFM layer. The best performance is in red colors. Where, CA and
SA denote general channel and spatial attention, DFFM denotes the proposed dynamic feature flow modulation, SAL denotes the propoesd
spatial awareness layer.

Model Componets #Params(K) Set5 Set14 BSDS100 Urban100 Manga109
SAL CA SA DFFM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

FFN � � � � 896 32.00/0.8927 28.52/0.7795 27.54/0.7359 25.77/0.7729 30.14/0.9014
FFN+SAL � � � � 937 32.31/0.8972 28.75/0.7850 27.69/0.7413 26.28/0.7901 30.76/0.9097

FFN+SAL+CA � � � � 945 32.42/0.8985 28.84/0.7867 27.74/0.7427 26.46/0.7954 31.03/0.9132
FFN+SAL+SA � � � � 953 32.42/0.8986 28.84/0.7866 27.74/0.7427 26.46/0.7953 31.03/0.9133

SADFFM (Ours) � � � � 1002 32.63/0.9008 28.94/0.7897 27.82/0.7458 26.88/0.8084 31.52/0.9183

Table 4: Ablation study on the different layer sequences of the convolutional modulation technology within the proposed MOLRCM layer.
The best performance is in red colors. where, k1-k2-k3 represents the kernel size of DWConv -DWDConv -DWDConv squence in the
convolutional modulation module.

Layers Sequence #Params(K) Set5 Set14 BSDS100 Urban100 Manga109
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

3-3-5 968 32.42/0.8981 28.77/0.7861 27.70/0.7416 26.48/0.7967 31.00/0.9129
5-5-7(Ours) 1002 32.63/0.9008 28.94/0.7897 27.82/0.7458 26.88/0.8084 31.52/0.9183

7-7-9 1053 32.60/0.9002 28.91/0.7890 27.79/0.7450 26.82/0.8069 31.41/0.9177

uation metric tool, reflects the ability of model to extract feature and
utilizate effective information. As shown in Fig. 5, our method uses
larger range pixel information to reconstruct area drawed with a red
box, which demonstrates our method attains a larger receptive field
by an efficient large kernel size convolutional modulation manner.

Figure 5: The general overview of the relationship between differ-
ent configurations of ablation experiments and model performance:
(1) Architecture configuration, which involves varying the number
of building blocks in (a). (2) Subordinate components in the pro-
posed SADFFM layer, such as spatial awareness (SAL) introduction
and channel redundancy decrease technologies (SA, CA and DFFM)
in (b). (3) Subordinate components in the MOLRCM layer based
on the convolutional modulation technology, which include different
choices of layer sequences and activation functions in (c) and (d).
Notably, the asterisk indicates our method.
4.3 Ablation Study on Micro Design

In this section, we conduct ablation studies on some micro designs
involved in our final proposed model. The micro designs consist of
three parts: architecture configuration, subordinate components in
MOLRCM layer based on the convolutional modulation technology,
subordinate components in the SADFFM layer. We show their ef-
fects on the final performance. The general overview of the relation-
ship between all configurations in ablation experiments and model
performance can be observed in Figure 5, and the specific data are
shown in Tables 3 and 4.

Architecture configuration. We first perform ablation experi-
ments on the number of EIMBs in the nonlinear mapping part to
search for the better balance between model complexity and per-
formance, as shown in Figure 5(a). Experiment results indicate that

the performance improvements with the increase in the number of
stacked blocks until the highest value is reached at 16 blocks. Fur-
ther increasing the number of blocks would lead to a slight decrease
in network performance. Therefore, considering both model com-
plexity and performance, we set the number of blocks to 16.

Subordinate components in the SADFFM layer. We conduct a
detailed study on the impact of each component in the SADFFM
layer, as presented in Figure 5(b). To compare the effectiveness of
the proposed SADFFM layer, we also include the results of original
FFN, which is frequently used in Transformer-style model. Remark-
ably, both DFFM and SAL achieve performance enhancements by a
large margin, demonstrating the effectiveness of two modules. The
specific comparison results on the five benchmarks are shown in the
Table 3.

Subordinate components in MOLRCM layer. Finally, we also
conduct a detailed research on the impact of each component in
MOLRCM layer based on the convolutional modulation technol-
ogy, as shown in Figure 5(c) and (d), including the choice of layer
sequences and activation functions. Experiment results demonstrate
the efficiency of our approach and the significant performance gains
achieved through the carefully designed convolutional modulation
module which consists of 5-5-7 layer squence for extracting large-
range and multi-order contextual information and SiLU activation
function that preserves the mean and variance of the input data and
improves the learning process. The specific comparison results on
the five benchmarks are shown in the Tables 4.

5 Conclusions

The primary focus of this work, named EIMN, is new informa-
tion encoding techniques design for efficiently encoding spatial- and
channel-wise features. For the design of MOLRCM layer, the ex-
tracted multi-order long-range convolutional features are utilized as
weight matrices to self-adaptively re-calibrate the value representa-
tions, realizing efficient large-range spatial relationships modeling
and multi-heads features interaction similar to SA with linear com-
plexity rather than quadratically. For the design of SADFFM layer,
we also address the sub-optimality of vanilla FFN in two aspects: lo-
cality absence and channel redundancy by introducing spatial aware-
ness and locality, improving feature diversity, and dynamically regu-
lating the flow of information between layers. The experiment results
evaluated on five popular benchmarks demonstrate that our method
performs better both quantitatively and qualitatively.
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