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Abstract. Cognitive diagnosis is vital for intelligent education to de-
termine students’ knowledge mastery levels from their response logs.
The Q-matrix, representing the relationships between exercises and
knowledge attributes, improves the interpretability of cognitive diag-
nosis models. However, completing the Q-matrix poses an expensive
and challenging task due to the fine-grained division of knowledge
attributes. Moreover, a manually sparse Q-matrix can also compro-
mise the accuracy and interpretability of deducing students’ mastery
levels, especially for infrequently observed or unseen knowledge at-
tributes. To address this issue, this paper proposes a Q-augmented
Causal Cognitive Diagnosis Model (QCCDM) for student learning.
Specifically, QCCDM incorporates the structure causal model (SCM)
to capture the causality between students’ mastery levels on different
attributes, which enables to infer their proficiency on rarely observed
knowledge attributes with better accuracy and interpretability. No-
tably, with SCM, one can guide students on how to realize their
self-improvement through intervention. Furthermore, we propose to
augment the Q-matrix in QCCDM, which uses the manual Q-matrix
as a prior to deduce the relationships between exercises and explicit as
well as latent knowledge attributes, resulting in a complete and com-
prehensive assessment of students’ abilities. We assess the efficacy of
Q-augmentation across the widely-used Q-based cognitive diagnosis
models and conduct the ablation study. The extensive experimental
results on real-world datasets show that QCCDM outperforms the
compared methods in terms of both accuracy and interpretability.

1 Introduction

Cognitive diagnosis (CD) is the cornerstone of many real-world appli-
cations such as medical diagnosis [9], course recommendation [34]
and face-identification proficiency [13]. Particularly, in intelligent
educational systems [19], cognitive diagnosis, as shown in Figure 1,
endeavors to unearth the cognitive states of students via the response
logs (e.g., scores on exercises), especially their proficiency levels
(a.k.a., mastery levels) in specific knowledge attributes/concepts.
Over the course of recent decades, a myriad of cognitive diagno-
sis models (CDMs) have been proposed. The existing CDMs can be
roughly dichotomized into two categories: Q-based and Q-irrelevant,
where the Q-matrix (abbr. Q) represents the relationship between exer-
cises and knowledge attributes, indicating which knowledge attributes
are tested in a certain exercise. For Q-irrelevant CDMs, representative
methods IRT [21] and MIRT [28] are known as latent factor models
(LFMs). An example of IRT is the use of a single scalar 6 to represent
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Figure 1. An example of cognitive diagnosis.

students’ latent mastery level, along with the usage of logistic function
as the interactive function. As an illustration, the 3PL-IRT model [10]
is formulated as P;(0;|r = 1) = ¢; + (1 — Ci)%,
where P;(0;|r = 1) is the probability of correctly answering an exer-
cise e; by a student s;, 6; represents the latent trait level of s;, and a;,
b; and c¢; are the discrimination, difficulty and guessing parameters for
e;, respectively. For Q-based CDMs, representative methods include
DINA [5] and NCDM [31]. DINA uses the expectation-maximization
algorithm to estimate a binary matrix that identifies students’ mas-
tery of specific knowledge attributes based on their responses (re-
sponse logs) to assessment exercises with Q-matrix. To overcome the
limitations of manually-designed interactive functions (e.g., logistic
function), NCDM utilizes neural networks as interactive functions in
conjunction with Q-matrix, achieving remarkable performance.
Since Q-matrix explicitly expresses the relationship between ex-
ercises and knowledge attributes, it makes the inferred mastery lev-
els more accurate and substantially enhances the interpretability of
CDMs. However, it could pose a challenge owing to the sparsity and
potentially incomplete annotation of Q-matrix. For example, in the
task of finding the value of sin(x) given that cos(z) = (v/5) ™" and
0 < x < 0.57, this problem is closely related to the knowledge
attribute of trigonometric functions, and human experts classify it as
such in Q-matrix. However, some students may encounter difficulties
in computation instead of trigonometric functions, such as calculating
square roots or applying the Pythagorean theorem. As Q-matrix is
a binary matrix, CDMs may overlook the impact of such computa-
tional skills, resulting in inaccurate estimations of students’ mastery
levels. Therefore, in this situation, existing Q-based CDMs may not
fully capture the intrinsic relationship between latent knowledge at-
tributes and exercises. As knowledge attributes become increasingly
fine-grained [33], Q-matrix becomes more sparse and infrequently
observed or unseen knowledge attributes occur. The small amount
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of exercises related to certain knowledge attributes may impede the
accuracy of assessing students’ mastery levels in corresponding fields,
particularly when students choose not to try the specific types of
exercises. This could significantly compromise the accuracy and in-
terpretability of CDMs.

With this issue in mind, this paper proposes a Q-augmented Causal
Cognitive Diagnosis Model (QCCDM) to address it. Specifically, a
structure causal model (SCM) layer is incorporated as the compo-
nent of QCCDM. SCM models the causality between knowledge
attributes, i.e., attribute hierarchy in cognitive diagnosis. SCM en-
ables more powerful and accurate inference of the mastery levels
of the infrequent or unseen knowledge attributes in response logs.
Notably, with SCM, one can guide students on how to realize their
self-improvement through intervention. Furthermore, in QCCDM a
data-driven continuous Q-augmentation component is proposed to
uncover the relationship between exercises and explicit as well as
latent knowledge attributes. Q-augmentation enhances the traditional
manual Q-matrix (e.g., annotated by human experts) and retains the
inherent relationship between exercises and explicit knowledge at-
tributes through the usage of mask technique. With QCCDM, the
students’ abilities could be assessed completely and comprehensively.
The extensive experimental results on real-world datasets show that Q-
augmentation can significantly improve the performance of Q-based
CDMs (e.g., DINA and NCDM), which implies that the proposed
Q-augmentation is a plug-in component and possesses the merit of
versatility. Besides, QCCDM outperforms the compared methods in
terms of both accuracy and interpretability.

The subsequent sections respectively present the preliminaries,
introduce the proposed QCCDM, show the experiment results and
analysis, and finally conclude the paper.

2 Related Work

Cognitive Diagnosis Models. CDMs are used to evaluate student pro-
files by employing either latent factor models, such as item response
theory (IRT) [21] and MIRT [28], or models based on patterns of
attribute mastery (in this scenario Q-matrix can be applied), such as
deterministic input, noisy and gate model (DINA) [5], neural cogni-
tive diagnosis model (NCDM) [31]. For instance, DINA, a prominent
example of CDMs, utilizes binary independent variables to represent
mastery states, where O indicates an unmastered state and 1 represents
a mastered state. NCDM is another well-known CDM that employs
neural interactive functions and represents mastery patterns as contin-
uous variables within the range of [0, 1].

Knowledge Coverage Problem. The knowledge coverage prob-
lem is a crucial and challenging in cognitive diagnosis, as highlighted
in [32]. With the increasing granularity of knowledge attributes, the
Q-matrix becomes more sparse, resulting in a shortage of correspond-
ing exercises for certain knowledge attributes. This inadequacy could
lead to unreliable diagnostic results when knowledge coverage is
incomplete for students. Recently, KANCD [32] has contributed to
addressing this issue by exploring implicit knowledge association.
This approach can deduce the mastery level of knowledge attributes,
even when certain students have not completed sufficient exercises
on them. However, this approach may encounter the issue of inter-
pretability as it assumes that all knowledge attributes are related to
one another, which may be too strong and may defy common sense in
certain cases (e.g., trigonometric functions and three-variable linear
equations). Instead, this work leverages the powerful reasoning and
interpretability tool causal models to realize the informed inference
of the mastery levels of different knowledge attributes with good

confidence and reliability.

Attribute Hierarchy Methods. Attribute hierarchy (AH) describes
the dependency among knowledge attributes. Attribute hierarchy
model [16] is a class of CDMs that utilizes a rule-based approach
to describing students’ cognitive states under AH which charac-
terizes it through the hierarchical cognitive assumption (HCA). It
posits that mastery of parent attributes is a prerequisite for mastery
of child attributes. The hierarchical diagnostic classification model
(HCDM) [29] is an exemplary AHM that treats mastery patterns
as a discrete space (i.e., 1 represents certain knowledge attribute is
mastered, while O represents unmastered). However, HCDM is time
consuming. HIERCDF [17] uses a discrete Bayesian network to model
the dependency relationship between knowledge attributes with di-
rected acyclic graph (DAG). RCD [8] utilizes graph neural network
to model both directed and undirected dependency of knowledge
attributes. Both of them are interpretable. However, HIERCDF and
RCD may not fulfill effective self-improvement for students in certain
educational cases, whereas the proposed QCCDM be equipped with
SCM which enables intervention could help.

3 Preliminaries
3.1 Task Overview

Cognitive Diagnosis. Let S = {s1,...,sn}, E = {e1,...,er}
and A = {a1,...,ax} denote the sets of students, exercises, and
knowledge attributes, respectively. |S| = N, |[E| = L and |A| = K
are the size of each set. Given their individual interests and demands,
students select appropriate exercises from a set of exercises to practice.
The results of their practice sessions, which are recorded in response
logs, can be represented as a set of triplets R = {(s,e,y)|s € S,e €
E,y € {0,1}}, where y represents the score of a particular log, i.e.,
1 means right and 0 means wrong. Q-matrix (manually annotated
by human experts) represents the relationship among exercises and
knowledge attributes, which can be regarded as a binary matrix Q =
(Qij)Lx Kk, where Q;; € {0, 1} means whether e; relates to a; or not
and @;; is the element in the i-th row and j-th column of Q.

Attribute Hierarchy. The attribute hierarchy (AH) refers to the
structure of cognitive dependencies among attributes in the cognitive
states. Specifically, an attribute ag is an ancestor of an attribute a; in
AH only if the acquisition of knowledge related to ao is a prerequisite
for the acquisition of knowledge related to a;. Formally, the attribute
hierarchy considered is a directed acyclic graph (DAG), which is a
causal graph G in this paper. G = (A, £) denotes the causality among
attributes, where A stands for nodes of attributes and £ stands for the
prerequisite relationships among attributes nodes in G.

Problem Definition. Given the students’ triplet logs R, a binary
matrix Q@ € R¥** and an attribute hierarchy represented by a DAG
G € REXE the goal is to infer Mas € RY*X | which denotes the
latent mastery level of students on each attribute.

3.2 Structure Causal Model

Structural causal model (SCM) [24] is a powerful class of probabilis-
tic graphical models used to represent and reason about causality
between variables. SCM consists of a set of structural equations that
captures the functional relationships between variables, allowing for
the analysis of how changing of one variable affects the other vari-
ables. Recently, SCM has been applied extensively in disentangled
representation learning and generative models, particularly in the con-
text of causal models in the latent space [35, 25]. It has shown the
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impressive success in controllable image generation [22, 15], where
the ability of manipulating specific attributes of an image is crucial.

While SCM has been used for achieving the causation of disen-
tangled semantic factors through the weakly supervised ground-truth
labels and randomly sampled noises in causal disentangled represen-
tation, this paper proposes an alternative approach. Specifically, the
coefficients of the causal graph and latent representations are learned
during the end-to-end training process.

4 Causality and Q-Augmentation in QCCDM

This section introduces two key components in QCCDM, which are
the causal cognitive diagnosis model and Q-augmentation. Figure 2
sketches the overall framework of QCCDM.
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Figure 2. The framework of Q-augmented causal cognitive model.

4.1 Causal Cognitive Diagnosis Model
4.1.1 Causal Attribute Hierarchy

Following the hierarchical cognitive assumption (HCA) [16], we
employ SCM to capture the causality between knowledge attributes
based on the causal graph given by experts. This paper assumes that
the aforementioned causal graph G is accurate, since the experts
always highlight the explicit causality between knowledge attributes.
Based on the assumption of accurate causal graph, the definition of
causal hierarchical cognitive assumption is shown as Definition 1.

Definition 1 (Causal Hierarchical Cognitive Assumption, CaHCA).
Given an attribute hierarchy which is characterized by an SCM with
causal graph G, the values of Mas on attributes are generated by G.

Definition 1 describes how the relationship between mastery lev-
els on knowledge attributes can be better represented by a causal
graph G, which is more appropriate and dependable in the educational
contexts. A simple example is univariate calculus and multivariable
calculus. If a student has a good understanding of univariate calculus,
it is likely that he or she will find it easier to handle multivariable
calculus compared with a student with poor calculus skills. Therefore,

incorporating the causality between knowledge attributes can assist
CDMs in deducing mastery levels from response logs in a reasonable
and interpretable manner.

4.1.2 SCM Layer

To model the causation among knowledge attributes, we utilize the
causal graph without coefficients as a prior and design an SCM layer to
capture the relationship among mastery level on knowledge attributes
with a latent factor Z (e.g., diligence, learning strategy and learning en-
vironment). Specifically, Mas; o, = Zaj ePa(ap) MaSi a; Eic+ Zia,.-
Herein Pa(a.) denotes the parent set of attribute a., £;. denotes
the edge weight of a; to a.. This means that the mastery level of
a student s; on a. is constituted by its mastery level on the parent
attributes and a latent personalized factor Z; ,... However, such linear
SCM [4, 14, 26] may be insufficient to capture the intricate causality
among attributes and non-linear SCM [2, 37] may be inefficient to
solve. Furthermore, non-linear functions commonly used in causal
discovery [38] (e.g., MIM, MLP, GP) or Bayesian structure learn-
ing [18] may not be suitable for educational contexts (e.g., the sin
function may represent when the parent attribute level goes somewhat
higher, the child node may descend). Therefore, the generalized linear
SCM [36] is utilized as a layer in neural networks in this paper to
model the complex relation among attributes. The difficulty level
of exercises can be obtained similarly. This results in the following
formulas [36]

Mas = f((I = WM) 'h(Zwm)),Diff = f((I - WM) 'h(Zp)).
ey
Mas € RY*¥ is the mastery level of students and Diff € RE*X
is the difficulty level of exercises. The functions f(-) and h(-) are
applied to perform non-linear transformations on each element in-
dividually in the input matrix. W € R¥** denotes the trainable
matrix. With the given causal graph (without coefficients) as a prior, G
is used as a graph mask, i.e., M in Figure 2. Zs and Zp denote latent
factors for Mas and Diff, respectively. We can estimate the value of
edge weight among knowledge attributes during the training process.
In the context of education, the non-linear functions f and A should
satisfy two fundamental and mild requirements. Firstly, the non-linear
functions should be monotonically increasing, as it aligns with the
conventional intuition that improvements in a parent attributes should
not cause a decrease in its child attributes. Secondly, the non-linear
functions should be (highly) interpretable. This paper selects the
Sigmoid function as the non-linear functions for f and h, as it meets
the aforementioned requirements and can effectively constrain the
mastery level within the range of [0, 1], which is consistent with
existing CDMs [17, 31]. We acknowledge that more complex and
interpretable non-linear functions may be developed in the future
work, and we look forward to exploring such possibilities.

4.2  Q-Augmentation

Educational datasets commonly employ the manually annotated Q-
matrices that are binary. Q-matrix represents the relationship between
knowledge attributes and exercises. As granularity of knowledge at-
tribute categorization increases and big data becomes increasingly
prevalent, Q-matrix is becoming more sparse which negatively im-
pacts the interpretability of CDMs. Besides, as some exercises cor-
respond solely to one fine-grained knowledge attribute, the sparsity
issue worsens. In real-world educational situations, an exercise can
correlate to multiple knowledge attributes while only a few of them
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may receive expert labeling. This paper assumes that the Q-matrix
provided by experts is always correct but may be incomplete.

We call the labeled (e.g., by human experts) knowledge attributes
as explicit knowledge attributes and unlabeled ones as latent knowl-
edge attributes. It is reasonable to explore the relationship between
exercises and latent attributes. To express the connection between
exercises, explicit attributes and latent attributes, we propose to define
the Q-augmentation matrix as Definition 2.

Definition 2 (Q-Augmentation). Q-augmentation represents the rela-
tionship between exercises and knowledge attributes, encompassing
both latent and explicit knowledge attributes. Denote Q-augmentation
as Q, where Qi; = 1ifQi; =1, Qij =€ € [0,1] if Qi; = 0.

One straightforward approach is to train the Q-augmentation as
trainable parameters Qneural through a data-driven process without
constraints. However, there are two limitations. Firstly, the explicit
knowledge attributes labeled by experts may be obscured during train-
ing process. Secondly, the resulting (2 may be too dense, indicating
that each exercise is associated with almost all attributes.

To incorporate expert knowledge, we use the prior () (manually
annotated by experts) as a mask @ a7 and utilize (1—Qar) to represent
the latent relationships between exercises and attributes which should
be updated during the training process. Let © represent the element-
wise multiplication. With (1 — Q) ® Qneural, We can solely derive
relationships between latent attributes and exercises. To sum up, this
paper proposes to augment the Q-matrix by the following formula

Q = (1 - QJW) O) Qneural + QIW . 2)

To prevent the Q-augmentation @ learned from data-driven meth-
ods from being too dense, we propose the regularization term Q(Q) as
Eq. (3) to ensure its sparsity with entry-wise matrix norm ||C|1,1 =
22225 1G] Q(Q) helps reveal the relationship between exercises
and truly relevant latent attributes, while avoiding being misled by
spurious attributes. QQa is not incorporated so as to keep the explicit

attributes invariant. 2(Q) is scaled to an appropriate magnitude.

~ ||(1 _ QM) ® Qneurz\])“l,l

Q) = T T 3

5 Other Details in QCCDM

As mentioned in [6], the student module, exercise module, and their
interactive function are crucial components of CDMs. In this paper,
we adopt embedding and neural network to model each of these
components, which is a prevalent technique in current CDMs. The
whole algorithm is shown in Algorithm 1.

Embedding Module. Given a dataset with N students S =
{s1,82,...,8n}, we initialize s; € R¥ as the factor of i-th stu-
dent, which will be learned automatically during the training process.
The exercises’ difficulty and discrimination are modeled in the same
way. In line with previous work [17, 31], we also model the discrim-
ination of exercises, denoted as Disc € REXL. Bach vector in the
student embedding can be considered a latent factor Zs of knowl-
edge attributes, as mentioned in Section 4.1. Notably, this approach
differs from previous CDMs [8, 17, 31] which directly model the
mastery level of students. With the aid of the SCM layer, we can
obtain the inferred mastery level by performing forward propagation
on the causal graph, as presented in Eq. (1).

Monotonicity Assumption. The monotonicity assumption sug-
gests that as a student’s mastery level of a certain attribute increases,

Algorithm 1: Q-augmented Causal Cognitive Model

Input: Response logs: R = {(s, e,y)}, M: Graph mask, Qs:
Q-matrix, 7": Maximum number of epochs, IB:
Interactive blocks.

Output: Mas: Students’ mastery level, Y': Predicted response

set.

Initialize Zas, Zp, Disc, IB, W, Queural;

fort=1,2,...,7T do

Sample a subset B C R;

Mas < Sigmoid((I — W M)~ 'Sigmoid(Z));

Diff + Sigmoid((I — W M)~ 'Sigmoid(Zp));

Disc « Sigmoid(Disc);

7 Q (1 —Qwm) O Qneurat + Qus;

8 state < Qp © (Masp — Diffz) ® Discg;
9 §j «— Sigmoid (IB(state));
10 L+

— k1P wilog i + (1 — i) log (1 — ) + A~ (Q):

A U B W N =

11 Update parameters Z, Diff, Disc, IB, W, Qneural;
12 end

13 Mas < Sigmoid((I — W M)~ 'Sigmoid(Zxr));

14 Add g to 57;

15 Return Mas and Y.

the probability of answering a related question correctly also increases.
For instance, if two students attempt a calculus question but one has
a higher level of mastery than the other, the former is more likely to
answer the question correctly. To enforce this assumption during im-
plementation, we use ReLU [1] or softplus [7] to ensure non-negative
weights of linear layer, which is referred to as Neg Clipper in Figure 2.

Interactive Block. Existing approaches before NCDM usually
mine linear interactions of student exercising process by manually-
designed function (e.g., logistic function), which is not sufficient
for capturing complex relations in reality. Therefore, NCDM lever-
ages MLP with monotonicity assumption as interactive function and
achieves tremendous performance on large-scale datasets with high
interpretability. However, the exclusive use of Sigmoid in NCDM may
result in vanishing gradients, which can lead to poor performance
in certain cases. We replace Sigmoid with tanh, as it has demon-
strated superior performance in our experiments than other activation
function. Furthermore, we incorporate batch normalization [12] and
dropout [27] to mitigate vanishing gradients issue. The structure of
interactive block is detailedly shown in Figure 2. These modifications
improve the model’s performance and enhance its robustness.

Loss Function. The primary loss function employed in QCCDM
involves calculating the binary cross-entropy loss between the model’s
predictions and the true response scores in a mini-batch. In addition,
to promote the sparsity and interpretability of Q-augmentation, we
utilize regularization, as discussed in Subsection i.Z. Here, )\ serves
as a hyperparameter for regulating the density of (). In summary, the
model’s loss function can be expressed as £ = — > y; log 9 + (1 —

yi) log(1 — 9:) + A - Q).

6 Experiments

This section first introduces the real-world datasets and experimental
setup. Then, extensive experiments are conducted on these datasets in
order to answer the following questions. The code and appendix of
this paper is available at https://github.com/Iswhim/CDM_ILOG.
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Q1: How does QCCDM perform when compared with existing
methods in predicting students’ scores?

Q2: How does QCCDM perform when compared with existing
approaches in terms of interpretability?

Q3: How do SCM and Q-augmentation contribute to the performance
of QCCDM respectively?

Q4: Can QCCDM mitigate the knowledge coverage problem?

Q5: Is Q-augmentation genuinely appropriate for Q-based CDMs?
Q6: How does SCM guide students’ self-improvement by interven-
tion?

Q7: How does the hyperparameter A affect QCCDM?

6.1 Dataset Description

The experiments are conducted on three real-world datasets, i.e.,
Junyi [3], Mathl and Math2 [20]. Junyi is an online math practic-
ing log dataset provided by the Junyi Academy. Math1l and Math2
are collected from a high school math final exam which respectively
contain senior one and senior two students’ response logs in their
exams. For Junyi, just as HIERCDF [17], to guarantee an adequate
number of response logs for each student and reduce the dataset size,
students with less than 15 response logs are filtered out, and 10000
students are selected randomly. Details of these datasets are shown in
Table 1.

Table 1. Statistics of real-world datasets for experiments. Q-sparsity means

the average number of attributes per exercise.

Datasets | Junyi Mathl ~ Math2
#Students 10000 4209 3911
#Exercises 734 15 16
#Attributes 734 11 16
#Response Logs | 408,057 63135 58665
#Edges 927 21 36
Q-sparsity 1 32 3.25

6.2 Experimental Setup

This subsection introduces the experimental setup including compared
methods, performance metrics, interpretability metric and AH metric.
The details of experiment settings are provided in Appendix 1.
Baselines and State-of-the-Art Methods. CDMs can be classified
into Q-based CDMs and Q-irrelevant CDMs according to whether
they rely on @ or not. All the experiments are repeated with 10 seeds.
e MIRT [28] is selected as the representative model of Q-irrelevant
CDMs, which uses multidimensional 6 to model the latent abilities.
e DINA [5] is a typical CDM who models the mastery pattern with
discrete variables (0 or 1).
e NCDM [31] is a cognitive diagnosis model that uses a neural net-
work to replace the traditional interactive function (i.e., logistic func-
tion) with a monotonicity assumption, which is well-suited for large-
scale datasets.
e HIERCDF [17] utilizes the Bayesian network to model the mastery
pattern with DAG.
e KANCD [32] investigates the implicit association between knowl-
edge attributes to mitigate the issue of knowledge coverage, which is
a challenge that arises from the sparsity of Q.
e RCD [8] considers the complex relationships among students, exer-
cises and attributes, and models them with graph neural networks.
Score Prediction Metrics. Evaluating the performance of CDMs
can be a challenging task as it is often infeasible to obtain the true

mastery levels of students. A commonly adopted practice is to assess
the diagnostic models by predicting students’ test scores. Therefore,
akin to previous CDMs [20, 31, 17], we evaluate the performance of
our model on a test set of students’ correctness by utilizing classifi-
cation and regression metrics such as AUC, accuracy (ACC), RMSE,
and F1 score after partitioning the data into train and test sets. We
adopt the same test size that is 0.2 as in previous work [17].
Interpretability Metric. While evaluation metrics can assess the
accuracy of CDMs, obtaining interpretable diagnostic results is also a
crucial aspect of CD. To this end, we utilized the degree of agreement
(DOA), which is the same as [17, 31]. Intuitively, if a student s,, has a
higher accuracy in answering questions related to an attribute ay than
a student s,,, then the probability of s, mastering a, should be higher
than that of s,, i.e., Masy,r > Mas,,. DOA is defined as Eq. (4)

TF1 4k AT (G, 0)AS (g o)
S aje AT Gu) AT (Vg Ayog)

)

“
where @ is a normalization factor calculated as the sum of delta func-
tion 6(Masyx, Mas, ) over all student pairs, g, represents whether
an exercise e; is related to an attribute ax, J(j, u, v) indicates whether
both s, and s, answered e}, y.; denotes the response of a student
Su to e, and I (yu; # Yv;) indicates whether their responses are
different. 0 (Yuj, Yv;) is 1 if the response of student s,, is correct and
that of s, is incorrect, and 0 otherwise. On Math1 or Math2, DOA is
computed as the mean of all attributes, whereas on Junyi, we use the
average of the top ten attributes with the highest number of logs [17]
due to its large number of attributes.

AH Metric. To assess whether the end-to-end training process
effectively models the causality between attributes, we use the Spear-
man rank coefficient [11] which is formulated as Eq. (5).

6N @2
re(Mase,a, , Masa o) = 1 - % ’ ©

Zu,ves 6 (Masuk7 Masvk)

DOA; =

where Mas, j stands for the k-th column of matrix Mas. Herein a,
and a. must be a parent attribute and a child attribute respectively,
and d; = rank(Mas, 4, ) — rank(Mas, .. ). We calculate the average
coefficient of all the given causality.

6.3 Experimental Results

Predict Performance (Q1). Table 2 shows that QCCDM almost
outperforms both compared Q-irrelevant and Q-based CDMs. Due
to the typically low standard deviation (lower than 0.001) of CDMs,
we do not report them in the table. As RCD requires both directed
and undirected graphs, we only utilize the directed part for a fair
comparison. While RCD has a higher F1 score on Mathl, KANCD
obtains a lower RMSE on Math2, the other metrics are significantly
lower compared to QCCDM. This indicates that QCCDM outperforms
existing CDMs in predicting student scores.

Interpretability Performance (Q2). We assess the interpretabil-
ity of the inferred mastery levels of different methods by DOA. As
shown in Figure 3(a), QCCDM outperforms NCDM, KANCD and
HIERCDF in all three datasets in terms of DOA, indicating that QC-
CDM can accurately infer the mastery level while maintaining high
interpretability. We also verify the QCCDM’s capability of clustering
students with different levels using t-SNE [30], a visualization tech-
nique employed to map students according to their Math?2 test scores
(with 16 being the highest score attainable). Specifically, we assign
each student a label based on their test score, and apply t-SNE to
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Table 2. Overall predict performance. In each column, an entry is bold if its mean value is the best. An entry is marked with solid circle if it is significantly
worse than QCCDM and marked with hollow circle if it is significantly better than QCCDM by ¢-test with significance level 5%.

‘ Junyi ‘ Mathl ‘ Math2

Algo. ‘ AUC ACC RMSE Fl ‘ AUC ACC RMSE Fl1 ‘ AUC ACC RMSE Fl1
DINA 0.6353e 0.5002e 0.5263e 0.5786e 0.6795e 0.4744¢ 0.5456e 0.2501e 0.6831e 0.5076e 0.5390e 0.1934e
MIRT 0.794%¢ 0.7626e 0.4057e 0.8354e 0.7438e 0.6784e 0.4565e 0.7179 0.7683e 0.6962e 0.4495¢ 0.6916
NCDM 0.7839%e 0.7485e 0.4106e 0.8254e 0.7450e 0.6774 0.4536e 0.7164e 0.7708e 0.6949¢ 0.4443¢ 0.6874 ©
HIERCDF | 0.7848e 0.7516e 0.4098e 0.8292e 0.7426e 0.6727e 0.4528 0.73730 0.7689e 0.6897e 0.4522e 0.6941
KANCD 0.7992e 0.7610e 0.4034e 0.8346e 0.7514 0.6835 0.4456 0.7330 0.7798 0.7005 0.4380 0.7001
RCD 0.8145¢ 0.7716e 0.3963 0.8348e 0.7410e 0.6779e 0.4497 0.74120 0.7740e 0.6967e 0.4484 0.7011
QCCDM | 0.8171 0.7762 0.3928 0.8445 | 07553 0.6856 0.4446 0.7232 | 0.7815 0.7013 0.4401 0.7020

Table 3. Abaltion Study. QCCDM-C refers to the variant of QCCDM that solely utilizes the SCM layer, while QCCDM—@ corresponds to the variant that

exclusively employs Q-augmentation. The meanings of bold, solid circle and hollow circle are the same of Table 2.

| Junyi | Math1 | Math2
Algo. ‘ AUC ACC RMSE F1 ‘ AUC ACC RMSE Fl1 ‘ AUC ACC RMSE Fl1
QCCDM-C | 0.8060s  0.7673e  0.4013e  08406e | 0.7462e  0.6821 04512 074250 | 0.7702e  0.6912e 04554 07140
QCCDM-Q | 081650 0.7736e  0.3949 0.8439 0.7478¢ 06831 045040 073040 | 0.7762 0.6987¢ 04440 0.7042
QCCDM | 08171 0.7762 0.3928 0.8445 | 0.7553 0.6856 0.4446 07232 | 07815 0.7013 0.4401 0.7020
mm ccoM  EEE QCCDM.G  mEE HIERCDF —QCCDM  EER QCCOM.G D HIERCDF exhibit a discernible pattern from left to right. Conversely, this is not
S QecowC EENCOML = Rane :' Qeewme S NeDM L R the case in NCDM from Figure 4(d) or HIERCDF from Figure 4(e).
. 2) Notably, the average-level students in QCCDM exhibit relatively
5075 higher dispersion. This finding is rational in real-world scenarios,
;% os since students with similar average score of the entire class may differ
g in their specific fields of strengths and weaknesses. 3) QCCDM is
NN go.zs capable of accurately capturing the polarization phenomenon that may
1! . o [ exist within a class, where students with exceptionally high or low
Math2 T Juyi Mathl  Math? scores are more tightly clustered than those with average scores.

(b) Spearman rank coefficient

Figure 3. DOA and Spearman rank coefficient of each method.

(a) t-SNE of QCCDM-Q

(b) t-SNE of QCCDM-C

o

(c) t-SNE of QCCDM

(d) t-SNE of NCDM

(e) t-SNE of HIERCDF

Figure 4. t-SNE visualizations of inferred Mas by different methods on

Math?2 dataset.

reduce the dimensionality of the inferred mastery levels obtained by
NCDM, HIERCDF, and QCCDM. As shown in Figure 4, we have the
following three key observations. 1) We can discern that in Figure 4(c),
students who have answered the same number of questions correctly

Ablation Study (Q3). To understand how the SCM and Q-
augmentation components affect the performance of the QCCDM, we
conducted an ablation study where different versions of QCCDM are
tested. QCCDM-C refers to the variant of QCCDM that solely utilizes
the SCM layer, while QCCDM-@ corresponds to the variant that
exclusively employs Q-augmentation. The results, which are shown in
Table 3 and Figure 3(a), reveal that both components have a substantial
positive impact on the performance and interpretability of the model.
Although QCCDM-C outperforms QCCDM in terms of DOA on the
Junyi, this can be largely attributed to the significantly larger number
of knowledge attributes that pose a greater challenge for precisely
identifying the latent knowledge attributes and exercises, thereby af-
fecting the performance of QCCDM. Besides, the high Spearman
rank coefficients observed across all three datasets suggest that in-
corporating the causality between knowledge attributes during the
training process is an effective strategy, as depicted in Figure 3(b). In
contrast, NCDM, KANCD and HIERCDF, exhibit poor performance,
suggesting that the inferred mastery levels of individual attributes
in these methods may not be strongly correlated with one another.
We employ t-SNE to visually represent the inferred mastery levels of
various versions of QCCDM applied to the Math2, which are shown
in Figure 4(a)(b)(c). The findings suggest that the Q-augmentation
can achieve more compact clustering of students with comparable test
scores, while the SCM layer provides a more profound understanding
of the distinctions between individual students. Figure 4(c) demon-
strates that the integration of SCM and Q-augmentation components
in QCCDM yields more comprehensive clustering results, suggesting
a complementary relationship between the two components.

Knowledge Coverage Problem (Q4). Like previous work [32],
in contrast to randomly splitting the logs, we choose to designate
e2, e3, €16 in Math2 dataset [20] as the test set, whereas considering
all other exercises as training set. This design ensures that the CDMs
will not encounter certain attributes (unseen attributes a1, az, infre-
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2 QCCDM-Q B HIERCDF
X1 NCDM EE KACDM

EEE QCCDM
BN QCCDM-C

ar as aio
Missing Attributes

Figure 5. DOA of missing attributes. QCCDM—@ and QCCDM-C are the
ablation of QCCDM.

quent attributes a10) associated with ez, e3, e1g during the training
phase. As shown in Figure 5, existing CDMs may not get reason-
able diagnosis result, but all versions of QCCDM achieves better
interpretability with high DOA. KANCD leverages knowledge asso-
ciation to mitigate the knowledge coverage problem. However, its
interpretability may be limited by the assumption of implicit rela-
tionships between knowledge attributes. Causal model can provide
more reasonable diagnostic results. For instance, a student may have a
strong grasp of calculus, but the knowledge of multivariable calculus
may be limited or absent from a standard exam. Due to insufficient
updates during training, current CDMs may generate inexplicable
diagnostic results for multivariable calculus.

However, given the causality between calculus and multivariable
calculus, students who exhibit strong aptitude in calculus are likely
to excel in multivariable calculus as well. The incorporation of Q-
augmented allows us to capture the hidden associations between
exercises and multivariable calculus, effectively reducing the impact
of selection bias. In summary, both SCM and Q-augmentation ap-
proaches can effectively mitigate the knowledge coverage problem
and the combination of these methods yields highly efficient results.

Versatility of Q-augmentation (QS5). Building upon the fact that
the inclusion of @) significantly improves the interpretability of CDMs,
we substitute @ with Q-augmentation in Q-based CDMs and carry
out comparative experiments, as presented in Table 4. For instance, Q-
DINA denotes DINA with Q-augmentation. Q-augmentation clearly
outperforms manually designed () in CDMs, as evidenced by its
higher accuracy and DOA. Notably, NCDM, HIERCDF, and KANCD
show significant improvements with Q-augmentation, while DINA
only has slight enhancements due to its discrete mastery pattern. We
also analyze that Q-augmentation can better describe the relationship
of exercise’s difficulty and knowledge attributes in Appendix 2.

Self-Improvement (Q6). Intuitively, causality can play a critical
role in guiding students’ self-improvement through intervention [23].
Figure 6 demonstrates the intervention undertaken on Student 3436
from Math2, who answered only one question correctly (bottom row
in Figure 6) due to low calculation capability (CC). Consequently, we
intervene on Student 3436’s CC (i.e., assign more related exercises,
change learning strategies or environment) and calculate the probabil-
ity of accurate responses to each question in the future (shown in the
third row). These probabilities are contrasted against the probabilities
prior to the intervention, as depicted in the second row. For instance,
ep is associated with the properties of inequality and CC. This student
shows significant improvement when the CC increase, indicating that

Table 4. Comparing the mean performance of Q-based CDMs with replaced

Q-augmentation (i.e., Q-DINA). The meanings of bold, solid circle and
hollow circle are the same of Table 2.

Datasets | Metrics | DINA ~ Q-DINA | NCDM  Q-NCDM | HIERCDF ~ Q-HIERCDF | KANCD ~ Q-KANCD

AUC 0.6350e 0.6438 0.7779 0.8119 0.7824e 0.7953 0.7845e 0.8142

ACC 0.5001e 0.5186 0.7432e 0.7713 0.75060 0.7581 0.7500e 0.7721

Junyi RMSE 0.5261 0.5232 0.4145¢ 0.3997 0.4122e 0.4076 04111e 0.3954
Fl1 0.5783e 0.6043 0.8219¢ 0.8377 0.8261e 0.8317 0.8316e 0.8405

DOA 0.5063 0.5065 0.5022e 0.5696 0.4796e 0.5033 0.5612e 0.6114

AUC 0.6795 0.6839 0.7457e 0.7519 0.7443 0.7446 0.7514e 0.7564

ACC 0.4744 0.4757 0.6780 0.6806 0.6739 0.6769 0.6835e 0.6892

Math1 RMSE 0.5456 0.5462 0.4523 0.4506 0.4524 0.4567 0.4456 0.4417
Fl 0.2501 0.2489 0.7320e 0.7441 0.7272e 0.7503 0.7330e 0.7378

DOA 0.5056 0.5067 0.5334e 0.5594 0.5593e 0.5761 0.5711e 0.6005

AUC 0.6817e 0.7024 0.7671e 0.7759 0.7686 0.7642 0.7798e 0.7811

ACC 0.5065¢ 0.5271 0.6911 0.6950 0.6728 0.6705 0.7005 0.7022

Math2 RMSE | 0.5411e 0.5331 0.4467 0.4429 0.4500 0.4513 0.4380 0.4374
Fl1 0.19170 0.1598 0.6757 0.6760 0.6326e 0.6859 0.7001 0.7015

DOA 0.5042e 0.5115 0.5440e 0.5738 0.5762e 0.5827 0.6161e 0.6372

Before Intervention

After Intervention

@ 0.8
@) @3)
@Hkuimmn @ Property of .@ Arithmctic .@ Lincar Geometric
Capability Incquality Progression Programming @ Progression
[+ a’ cfore J Inidal Log
Intervention Intervention of Student Probability
1.0
a 039 0.14 mm 052 034 n.\:-n.nv 039 0.1 041 04 043
{035 029 008 0.12 007 013 009 007 022 009 0.09 0.I7 0.08 007 007 007 0.5
14 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
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Figure 6. Intervention result of student 3436 in Math2 dataset.

he or she may have failed to answer the question due to the low CC.

Hyperparameter Analysis (Q7). We conduct a hyperparameter ex-
periment to study the effect of A on the density of () across all datasets.
The results, presented in Appendix 3, show that increasing the value
of )\ leads to more sparse (), which can negatively impact the model’s
performance, as indicated by the lower F1 score on Math2. Besides,
a higher value of A\ may result in each exercise being related to all
knowledge attributes, which is not reasonable. Thus, it is important to
maintain a reasonable range for A to ensure that the relation between
exercises and latent knowledge attributes is effectively captured while
maintaining good prediction performance for students.

7 Conclusion

This paper presents a novel framework QCCDM, which leverages
a SCM layer to provide more accurate diagnostic results in the con-
text of sparse (). We also propose continuous Q-augmentation as an
enhancement for the manually labelled @ provided by the dataset,
which allows for exploiting the relationship between latent knowledge
attributes and exercises. Compared with existing CDMs, QCCDM pro-
vides superior performance and interpretability. Notably, the causality
between knowledge attributes can aid students in personalizing their
self-improvement strategies. Q-augmentation is versatile and can be
applied to Q-based CDMs. QCCDM is an attempt to take a solid step
forward in developing both interpretable and accurate CDMs that can
aid in students’ personalized learning, hoping to take the best of both
worlds. In the future, developing strategies for utilizing SCM without
knowing the causal graph as a prior is expected.
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