ECAI 2023
K. Gal et al. (Eds.)
© 2023 The Authors.

1513

This article is published online with Open Access by 10S Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).

doi:10.3233/FAIA230431

Label Aggregation with Self-Supervision Enhanced
Graph Transformer

Jiacheng Liu*, Feilong Tang®* and Xiaofeng Hou"

aDepartment of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
bDepartment of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
¢School of Data Science and Engineering, East China Normal University, Shanghai, China

Abstract. Aggregating noisy labels produced by the crowd of work-
ers to generate true labels is a challenging problem in crowdsourcing.
The key behind label aggregation is to effectively utilize the hidden
information (e.g., characteristics of workers and questions which are
often missing) in the labeling process. Existing methods mainly gen-
erated aggregation models based on the complicated Bayesian model
or some strong assumptions. Recently, deep learning-based meth-
ods attempt to automate label aggregation but need various labels.
These all make them hard to deploy to real-world applications. In fact,
abundant information in the process of crowdsourcing itself can be
extremely helpful to aggregate the labels. In this paper, we propose
ATHENA (IAbel aggregaTion witH sElf-supervision eNhanced grAph
transformer) to aggregate labels by utilizing the self-supervision sig-
nals in crowdsourcing. Firstly, we propose a transformer-based graph
neural network that can learn from the crowdsourcing topology and
features. Then, we use self-supervision signals inherently included in
the dataset to help to aggregate the labels. To be specific, we identify
the answer-based self-supervision signal that can predict the answer
of any user given to different tasks. In our evaluations, we compare
the proposed ATHENA with the other 11 representative methods on
10 datasets. Our experimental results demonstrate that ATHENA is
highly effective in aggregating labels and obtains much better perfor-
mance than existing methods.

1 Introduction

Crowdsourcing is the practice of utilizing the wisdom of millions
of human workers to produce more efficient and accurate machine
learning methods. For example, the ImageNet dataset built with crowd-
sourcing [29] has significantly improved the accuracy of computer vi-
sion. Despite the advantages of crowdsourcing, the crowdsourcing an-
swers are always noisy due to several reasons such as the difficulty of
the task and the diverse backgrounds of the workers. Therefore, aggre-
gating these noisy labels to generate the correct labels has become an
important research topic that attracts many researchers [40, 41, 1, 27].

In the process of label aggregation, it is critical to accurately es-
timate the ability of various workers and the difficulty of different
tasks. However, it is impossible to directly obtain this kind of ability
or difficulty. Instead, we have to estimate them based on other hidden
information in the labeling process. Taking the flower image labeling
task as an example, the workers who have a hobby related to flowers
are likely to have better abilities. To estimate the ability or difficulty,
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a large number of approaches based on different strategies have been
proposed to exploit these hidden signals in the crowdsourcing process.
Among these, most approaches simply model the process of label
aggregation with strong assumptions which makes them sub-optimal.
For example, some approaches use a probabilistic graphical model
to emulate the generation process of the answers [38, 45]. These
assumption-based approaches can reveal some hidden signals but
may fail when the assumptions are inaccurate or incorrect. Recently
motivated by the success of deep learning, there are a few approaches
that try to use deep neural networks to automatically learn the hidden
signals [40, 23]. Although these methods are theoretically applica-
ble, in practice, it is often difficult to achieve good results due to the
high complexity of the models. Furthermore, these approaches either
require a substantial amount of data [23] or heavily depend on task-
specific features [8, 40, 1]. All these approaches can not effectively
reveal the hidden signals in crowdsourcing.

To devise an effective label aggregation method, we need to tackle
two-fold challenges. The first one is how to get rid of the strong
assumptions. Given a complicated label aggregation problem, an over-
simplified aggregation model may lead to inaccuracy and make it
hard to get the true answer. Recently, some methods try to allevi-
ate the dependence of label aggregation on strong assumptions by
generating aggregation models in an unsupervised manner. However,
in practical scenarios, few labeled data are always available before
distributing the crowdsourcing task to the crowds of workers (e.g., is
a common practice to add the golden questions in the crowdsourcing
process [4, 33]). Hence, a completely unsupervised approach might
not be optimal. The second one is how to aggregate the labels with-
out enough amounts of labels or features. Since label aggregation is
mainly used for building a large labeled dataset, it may not initially
have large amounts of labels. This will be especially challenging for
some deep learning methods that highly depend on the labeled data. It
is attractive to aggregate labels based on more available and intuitive
features in crowdsourcing tasks like their typologies.

In this paper, we propose [Abel aggregaTion witH sEIf-supervision
eNhanced grAph transformer termed as ATHENA (as shown in Figure
1). Firstly, ATHENA addresses the above challenges by introducing a
novel representation approach, which learns to present the attributes of
workers and tasks by a graph transformer with minimal assumptions.
The graph transformer learns the representations with an effective self-
attention mechanism which helps to fuse different tasks’ and workers’
attributes. In this way, using the graph transformer can effectively
solve the challenge of strong assumptions. Secondly, we demonstrate
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Figure 1: Overview of ATHENA. (a) Constructing a labeling graph to present the crowdsourcing task. (b) Dropping some answers to prevent
overfitting. (c) Implementing a transformer-based graph neural network to infer the features of workers and questions. (d) Using predicted
answers to train ATHENA for accurate label aggregation.

that conventional GNN-based aggregation models established in a
semi-supervised way cannot excel at realistic label aggregation with
little initial labeled data (e.g., less than 10). In ATHENA, we alleviate
the dependence of label aggregation on large amounts of labeled data
by constructing effective self-supervision signals. They mainly exploit
the inner structure of data to make the graph transformer can work
with minimal initiate labels. Overall, our proposal lies in the fact
that the process of crowdsourcing itself contains much information
that helps model the tasks and the answers. Once we set the learning
objectives properly, we can get supervision from the crowdsourcing
task itself. The contributions of the paper are as follows,

e To the best of our knowledge, we are the first to apply self-
supervision to aggregate labels in crowdsourcing tasks with graph
transformers.

e We develop a new transformer-based graph neural network model
that can fuse tasks, workers, and answers in the label aggregation
process.

e We design a novel algorithm that uses several effective self-
supervised tasks to abstract the important signals but hidden in
noisy labels.

e To validate our proposed method, we compare it with other 11
existing label aggregation methods based on 10 real-world datasets.
The results show that ATHENA performs best on different crowd-
sourcing problems.

2 Graph Transformer-based Label Aggregation
Model

In this section, we begin by presenting the problem formulation (sec-
tion 2.1), followed by an introduction to the feature representation
(section 2.2) and the graph transformer model (section 2.3).

2.1 Problem Formulation

Without loss of generality, we consider optimizing label aggrega-
tion in classification tasks. This process contains two sets of entities,
namely, the task set T = {t1,t2,...,t,} including n tasks and the
worker set W = {w1,wa, ..., wn} of m workers. We assume that
the classification task has p options, compromising an option set
called O = {01, 02,...,0p}. In this paper, we consider a realistic
classification scenario where a worker only answers a partial set of
tasks. We denote the set of workers answering the task ¢; as W',
We also depict the set of tasks answered by the worker w; as T*?.
We leverage A = {a;”]_i} to represent all the collected answers in the
crowdsourcing task. The af;?‘ means the answer of task ¢; provided
by worker w;, which belongs to the option set O.

To incorporate all the information into the process of label aggrega-
tion, we present the classification task as a labeling graph as shown in
Figure 1(a). We denote this graph as G = {V, ¥, X, E}, where V is
the node set that contains both of the worker nodes and task nodes, ¥
is an edge set, X is a node attribute set and E is an edge attribute set.
By representing the information as a labeling graph, not only are the
collected answers depicted, but all interactions between the workers
and questions are effectively captured.

Based on the labeling graph, we define label aggregation as shown
in Definition 1. In the initial process of label aggregation, there are
always a few labeled data available [4]. We term these initially labeled
data as golden answers. Thus, the label aggregation with a few golden
answers can be defined as,

Definition 1 (Label aggregation with a few golden answers). In a
label aggregation problem, given its labeling graph G and a small set
of labeled tasks T with their true answers, we aim to aggregate the
true label of each task in 'T.
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2.2 Feature Representations

While the structure of G is intuitive, extracting the hidden information
from the graph to estimate the abilities of workers and the difficulties
of tasks can be a challenging task. There has been limited work
on learning the hidden information provided by G [41]. However,
we address an even more challenging scenario where the feature
representation of workers or tasks is unknown. Inspired by previous
works [8], we use the noisy ability and the noisy requirement as the
features for workers and answers respectively. Specifically, we first
use the majority voting algorithm to get a reliable answer for each task
as a¢,;. Then, for each worker wy, its feature F% is a n dimensional
vector, which is defined as,

FYi = [1(@? = &t1)7 o 71(awi = a’tn))] (H

tn

where 1(at“;i = a4, ) is a indicator function. If the answer of worker
w; to task t; is the same as the majority voting result, namely af;? =
at;, the value of 1() is 1 otherwise 0. If the worker does not answer
the task, we will fill it with -1. We encode the task’s feature in a
similar way. Differently, each dimension of the task feature vector
represents if a worker gives the correct answer to the task. Finally, the

edge feature is set to the one-hot encoding of the answers.

2.3 Graph Transformer

Based on the labeling graph G, ATHENA uses a graph neural network-
based approach to learn the representation of workers and tasks as
shown in Figure 1(c). We choose the transformer-based GNN to
aggregate the label for the following reasons:

o Firstly, the graph provides an informative and intuitive represen-
tation for the problem of label aggregation. A labeling graph can
present comprehensive information.

e Secondly, one of the most difficult challenges in label aggrega-
tion is that in most cases a worker only answers a small fraction
of questions. This poses a difficulty for traditional deep learning
approaches, which may not perform well on extremely sparse data.

o Thirdly, it is well recognized that the transformer-based GNN is the
most effective approach to model this graph learning problem [31].
Furthermore, this approach is highly interpretable, allowing for a
better understanding of the resulting models and their predictions.

Inspired by the idea of Transformer [35, 31], we propose a novel
transformer-based graph neural network to learn the representations
of the constructed labeling graph. For simplicity, we only illustrate
the learning process of the tasks’ representation in this part. We omit
the learning process of the workers’ feature, which is carried out in a
similar manner.

In our transformer-based graph neural network, we present worker’s
features in layer [ with H., = {h%, , hL,,--- AL 7} and tasks’
features in layer [ with H} = {hi1 , hiz, cee hffn }. We first encode
the features of the central node and its neighbors with different weight
parameters (W,i, wi, Wé) and bias parameters (bﬁﬂ, b, bf]) and map
them to the same dimension d. The query vector, value vectors, and
key vector of the transformer are respectively calculated with the
following equations.

al, Wik, + b}
Vi, =Wihi,, + by, )
k,,, =Wihi, +bj

The edge features in the labeling graph contain much meaningful
information about the answers. To incorporate these, we also encode
them to the same dimension as the tasks’.

e;; = Wiej; + bl 3)

where W and b are the weight and bias parameters at layer [. Then,
we calculate the self-attention weight from worker node w; to task
node t; with the exponential scale dot-product function. The self-
attention weight sﬁj is formulated as,

TR, + e
séj = exp (qtl ( \/7& ) 4)

where d is the dimension of the hidden layer. Based on these, the final
attention is calculated as

1

Oc%;, i= #l (5)
Zje/\f (t;) Sik

where N (t;) is the set of worker nodes that answered task node ¢;.

After getting the attention, we can aggregate the feature of task node

g based on the attention value. In addition, we also include the edge

feature e;; by adding it to the value vector. Thus, we compute the

feature of task ¢ with,

BO = 3 o (V0 +en) ©
JEN (i)

To help stabilize the result, we adopt the multi-head attention mech-
anism that trains C' attention layers simultaneously and eventually
concatenates them as the output. In this way, the feature of the task ¢
is ultimately computed with

B = S0 | D0 el (W) +ees) ™
JEN (i)
where || is the concatenation operation for different head attentions.
Then, the output is passed to a fully connected network.
To prevent the over-smoothing problem, we also add a residual
connection as,

h!™" = Norm(h! + W.h! + bl) 8)

where W is the weight matrix in layer I, bl. is the bias term, and
Norm is a normalization layer [3]. It performs the following compu-
tations.

x — E[x]
\/ Var[x] + €

where the mean E[x] and standard-deviation Var[x] are calculated
across all nodes and all node channels.

Based on the output of the graph transformer, we finally leverage
fully connected layers to map these representations to predict the
correct labels of the crowdsourcing tasks.

Norm(x) = Oy+B )

ai; = o (Mp---ReLU (Mih, + bi) +b7),  (10)

where o is the softmax function, M! is the weight matrix, and b, is
the bias term.

Finally, we leverage the cross-entropy loss function to measure the
label computation loss between the predicted tasks’ labels and the
true labels as follows,
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el
Lo==> > aymlogi, m (11)
teT* m=1

where a¢ om is a binary indicator (i.e., 0 or 1) of the class label m for
the probability of task node ¢;.

3 Training with Self-Supervision Signals

The transformer-based graph neural network proposed in this work
can demonstrate strong performance when trained on a large amount
of labeled data. However, in the context of label aggregation, obtain-
ing a sufficient number of labeled examples is often infeasible. To
address this challenge, we propose a novel approach that leverages
self-supervised learning techniques, informed by recent progress in
the field [46, 32]. By incorporating a well-designed self-supervision
signal, our method allows for effective training of the transformer-
based graph neural network using a limited set of labeled examples,
thus mitigating the need for a large amount of labeled data.

3.1 Predicting Worker’s Answer

Instead of collecting the initial labels of tasks before the label aggre-
gation process, we compute a predicted answer based on the workers’
answers to specific questions, which is easier to obtain. Specifically,
the predicted answer of a worker to a task is inferred with the repre-
sentations of the worker and the task as shown in Figure 1 (f). Ideally,
these representations reflect the characteristics of the worker and the
task. For the task, the feature reflects its requirements on domain
knowledge, and for the worker, the feature represents his ability to
handle this task. Thus, to alleviate the dependence on initial labels,
we design a method that can predict the worker’s answer to a given
task based on the learned representations.

Specifically, given worker w;’s representation h.,;, and task ¢;’s
representation /vt , we train a model to predict the answer a,’. This
forms a new classification problem that derives large amounts of labels
directly from the labeling process. To build this answer prediction
model, we first concatenate the representations of the worker and task.
Then, we use a fully connected network to predict the answer. The
predicted answer is computed as follows,

ay’ = o (M- ReLU (M{ (huw,, ht;) +b7) +bL) ,  (12)

where o () is the softmax function, (h., , ht;) means the concatena-
tion of hy,; as well as hy;, MY is the weight matrices and b5 is the
bias term.

Afterward, we can use the predicted answers to train our
transformer-based graph neural network. In the training process, we
use the cross entropy loss function to iteratively update the parameters
in the neural network. The answer prediction loss is formulated as.

O]

Lo=— Z Z a;';";m log &;‘;i’m (13)

acA m=1

where at“;i,m is a binary indicator of class label m for the probability
that the worker w; answers the question ;.

3.2 Adaptively Drop Answers

Given that the structure of the graph in label aggregation tasks is
primarily determined by how the crowd workers are assigned to tasks,
it may not necessarily reflect the workers’ actual abilities. To address

Algorithm 1 The Training Algorithm for ATHENA

Input: The labeling graph G, the number of attention heads K, the
learning rate 7).

1: Calculating the features of G according to Eq. (1)
2: for epoch < maxEpoch do
3:  Dropping some answers, i.e., the edges of G.
Learning tasks’ and workers’ representations.
Calculating the label prediction by Eq. (10).
Predicting the answers by Eq. (12).
Calculating the loss with Eq. (15).

8:  Backpropagation and updating parameters.

9: end for
10: return The labels of all tasks.

Nk

this issue, we propose a method for dropping answers which can help
alleviate the influence of the assignment process.

We observe that if multiple workers do not provide a response for a
particular task, it is unlikely to significantly impact the true label for
that task. Leveraging this insight, we introduce an adaptive dropping
mechanism to remove unnecessary answers and prevent overfitting.
Specifically, we utilize answer dropping techniques for two reasons:

e In the label aggregation problem, the graph structure is highly
influenced by task assignments [34]. But we do not want this as-
signment bias to influence the final results. So we propose dropping
answers that can change the structure of the graph to alleviate this
bias.

e Meanwhile, this proposal also has some sort of connection with
the regularisation technique in the graph learning community like
DropEdge [28]. Therefore, this can also prevent our model from
overfitting.

Instead of randomly dropping answers in prior work [28], we se-
lectively drop some answers according to their relative importance
to produce the task label. In a label aggregation process, important
answers follow the principle that the majority is more informative.
Therefore, we compute the probability of dropping an answer as,

1—1(a = a,)
>2,(1=1(ay) = au,))

where a:,, is the answer of ¢,, generated by majority voting.

P(ayi) = (14)

3.3 Training Algorithm

The overall loss in the training process of ATHENA is determined by
both the label prediction loss and the answer prediction loss, namely
the £, and L,. To efficiently utilize different training signals, we
adjust the weight of these two types of loss functions to compute the
overall loss. Thus, the overall loss function is formulated as follows,

_ P _ P
L= 2L+ (1= 25t (15)

where ep is the current time epoch index and E P is the overall number
of the time epoch. Based on the overall loss, we train ATHENA
according to the algorithm shown in Algorithm 1. In this algorithm,

e We first construct a labeling graph G to represent the classification
problem using equation (1) (line 1).

e Then, we drop some of the answers according to their predefined
probability as shown in Section 3.2, Meanwhile, we learn the
representations of the workers and tasks with a graph transformer
(lines 3-4).
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o After that, we get the tasks’ labels and the predicted answers ac-
cording to Section 3.1 (lines 5-6).

o Finally, we update the parameters of ATHENA based on the overall
loss (lines 7-10).

Table 1: Statistics of the datasets used in our experiments.

Dataset  Worker Task Answer Option
SENTI 1,960 98,980 569,274 5
FACT 57 42,624 214915 3
TREC 762 19,033 88,385 2
WEB 177 2,665 15,567 5
ZC_all 78 2,040 20,125 2
ZC_in 25 2,040 10,495 2
ZC_us 74 2,040 11,155 2
DOG 109 807 8,070 4
MS 44 700 2,945 10
CF 461 300 1,720 5

4 Experiments and Evaluations

This section presents an overview of the datasets and baselines used
in our experiments, followed by a detailed presentation of the perfor-
mance results and analysis of ATHENA.

4.1 Experimental Methodologies
4.1.1 Datasets

For our experiments, we selected 10 real-world datasets that have
been previously used in related works [14, 36, 45, 44, 27]. These
datasets, as shown in Table 1, vary in size from 300 to over 90,000
records, and cover a diverse range of classification crowdsourcing
problems. Specifically, they include both binary and multi-class clas-
sification tasks, and cover a variety of classification domains such as
sentiment analysis and entity recognition. For our proposed ATHENA,
we randomly selected 9 tasks and provided them with golden labels.
These datasets were selected to provide a comprehensive evaluation of
our approach in various settings and to demonstrate its effectiveness
across a diverse range of crowdsourced classification problems.

4.1.2 Baselines

To conduct a comprehensive evaluation of our algorithm, we compare
ATHENA with eight other mainstream classic methods.

o MV (Majority Voting) is the most conventional method which se-
lects the most voted answer as the true label.

o DS (Dawid & Skene) is a label aggregation method based on the
EM approach, which only considers the model of the individual
worker [5].

o GLAD (Generative model of Labels, Abilities, and Difficulties) is
a representative label aggregation method that constructs a proba-
bilistic model of task and worker to infer the true label [38].

e PM (Participant-Mine voting) leverages a weighted aggregation
approach to estimate workers’ ability in order to obtain the right
answers [2].

o CATD (Confidence-Aware Truth Discovery) simply treats the work-
ers differently and adopts a weighted majority voting model to
estimate the confidence interval of worker credibility [16].

o BWA (Bayesian Weighted Average) depends on the Bayesian model
to adjudicate highly redundant annotations [18].

e [BCC (Independent Bayesian Classifier Combination) focuses on
exploiting worker correlation for label aggregation [15].

e EBCC (Enhanced Bayesian Classifier Combination) is enhanced
with an independent Bayesian classifier combination based on
IBCC [19].

Additionally, we compare it with three recently proposed deep
learning-based methods.

o [AA (Label-Aware Autoencoders) is a representative method that
integrates a classifier and a reconstructor into a unified model to
infer labels in an unsupervised manner [40].

o TiReMGE (Reliability-driven Multiview Graph Embedding frame-
work for Truth inference) is a method that can infer the truth with a
multi-view graph embedding framework [39].

e BAT (Bipartite Attention-driven Truth) is a method that represents
the labeling process as a bipartite graph and uses the designed
graph attention neural network to infer the truth [23]. Since this is
a semi-supervised learning algorithm that uses lots of labels, we
compare it using the same amounts of labels as ATHENA.

In addition to these existing baselines, we would like to highlight
that some, such as DS and GLAD, can be extended to a label-enhanced
version that can be viewed as a semi-supervised variant of the original
algorithm. Therefore, we also implement five label-enhanced algo-
rithms: EDS (enhanced DS), EGLAD (enhanced GLAD), ECATD
(enhanced CATD), EPM (enhanced PM), and ELAA (enhanced LAA).

Specifically, as all of these label-enhanced algorithms are based on
a variant of the EM algorithm, we use the same number of labeled
questions in the E-step. Specifically, we use the correct label instead
of the label estimated by the model to infer the parameters. These
algorithms are also trained using the same initial labels as those used
in ATHENA. In order to assess the effectiveness of these initial labels
in our proposal, we compare ATHENA to the five label-enhanced
variants of the compared baselines. To ensure a fair comparison, we
use the implementation and parameters of these baselines as reported
in their respective papers. Additionally, we run all of these baselines
on a server equipped with an Intel Xeon Gold 6148 CPU and 128GB
of memory. Due to the large size of some datasets, such as SENTI,
the LAA algorithm encounters a memory error. Therefore, we set the
value as null for these datasets.

4.2 Performance Analysis

In this part, we first compare our proposed ATHENA with the other 11
methods. As we can see in Figure 2, ATHENA can get better results in
these datasets with extremely few labels, while existing methods only
perform well in some cases. Among the traditional methods, EBCC
only achieves the second-best performance on four datasets, while
DS achieves the best on two datasets. Although PM achieves good
results on many datasets, it only achieves a score of 0.3985 on the
WEB dataset, which is much worse than the average. This is because
the inherent modeling approach of PM is not well-suited for the WEB
dataset. In terms of more recent deep learning-based methods, we
found that LAA and TireMGE achieve good performance on only
one or two datasets. As for BAT, while it achieves good results with
a large number of labels [23], it performs poorly when trained with
only nine labels. Besides, from the perspective of algorithms, we find
that different datasets present different characteristics. For example,
SENTTI and FACT are similar in that even naive majority voting can
get good results. For them, modeling the individual component may
not help much even degrade the performance.



1518

J. Liu et al. / Label Aggregation with Self-Supervision Enhanced Graph Transformer

0.90 0.96

E‘u.aa 3 §o.9o

E 0.86 \ : E 0.70

g084 ] g 050

0.82 - mé - - 0.30
288 3 3

BAT 1
TireMGE 1
TireMGE | 1]

ATHENA
Accuracy
coocoo
o0 MWW
- N O W
ATHENA

s ] 0.90 § [ g'gi
»0.78 50 : 0.
1) o ©0.83
£076 R E 082
3074 goss | g o
2072 <oer TN H ﬂ <54

0.70 078 L 078

a0 Soakg200320
“3 Seaff o3
E £

ATHENA
ATHENA

(g) ZC_us

BAT [
TireMGE
ATHENA

EBCC

080 = 0.92
i F
For | mnopent(] | 2o
3074 A HFIEEER 3"
<07 [ 1HR 0 goss
0.68 . . - 0.80
>20E OO0 W
282ESE8833¢E
oo “w gE
Fa

(1) MS

Figure 2: The accuracy of different algorithms on 10 real-world datasets.
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Figure 3: The comparison of different enhanced label aggregation approaches.

We also observe that the simplest model, MV, outperforms some of
the more complex models, such as GLAD, on several datasets (e.g.,
TREC, ZC_us, etc.). This suggests that a complex modeling approach
can be prone to inaccuracy or even incorrectness. The significant
results of our model are because our proposed method can effectively
model the interaction of workers and tasks with minimal assumptions
as well as learn from the hidden signals in the labeling process. Also,
our proposed ATHENA can forge a connection between two areas
that have once evolved mostly independently: label aggregation and
self-supervised learning. This connection allows us to leverage self-
supervised learning methods to significantly improve the SOTA on
label aggregation.

4.3 Comparison with Enhanced Baselines

We then compare ATHENA with the enhanced baselines. The results
are shown in Figure 3. As we can see, the label-enhanced algorithms
bring little improvement over their original baselines. In particular,
although the EGLAD algorithm performs better than GLAD on most
datasets, the difference is quite small. The biggest improvement is
achieved in the ZC_us dataset which is only 0.01. Some other algo-
rithms like DS do not benefit from the added labels as well instead
that they have worse performance on some datasets (e.g., MS dataset).
The same trend is observed for the deep learning-based methods
(ELAA and BAT). This is because the added labels are too few in
number to offer valuable information for these algorithms. Simply
incorporating these labels into the iterative process does not improve
the performance of these algorithms and may even harm them.

In addition, it is obvious that the proposed ATHENA ensures much
higher accuracy than the other label-enhanced algorithms when us-
ing the same amount of training data. This is because the proposed
self-training method can effectively extract information from the
crowdsourcing process itself.

4.4 Label Efficiency Analysis

To gain a better understanding of the impact of correct labels, we con-
duct experiments with varying numbers of golden labels. Specifically,
instead of using 9 labels for each class as in the previous experiments,
we use 1, 3, 5, and 7 labels for each class. The results are shown in
Figure 4, where we present the accuracy on different datasets using a
bar plot and use a triangle to denote the mean accuracy for different
label sizes.

As shown in the figure, the mean accuracy of the model improves
with an increase in the number of labeled data. This suggests that more
golden labels are beneficial for the learning process. We also observe
that different datasets exhibit varying characteristics. For instance,
some datasets such as TREC can generate good representations even
with only one golden label for each class, whereas the WEB dataset
requires a larger number of additional labels during training. Further-
more, we find that ATHENA can achieve good performance even with
a small number of labels. In our experiment, it achieves an accuracy
of 0.7787 by using only three labels per class, which is better than
some algorithms such as PM.

4.5 Ablation Study

In this part, we analyze the effectiveness of the core components in the
proposed ATHENA. Here we compare ATHENA with the following
three variants of itself.

o FNN. This variant uses the fully connected neural network instead
of the transformer-based neural network as depicted in section 2.3.

e Answer. This variant removes the self-supervision process of pre-
dicting workers’ answers based on the representations of the work-
ers and tasks as shown in Section 3.1.

e Drop. This variant randomly drops answers provided by the work-
ers selectively throwing out some answers as shown in section 3.3.
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Figure 4: The accuracy of ATHENA with different label sizes under various datasets.

Table 2: The comparison of ATHENA and its variants.

Dataset ~ATHENA FNN Answer Drop
SENTI 0.8901 0.3068  0.5728  0.8702
FACT 0.9308 0.9217 09107 09217
TREC 0.7023 0.5605  0.5450  0.7067
WEB 0.8788 0.2596  0.3347  0.7630
ZC_all 0.8729 0.7829  0.7211  0.8863
ZC_in 0.7957 0.7339  0.7359  0.7873
ZC_us 0.9154 0.7829  0.7315  0.9100
DOG 0.8431 0.3048  0.4319  0.8314
MS 0.8148 0.1033  0.3098  0.7754
CF 0.8983 0.3059  0.8471  0.8706

The results are presented in Table 2. We observe that these well-
designed components contribute to the improved performance of the
model in predicting task labels. Specifically, the graph transformer
is one of the most critical components in ATHENA. Without it, the
model’s performance decreases significantly. Additionally, answer
prediction is also crucial for label aggregation. The absence of answer
prediction results in extremely poor performance on some datasets
(e.g., SENTI, MS) due to the lack of supervision signal in these
datasets. These components are important and contribute to the high
performance of ATHENA. Moreover, the dropped answers play a
crucial role in preventing overfitting, even though there may be rare
instances where their performance decreases due to the imprecise
estimation of answer importance.

5 Related Work

5.1 Label Aggregation

Label Aggregation [6, 40, 41, 1, 27, 22, 24] is the process of infer-
ring true answers from massive noisy and biased labels. Most label
aggregation approaches use the modeling of the worker’s ability, e.g.,
Gianluca et al. leverage a digital between 0 and 1 to represent the prob-
ability that a worker can correctly answer a question [6]. Dawid et al.
use a confusion matrix to indicate the different abilities of workers [5].
There are also approaches to modeling the questions, the researchers
make an assumption that different questions have different difficulties,
and the worker will give wrong answers to a with higher probabil-
ity [25, 38]. E.g., Jacob Whitehill et al. [38] model the difficulty of
an image using parameter % where £ is a positive number. If % = 00
the image labeling task is very difficult, even the most experienced
worker can do no better than a random select label. On the other hand,
% = 0 means the image is quite intuitive.

Recently, few studies investigate some intelligent methods such as
the deep learning-based method for constructing more complicated
models [23, 8, 40, 41, 1, 27], but these methods need too much training
data which is impractical in real crowdsourcing applications [23].
They cannot effectively use the plentiful information of crowdsourcing
compared to ours.

5.2 Self-supervised Learning

Self-supervised learning has emerged as a new technique to get su-
pervision signals from the data itself [30, 37, 13]. It builds pseudo
labels by constructing some pretext tasks. Self-supervised learning
has been proven to be effective in different domains [12, 11]. In the
computer vision domain, there are different pretext tasks is build to
learn high-level image representations. Doersch et al. proposed a vi-
sual representation learning method based on context prediction, in
this approach, random patches are generated from images, and they
train a CNN to predict the relative location of these patches [7]. This
work has motivated lots of work to try different pretext tasks to help
the model to learn a meaningful representation. E.g., Gidaris, et al.
propose to rotate the image randomly and predict the rotation degree
[9]. Noroozi et al. use a jigsaw puzzle game as the pretext task and
train a model to place the shuffled patches in the right place [26].
Zhang et al. propose to train a model to color a gray-scale image [43].
Recently, graph neural networks become an important approach
to modeling the graph [21, 17, 10, 20] and there are very few works
considered self-supervised learning in the graph domain. Sun et al.
first utilized the clustering assignments of node embeddings as guid-
ance to update the graph neural networks [32]. Zhu et al. propose
to use Randomly Removing Links (RRL) and Randomly Covering
Features (RCF) to help to learn a good representation [46], You et
al. first comprehensively analyze the effectiveness of self-supervision
in GCN. Their results indicate with a well-designed pretext task,
self-supervision can help to learn a more generalized model [42].

6 Conclusion

Crowdsourcing is best applied to large and complex machine learning
problems by leveraging a large distributed workforce. In this paper,
we aim to exploit self-supervision signals in the crowdsourcing pro-
cess to improve the efficiency and accuracy of label aggregation. To
this end, we proposed ATHENA to effectively aggregate the labels
with a self-supervision procedure. ATHENA is designed based on the
graph transformer neural network. In ATHENA, a novel graph trans-
former can effectively infer the representations of workers and tasks
on the labeling graph. On the basis of the inferred representations,
the proposed algorithm can promote aggregating labels with limited
features. The key novelty of ATHENA is its transformer-based fea-
ture inference technique may be applicable to other graph-structured
machine learning applications.
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