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Abstract. We consider an auction design problem where a seller
sells multiple homogeneous items to a set of connected buyers. Each
buyer only knows the buyers she directly connects with and has a di-
minishing marginal utility valuation for the items. The seller initially
only connects to some buyers who can be directly invited to the sale
by the seller. Our goal is to design an auction to incentivize the buyers
who are aware of the auction to further invite their neighbors to join
the auction. This is challenging because the buyers are competing
for the items and they would not invite each other by default. Thus,
rewards need to be given to buyers who invite their neighbors, but
the rewards should be carefully designed to guarantee both invitation
incentives and the seller’s revenue. Solutions have been proposed re-
cently for the settings where each buyer requires at most one unit
but they are proved problematic. We move this forward to propose
the very first diffusion auction for the multi-unit demand settings to
improve both the social welfare and the seller’s revenue.

1 Introduction

Multi-unit auctions refer to auctions where multiple homogeneous
items are available for sale in a single auction. They are commonly
used in many real-world markets to allocate scarce resources such as
emissions permits, electricity and spectrum licenses [7, 8]. A com-
mon feature of these markets is that the participants are known in
advance, and the seller can hold the classic Vickrey-Clarke-Groves
(VCG) mechanism to get a good outcome [18, 3, 4]. In order to fur-
ther improve social welfare and revenue, an intuitive method is to
advertise the sale to involve more buyers. As shown in [1], the VCG
mechanism among n + 1 buyers for selling one item will give more
revenue in expectation than Myerson’s optimal auction among n buy-
ers [16]. Thus it is worthwhile for the seller to expand the market
through advertisements. However, advertisement does not come for
free and if the advertisements can’t attract enough valuable buyers,
the seller’s total utility may decrease.

In order to attract more buyers without sacrificing the seller’s
utility, diffusion mechanism design has been proposed in recent
years [13, 21, 10]. Diffusion mechanisms utilize the participants’
connections to attract more buyers. This is done by incentivizing each
participant who is aware of the market to invite her neighbors to join
the market. This is challenging because the participants are compet-
ing for the same resources. Therefore, proper rewards are designed
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for buyers who invite valuable buyers, but at the same time, we need
to guarantee the seller is beneficial to use the mechanism.

The very first diffusion mechanism, called the information diffu-
sion mechanism (IDM), was proposed in [13], where a simple case
of a seller selling one item via a social network is studied. Following
this work, two studies tried to extend the model to more general set-
tings. Zhao et al. [23] first tried to generalize the setting from single-
unit-supply to multi-unit-supply case and proposed a mechanism
called generalized IDM (GIDM). However, a flaw in one key proof
was identified later [17]. Then, another mechanism, called DNA-
MU, was proposed for the same setting [9]. Surprisingly, the new
mechanism is also problematic (we will show a counter-example).
Therefore, this problem is still open even after a few hard tries. This
also indicates that generalizing IDM to more general settings is very
difficult (see [22] for a detailed discussion).

In this paper, we keep working on this open question. We further
extend the setting to a multi-unit-supply and multi-unit-demand case,
which is more challenging (Section 3 elaborates on this). That is, the
seller sells multiple units and each buyer can buy multiple units with
a diminishing marginal utility function (i.e., the valuation for receiv-
ing more units is non-increasing). This setting was briefly touched by
Takanashi et al. [17]. However, their solution restricts that each win-
ner can only get nk units where nk is predefined, and the remaining
units are discarded. Such a design degenerates multi-unit demand
into unit demand. Also, their solution may give the seller negative
revenue. Here, we propose a new solution without restricting the al-
location and making sure the seller’s revenue is improved.

Except for extending the studies to the above general settings,
single-unit diffusion auctions have also been extensively studied.
Following IDM, a general class of it was proposed by Li et al. [12].
To make the reward distribution fairer, a fair diffusion mechanism
was proposed in [20]. For the circumstance where the seller’s aim
is not for profit, redistribution diffusion mechanisms were stud-
ied [19, 5]. If there is no trusted center, redistributed mechanisms are
proposed [15]. The mechanism to tackle false-name attacks has also
been proposed [2]. That is, there are many variations for the single-
unit setting and then Li et al. [11] further characterized the conditions
to achieve the invitation incentive. Except for auctions, similar invi-
tation incentives are studied in other settings such as matching and
cooperative games [21].
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2 The Model

We consider a setting where a seller s sells K ≥ 1 homogeneous
items via a buyer network. In addition to the seller, the social network
consists of n potential buyers denoted by N = {1, · · · , n}. Each
buyer i ∈ N has a private marginal decreasing utility function for
the K items which is denoted by a value vector vi = (v1i , · · · , vKi )
where v1i ≥ v2i ≥ · · · ≥ vKi ≥ 0. Then i’s valuation for receiving
m ≥ 1 units is denoted by vi(m) =

∑m
k=1 v

k
i , and the valuation

for receiving nothing is vi(0) = 0. Each buyer i ∈ N has a set of
neighbors in the network denoted by ri ⊆ N ∪ {s} and she does not
know the existence of the others except for ri. Thus, the seller is also
only aware of her neighbors denoted by rs.

Let θi = (vi, ri) be the type of buyer i ∈ N and θ = (θ1, · · · , θn)
be the type profile of all buyers. θ can also be written as (θi, θ−i)
where θ−i is the type profile of all buyers except for i. Let Θi be the
type space of buyer i and Θ be the type profile space of all buyers.
Since the seller initially only connects to a few buyers, we want to
design auction mechanisms that ask each buyer to not only report
her valuation on the items but also invite her neighbors to join the
mechanism. This is mathematically modeled by reporting her type.
Let θ̂i = (v̂i, r̂i) be buyer i’s type report where r̂i ⊆ ri because i
cannot invite someone she does not know(Here we do not consider
the case where i can create fake neighbors). Let θ̂ = (θ̂1, · · · , θ̂n)
be the report profile of all buyers.

A general auction mechanism consists of an allocation policy
π = (πi)i∈N and a payment policy p = (pi)i∈N . Given a report
profile θ̂, πi(θ̂) ∈ {0, 1, · · · ,K} is the number of items i receives
and

∑
i∈N πi(θ̂) ≤ K. pi(θ̂) ∈ R is the payment that i pays to the

mechanism. If pi(θ̂) < 0, then i receives |pi(θ̂)| from the mecha-
nism.

Since we assume that each participant is only aware of her neigh-
bors, initially only the seller’s neighbors are invited to join the auc-
tion. Other buyers who are not properly invited by early joined buy-
ers cannot join the auction, i.e., their reports cannot be used by the
mechanism. Therefore, we have some additional constraints for our
diffusion mechanism.

Definition 1. Given a report profile θ̂, an invitation chain from the
seller s to buyer i is a sequence of (s, j1, · · · , jl, jl+1, · · · , jm, i)
such that j1 ∈ rs and for all 1 < l ≤ m, jl ∈ r̂jl−1 , i ∈ r̂jm
and no buyer appears twice in the sequence. If there is an invitation
chain from the seller s to buyer i, then we say buyer i is valid in the
auction. Let Q(θ̂) be the set of all valid buyers under θ̂.

Let di(θ̂) be the shortest length of all the invitation chains from
seller s to i for each buyer i ∈ Q(θ̂). We denote Ld(θ̂) the set of
valid buyers whose di(θ̂) is d, i.e., Ld(θ̂) = {i|i ∈ Q(θ̂), di(θ̂) =
d}. We also call Ld(θ̂) layer d. Let L<l(θ̂) =

⋃
1≤i<l Li(θ̂) and

L>l(θ̂) =
⋃

i>l Li(θ̂)

Definition 2. A diffusion auction mechanism (π, p) is an auction
mechanism, where for all θ̂:

• for all invalid buyers i /∈ Q(θ̂), πi(θ̂) = 0 and pi(θ̂) = 0.
• for all valid buyers i ∈ Q(θ̂), πi(θ̂) and pi(θ̂) are independent of

the reports of buyers not in Q(θ̂).

Given a buyer i of type θi = (vi, ri) and a report profile θ̂, the
utility of i under a diffusion auction mechanism (π, p) is defined as
ui(θi, θ̂, (π, p)) = vi(πi(θ̂)) − pi(θ̂). For simplicity, we will use
ui(θ̂) to represent ui(θi, θ̂, (π, p)) when the mechanism is clear.

We say a diffusion auction mechanism is individually rational (IR)
if, for each buyer, her utility is non-negative when she truthfully re-
ports her valuation, no matter how many neighbors she invites and
what the others do. It means that a buyer’s invitation behaviour will
not make her utility negative as long as she reports her valuation
truthfully. That is, we do not force buyers to invite all their neighbors
to be IR.

Definition 3. A diffusion auction mechanism (π, p) is individually
rational (IR) if ui((vi, r̂i), θ̂−i) ≥ 0 for all i ∈ N , all r̂i ⊆ ri, and
all θ̂−i.

We say a diffusion auction mechanism is incentive compatible (IC)
if for each buyer, truthfully reporting her valuation and inviting all
her neighbors (i.e. reporting type truthfully) is a dominant strategy.

Definition 4. A diffusion auction mechanism (π, p) is incentive com-
patible (IC) if ui(θi, θ̂−i) ≥ ui(θ̂i, θ̂−i) for all i ∈ N , all θ̂i and all
θ̂−i.

We say an auction is non-wasteful if all items can be allocated
at the end of the auction. Non-wastefulness makes sure no item is
discarded in auctions, which is important for social welfare.

Definition 5. Given N �= ∅, an auction mechanism is non-wasteful
if
∑

i∈N πi(θ̂) = K for any θ̂.

3 The Existing Mechanisms

In this section, we will briefly discuss the techniques of the existing
diffusion mechanisms for the multi-unit-supply settings and compare
them with our design.

3.1 The Failure of DNA-MU

As we mentioned in the introduction, for the multi-unit-supply and
single-unit-demand setting, two mechanisms have been proposed,
GIDM [23] and DNA-MU [9]. The problem of GIDM was identified
early in [17]. Here, we show that DNA-MU also fails in the same
counter-example.

The description of DNA-MU on a tree is given in Algorithm 1,
which is not hard to follow. The mechanism simply allocates the units
to the buyers closer to the seller until no more units are left. The
allocation for each chosen buyer is done by removing all the buyer’s
descendants (subtree) and checking whether the buyer’s valuation is
among the top K′ highest of the remaining buyers (K′ is the number
of unallocated units). Some technical terms: given a report profile θ̂,
a subset S ⊆ Q(θ̂), and an integer K′ ≤ K, let v∗(S,K′) denote the
K′-th highest value in buyer set S. If |S| < K′, then v∗(S,K′) = 0.
Let lmax be the number of layers of the tree network and Ei(θ̂) be
the set of descendants of buyer i.

Algorithm 1 DNA-MU on a Tree

Input: A report profile θ̂.
Output: π(θ̂) and p(θ̂).

1: Construct the network according to θ̂.
2: Initialize the number of unallocated unitsK′ = K and the winner

set W = ∅.
3: for l = 1, 2, · · · , lmax do

4: for i ∈ Ll(θ̂) with random order do

5: p∗i = v∗(Q(θ̂) \ (Ei(θ̂)∪W ∪{i}),K′) which is the price
for buyer i.

H. Liu et al. / Diffusion Multi-Unit Auctions with Diminishing Marginal Utility Buyers1506



6: if v̂i(θ̂) ≥ p∗i then

7: πi(θ̂) = 1, pi(θ̂) = p∗i , K′ = K′ − 1, W = W ∪ {i}.
8: else

9: πi(θ̂) = 0, pi(θ̂) = 0.
10: end if

11: end for

12: end for

The counter-example of the above mechanism is shown in Figure
1. We can run Algorithm 1 on the network with 4 units. If buyer B
invites F, she cannot win the item and her utility is 0 (the winners are
{B, C, D, G}). However, if E does not invite F, she will get one unit
with utility 1 (the winners are {A, B, C, E}). The error in their proof
comes from their Lemma 1 [9]. In this lemma, they claim that if buyer
i invites fewer neighbors, buyer j before i who is not the ancestor
of i may have a lower price to receive a unit, which decreases the
chance of i winning a unit. However, as we show in the example, this
claim does not hold. In the example, when E stops inviting F, buyer
A indeed gets one item with a lower price. However, the competition
for the remaining buyers also increases. The winning prices for both
E’s ancestor D and non-ancestor G increase. Eventually, both D and
G lose their units, and E receives one unit.
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Figure 1: A counter-example for DNA-MU [9]

Interestingly, this counter-example is exactly the same counter-
example for GIDM. Both GIDM and DNA-MU try to prove that a
buyer i can have a higher chance to get one unit or gain a positive
utility by inviting more valuable neighbors. However, their designs
overlooked the impact of the buyers who are closer to the seller than
i and i can create extra competition among them by either inviting or
not inviting her neighbors.

3.2 The Existing Mechanisms v.s. Our Mechanism

Although the two earlier extensions failed in some corner cases, their
methodologies are very valuable. We will discuss and compare their
methodologies with ours here.

3.2.1 Resale Incentives

Both IDM and GIDM used the idea of resale to incentivize buyers to
invite their neighbors [13, 23]. The marginal contribution/utility of a
buyer i is computed roughly as follows:

• Assume there are k units finally allocated to buyer i and her de-
scendants (who will be disconnected from the seller without i).

• If i hide all her descendants, she needs to pay pk to win the k units
alone.
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Figure 2: An example of misreporting in multi-unit-demand setting

• If i can resell the k units among her descendants with the same
mechanism with a higher price p′k.

• Then IDM/GIDM gives marginal utility p′k − pk to i.

Another way to interpret the marginal utility of buyer i in
IDM/GIDM is the social welfare increase due to the participation
of i’s descendants(some of them have to be removed). IDM/GIDM
gives all the marginal social welfare increase to i, so she is not afraid
of inviting all her neighbors to join the mechanism.

3.2.2 Winning Incentives

The incentive behind DNA-MU (Algorithm 1) is that a buyer can
get a higher chance to win one unit by inviting more valuable neigh-
bors [9]. There is no resale benefit, i.e., the winning of a buyer’s de-
scendants will not give any reward to the buyer. Instead, large value
descendants of a buyer i will increase the winning prices of the non-
ancestor buyers before i, and therefore, more units will be left and i
may get a chance to receive one unit.

3.2.3 Our Incentives

Our mechanism is called the Layer-based Diffusion Mechanism
(LDM) which is defined in Algorithm 2. The incentive is a kind
of combination of resale and winning. LDM prioritises buyers like
DNA-MU according to their distances from the seller. It also utilizes
the resale marginal utility to pay the buyers. The key differences are:

• LDM not only solves the open incentive problem for unit demand
but also works for multi-unit demand.

• DNA-MU determines the allocation for one buyer only at each
step, while LDM decides the allocation for a layer in one step.

• In LDM, to decide the allocation of a layer, it has to remove all
the potential competitors after the layer, because they have the
incentive to manipulate the current layer’s allocation. This is also
a limitation of the mechanism. There might be another way to
remove fewer buyers to determine their allocations, which will
potentially increase social welfare and revenue.
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3.2.4 The Difficulty of Multi-unit Demand

Despite the issues of GIDM and DNA-MU in the unit-demand set-
ting, their methods will also not work in multi-unit-demand settings.
An intuitive reason is that these mechanisms allow buyers to utilize
their children’s valuations to win items. Such a design is not appli-
cable when buyers have a multi-dimensional valuation function, be-
cause a buyer can misreport her valuations to mimic the same de-
mand as she has different neighbors. Figure 2 shows an example of
how this can be achieved in DNA-MU. Assume there are two items
to sell and items are allocated to buyers with blue color. Figures 2a
and 2b show that in the single-unit-demand setting, buyer B can gain
more utility from inviting buyer D. However, if we go to a multi-
unit-demand setting with two units, then B can misreport her second
valuation to 5 to mimic that she has a child with a valuation 5 to
gain (Figure 2c). Thus, there is a conflict between reporting valua-
tion truthfully and the incentive of inviting neighbors. Therefore, the
challenge seems more difficult in the multi-unit-demand case.

4 Our Mechanism on Trees

In this section, we first design an IR and IC mechanism called layer-
based diffusion mechanism on trees (LDM-Tree), for buyers with
multi-dimensional valuations on tree-structure networks. Given a re-
port profile θ̂, a tree T (θ̂) = (V (θ̂)∪ {s}, E(θ̂)) can be constructed
where seller s is the root and V (θ̂) = {i|i ∈ Q(θ̂)}. For each
i ∈ V (θ̂) ∪ {s}, there is an edge (i, j) ∈ E(θ̂) if j ∈ r̂i. We
use Ci(θ̂) to denote buyer i’s children in T (θ̂) for any i ∈ V (θ̂).
We use lmax to denote the total number of layers in T (θ̂). Generally
speaking, LDM-Tree has the following three steps.

1. Prioritize: LDM-Tree first prioritizes buyers by the layers. Layers
closer to the seller have higher priority to be considered in the
allocation. Then LDM traverses all layers based on priority with
the following allocation and payment policies.

2. Allocation Policy: When considering the allocation of layer l, we
first remove a set of buyers Rl(θ̂) ⊆ L>l(θ̂) from the higher
layers that contains all potential competitors(We will defineRl(θ̂)
later). Then for the remaining buyers, we fix the allocations of all
layer q < l and compute the optimal social welfare SW−Rl(θ̂)
to determine the allocation of layer l. Namely, the allocation πl of
layer l is calculated by Algorithm 2.

Algorithm 2 Allocation policy

Input: A report profile θ̂, layer l, the allocation to lower layers
πq, ∀q < l, the removed setRl(θ̂) for layer l.

1: Compute the following constrained optimization problem and
let πl(θ̂) be the optimal solution.

max
π(θ̂)

SW−Rl(θ̂) =
∑

i∈Q(θ̂)\Rl(θ̂)

v̂i(πi(θ̂))

s.t. When l �= 1, ∀q < l, ∀j ∈ Lq, πj(θ̂) = πq
j (θ̂)

Output: πl(θ̂).

We will show later that in our design, πl(θ̂) will not allocate items
to buyers in layer q′ < l but may allocate items to buyers in layer
q′ > l. However, as we will show in Algorithm 4, these allocations
are just temporary, and only πl

i(θ̂) for all i ∈ Ll are the final
allocation.

3. Payment Policy: When computing the payment of i ∈ Ll(θ̂),
we first remove Di(θ̂) = Rl(θ̂) ∪ Ci(θ̂) ∪ {i} which contains
all i’s children. Then for the remaining buyers, we compute the
maximal social welfare given that the allocations to lower layers
are fixed, which is denoted by SW−Di(θ̂). The social welfare
difference SW−Rl(θ̂) − SW−Di is used to calculate payments
which is a kind of resale revenue mentioned in Section 3. The
detailed calculation is given in Algorithm.

Algorithm 3 Payment policy

Input: A report profile θ̂, layer l, the allocation to layers πq(∀q ≤
l) computed from Algorithm 2, the removed set Rl(θ̂) for
layer l.

1: for i ∈ Ll(θ̂) do

2: Set Di(θ̂) = Rl(θ̂) ∪ Ci(θ̂) ∪ {i}.
3: Compute the constrained optimization problem:

max
π(θ̂)

SW−Di(θ̂) =
∑

j∈Q(θ̂)\Di

v̂j(πj(θ̂))

s.t. When l �= 1, ∀q < l, ∀j ∈ Lq, πj(θ̂) = πq
j (θ̂)

4: if πl
i(θ̂) �= 0 then

5: pi(θ̂) = SW−Di(θ̂)− (SW−Rl(θ̂)− v̂i(π
l
i(θ̂))).

6: else

7: pi(θ̂) = SW−Di(θ̂)− SW−Rl(θ̂).
8: end if

9: end for

Output: pi(θ̂) for all i ∈ Ll(θ̂).

Note that SW−Rl(θ̂) and SW−Di(θ̂) can be computed efficiently.
As buyers have diminishing marginal valuations, consider the fol-
lowing greedy algorithm for selling K items. First sort all marginal
valuations of all buyers, then allocate items to buyers corresponding
to the largest K valuations. This algorithm is efficient and optimal.

Combining the allocation and payment policy, our final mecha-
nism is given in Algorithm 4.

Algorithm 4 Layer-based Diffusion Mechanism on Trees
(LDM-Tree)

Input: A report profile θ̂.
Output: π(θ̂) and p(θ̂).

1: Construct the tree T (θ̂)
2: Initialize Kremain = K.
3: for l = 1, 2, · · · , lmax do

4: Find the setRl(θ̂) to be removed for layer l.
5: Compute allocation πl(θ̂) by Algorithm 2.
6: for every buyer i ∈ Ll(θ̂) do

7: Set πi(θ̂) = πl
i(θ̂) as the final allocation.

8: Compute payment pi(θ̂) by Algorithm 3.
9: end for

10: Kremain = Kremain −
∑

i∈Ll(θ̂)
πl
i(θ̂).

11: if Kremain = 0 then

12: Set πi(θ̂) = pi(θ̂) = 0, ∀k > l, ∀i ∈ Lk(θ̂).
13: End the for loop.
14: end if

15: end for

In LDM-Tree, Rl(θ̂) is carefully designed to guarantee incentive
compatibility. Intuitively, it should contain all potential competitors
of layer l who are the buyers with positive potential utility because
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these buyers have the motivation to act untruthfully to manipulate the
allocation of high-priority buyers to gain.

In our solution, we divide those potential competitors into the fol-
lowing two groups and design them for each buyer i:

1. Children who invite potential winners, which is denoted as CP
i (θ̂)

for buyer i.
2. Children who are potential winners, which is denoted as CW

i (θ̂)
for buyer i.

The corresponding sets are defined as follows:

1. CP
i (θ̂) = {j|j ∈ Ci(θ̂), Cj(θ̂) �= ∅} ⊆ Ci(θ̂) which is the

children of i who have children.
2. CW

i (θ̂) is the top K + μ − |CP
i (θ̂)| ranked buyers in Ci(θ̂) \

CP
i (θ̂) according their valuation report for the first unit, where μ

is a constant such that maxi |CP
i (θ̂)| ≤ μ.

We assume μ is prior information for the seller which only de-
pends on the structure of the network. It is the upper bound |CP

i | for
all i. The reason why we introduce μ is to avoid buyers having in-
centives to switch from CP

i (θ̂) to CW
i (θ̂). Such a phenomenon will

happen if we only remove the top K ranked buyers for CW
i (θ̂).

Let CR
i (θ̂) = CW

i (θ̂) ∪ CP
i (θ̂) be the total removed set for

buyer i. When considering layer l, we will remove all CR
i (θ̂) for

i ∈ Ll(θ̂). Note that when this set is removed, all buyers in L≥l+2

will be disconnected and removed because CP
i (θ̂) contains all chil-

dren of i who have children. Thus, the final definition of Rl(θ̂) is(⋃
i∈Ll(θ̂)

CR
i (θ̂)

)
∪
(⋃

l+2≤d≤lmax Ld(θ̂)
)

.
The following table summarizes the key notations in the above

discussion. They are extensively used in the following discussion.

Notation Definition

CP
i (θ̂)

The children of i who have children. This set
contains all buyers who can diffuse information
to potential winners.

μ
A pre-known upper bound for CP

i (θ̂).
(i.e.maxi |CP

i (θ̂)| ≤ μ))

CW
i (θ̂)

The top K + μ − |CP
i (θ̂)| ranked buyers in

Ci(θ̂) \CP
i (θ̂) according their valuation report

for the first unit. This set contains all potential
winners.

CR
i (θ̂)

CR
i (θ̂) = CW

i (θ̂) ∪ CP
i (θ̂) which is the total

removed set for buyer i. Removing this set can
remove all potential competitors of buyer i.

Rl(θ̂)

(⋃
i∈Ll(θ̂)

CR
i (θ̂)

)
∪

(⋃
l+2≤d≤lmax Ld(θ̂)

)

which is the total removed set when consider-
ing the allocation of layer l. This set contains
all potential competitors of layer l.

Here we give an example to illustrate our mechanism. We first
show the removed sets through Figure 3. SupposeK = 3 and μ = 2.
Since θ̂ is given in the figure, we will omit it to simplify the de-
scription. It is easy to see CR

f = {j}, CR
n = {q} and CR

o = {r}.
For the buyer b with Cb = {d, e, f, g, h, i}, we have CP

b = {f, g}.
Thus μ + K − |CP

b | = 3 i.e. CW
b = {d, e, h}. We have marked

CP
b , CW

b in Figure 3. Taking the union of these two sets can get
CR

b = {d, e, f, g, h}. For the buyer g with Cg = {k, l,m, n, o, p},
we have CP

g = {n, o}, CW
g = {k, l,m}. CP

g and CW
g are also

marked in Figure 3. Taking the union of these two sets can get
CR

g = {k, l,m, n, o}. For other buyers, the removed sets are ∅.
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Figure 3: A tree example

Then, let’s compute the allocation and payment in Figure 3. For
the first layer, the constrained optimization problem in step 4 of al-
gorithm 4 will be computed among Q \ R1 = {a, b, c, i}. Since we
now focus on the first layer, the constraint means that no items have
been allocated. The solution is π1

a = 0, π1
b = 0, π1

c = 2, π1
i = 1 and

SW−R1 = 5+4+3 = 12. For buyer a, SW−Da = 5+4+3 = 12
and her payment is pa = 0. For buyer b, SW−Db = 4 + 3 + 1 = 8
and her payment is pb = 8− 12 = −4, i.e., buyer b receives 4 from
the seller. For buyer c, SW−Dc = 5 + 2 + 2 = 9 and her payment
is pc = 9− (12− (4 + 3)) = 4. Update Kremain = 1.

For the second layer, the constrained optimization problem in
step 4 of Algorithm 4 will be computed among Q \ RL2 =
{a, b, c, d, e, f, g, h, i, p}. According to the allocation of the first
layer, the constraint means that two items have been allocated to
buyer c. There is only one item left and the solution is to allocate the
last item to buyer d , i.e., π2

d = 1. Then SW−R2 = v̂1c + v̂2c + v̂1d =
4 + 3 + 11 = 18. For buyer d, SW−Dd = 9 + 4 + 3 = 16 and her
payment is pd = 16− (18− 11) = 9. For other buyers in L2, their
payments are 0. Update Kremain = 0 and the auction is completed.

The seller’s revenue is 9+4−4 = 9 under LDM-Tree. If the seller
only sells to her neighbors by VCG, it has pV CG

b = 4+3+1− (4+
3+2−2) = 1 and pV CG

c = 2+1+1− (4+3+2− (4+3)) = 2.
The revenue of VCG is 3 and LDM-Tree achieves a higher revenue
than VCG in this example.

In the proofs of LDM-Tree’s properties, we will formally analyze
the necessity of the removed sets in detail.

Theorem 1. The LDM-Tree is individually rational (IR).

Proof. If θ̂i = (vi, r̂i) and di = l, then ui(θ̂i, θ̂−i) = SW−Rl −
SW−Di or ui(θ̂i, θ̂−i) = 0. From the definition, the only differ-
ence between SW−Di and SW−Rl is that different sets of buy-
ers are considered when doing optimization. Since Q \ Di ⊆ Q \
Rl,SW−Rl ≥ SW−Di . Thus ui((vi, r̂i), θ̂−i) ≥ 0.

We can prove LDM-Tree is incentive compatible, which is given
in Theorem 2. Our proof is based on the key observations that buy-
ers with positive potential utility have no incentive to change the re-
moved set by misreporting valuations or stopping inviting. In that
case, those buyers who are removed when computing lower layers’
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allocations have no incentives to affect the allocations to lower lay-
ers. The detailed analysis of such observation and the whole proof
for IC are given in the full version of this paper [14].

Theorem 2. The LDM-Tree is incentive compatible (IC).

Although the exact social welfare of LDM-Tree depends on the
tree structure, the following proposition gives the tight lower bound
of the social welfare of LDM-Tree.

Proposition 1. The social welfare of LDM-Tree is no less than the
social welfare of the VCG in the first layer.

Proof. SWLDM ≥ max
π

∑
i∈Q\R1

v̂i ≥ max
π

∑
i∈L1

v̂i = SWV CG

The following proposition shows that LDM-Tree is non-wasteful,
which means all items can be allocated when there are more buyers
than the number of units.

Proposition 2. LDM-Tree is non-wasteful.

Proof. Let lmax be the number of layers. If there are m remaining
items when we compute the allocation for the last layer, then there
is a set M ⊂ Ll(θ̂) such that for all i ∈ M , πlmax−1

i (θ̂) = 1.
Let W lmax−1 =

⋃
i C

W
i (θ̂) for all i ∈ Llmax−1(θ̂). Since for all

i ∈M , there is a buyer j ∈W lmax−1 such that v1j ≥ v1i , then all m
remaining items will be allocated to buyers in W lmax−1 ⊂ Ll(θ̂).
In that case, all items will be allocated in the end. If no items remain
for the last layer, then all items are allocated to lower layers. Thus,
LDM-Tree is non-wasteful.

In Theorem 3, we show the revenue improvements of LDM-Tree.
The detailed proofs can also be found in the full version [14].

Theorem 3. The revenue of LDM-Tree is no less than the revenue of
VCG mechanism in the first layer.

As pointed in [9], the implementation of reserve price R in dif-
fusion settings is to add K dummy buyers with value R in the first
layer. Those dummy buyers never get items but are considered in ev-
ery social welfare maximization problem to increase the price of true
buyers. Actually, theorem 3 indicates that the LDM-Tree achieves no
less revenue than VCG mechanism in the first layer even if adding
more buyers in the first layer. Hence, setting a reserve price will not
change the revenue quantity relationship.

This observation indicates the following corollary.

Corollary 1. The revenue of LDM-Tree with a reserve price R is no
less than the revenue of the VCG mechanism in the first layer with a
reserve price R.

Note that there is no restriction on the reserve prices. In single-
item auction, if buyers’ valuation distribution is symmetric and reg-
ular, the optimal mechanism is a second price auction with a re-
serve price related to the distribution [16]. Thus in the single-item
Bayesian setting with symmetric and regular valuation distributions,
LDM-Tree with reserve prices achieves better revenue than optimal
auction without diffusion. For more general settings, VCG mecha-
nism with reserve price also achieves a good approximation ratio to
the optimal auction [6], which also gives the approximation guaran-
tee of LDM-Tree to the optimal mechanism without diffusion.

Here we clarify why we choose the VCG mechanism without dif-
fusion as the benchmark rather than the optimal social welfare and

revenue. It has been shown that in diffusion auction mechanism de-
sign, if IC, IR and weak budget balance are satisfied simultaneously,
it is impossible to achieve efficiency at the same time [19]. More-
over, the loss of efficiency is unbounded. On the other hand, revenue
maximization in diffusion settings has not been studied so far. Thus,
following the previous work, we compare the social welfare and rev-
enue with VCG mechanism without diffusion to attract the seller to
apply the mechanism.

Although LDM-Tree relies on the prior knowledge of μ, we point
out that no properties will be affected if μ is overestimated. We can
choose a rather large value if the prior is missing to guarantee dif-
fusion IC and the allocation degenerates to VCG without diffusion.
Moreover, μ is only related to the structure of the network, we have
no restrictions on buyers’ valuations. In the next section, we will ex-
tend the LDM-Tree to general graphs.

5 The Extension on Graphs

In this section, we extend our mechanism to general graphs. Similar
to the tree network, given a report profile θ̂, a graph G(θ̂) = (V (θ̂)∪
{s}, E(θ̂)) can be constructed where seller s is the source of this
graph and V (θ̂) is the set of valid buyers. For each i ∈ V (θ̂) ∪ {s}
and her neighbor j ∈ r̂i, there is an edge (i, j) ∈ E(θ̂).

LDM-Tree only works on tree-structure networks. To extend it
to general graphs, we can transform a given graph G(θ̂) into its
corresponding breadth-first search tree(BFS tree) T BFS(θ̂) and run
LDM-Tree on T BFS(θ̂). We will show such transformation can re-
tain all properties of LDM-Tree. The transformation framework is
given in Algorithm 3.

Algorithm 5

Input: A report profile θ̂ and a diffusion mechanismM for trees.
Output: π(θ̂) and p(θ̂).

1: Construct the graph G(θ̂).
2: Run breadth-first search on G(θ̂) in alphabetical order to form
T BFS(θ̂) .

3: RunM on T BFS(θ̂).

If the input mechanismM for Algorithm 5 is the LDM-Tree, then
we call the whole algorithm LDM. Now, let’s run the LDM on an
example shown in Figure 4. Figure 4 is a graph network. LDM first
transforms it into its BFS tree. The BFS tree is exactly the same as
the tree in Figure 3. LDM then runs LDM-Tree on the BFS tree to
find the allocation and payment for each buyer which are shown in
Figure 3.

In order to ensure that Algorithm 5 is incentive compatible, the
input mechanism M should be incentive compatible first to ensure
truthful valuation report of each buyer. Besides, it should satisfy that
each buyer’s utility is non-increasing when another buyer in the same
layer has more children to guarantee invitation incentive. Let ui(Cj)
be the utility of i when the children of j is Cj . The following theorem
summarizes the above discussion.

Theorem 4. If the input mechanismM for Algorithm 5 is IC and for
any two buyers i, j ∈ Ll, ui(Ĉj) ≥ ui(Cj) where Ĉj ⊆ Cj , then
Algorithm 5 is IC.

Proof. Since T BFS(θ̂) in Algorithm 5 only depends on buyers’ in-
vitations, buyers will report valuation truthfully following the IC of
M. Buyers in the same layer can not influence each other by invi-
tation because they have the same shortest distance to the seller. If a
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Figure 4: A graph example

buyer i does not diffuse information to her neighbor w, then w can
not be i’s child in T BFS(θ̂). Instead, w will become the child of j
who is in the same layer as i with w ∈ rj . SinceM is IC, diffusing
information to all neighbors is a dominant strategy which indicates
that ui will be worse if i has fewer children. In addition, ui is non-
increasing when j has more children. Thus i has incentives to diffuse
information and Algorithm 5 is IC.

Based on Theorem 4, we can finally know LDM has all desired
properties.

Corollary 2. The LDM on graphs has the following properties. (1)
Incentive Compatible. (2) Individually Rational. (3) Non-wasteful.
(4) The social welfare/revenue of LDM is no less than the social wel-
fare/revenue of the VCG mechanism in the first layer

Proof. By Theorem 1, Proposition 1, Proposition 2, and Theorem 3,
LDM-Tree is IR, non-wasteful, and achieves social welfare and rev-
enue no less than the VCG mechanism in the first layer. The LDM has
the same properties because it finally runs LDM-Tree on T BFS(θ̂).
To prove LDM is IC, we only need to prove LDM-Tree satisfies The-
orem 4.

Assume there are two buyers i, j ∈ Ll. Let Cout
j = Cj \ CR

j .
When j has one more child w, Cout

j will have one more buyer or
remain the same.

Before j has child w, assume m = πl
i +

∑
q∈Ci

πl
q and

vgeti = vi(π
l
i) +

∑
q∈Ci

vq(π
l
q). Let v1S , · · · , vKS be the top K

ranked values in set S. Then ui = SW−Rl − SW−Di = vgeti −∑K
k=K−m+1 v

k
Q\Di

.
After j has child w, if Cout

j remains the same, ui does not change.
If Cout

j has one more buyer,
∑K

k=K−m+1 v
k
Q\Di

does not decrease
and m may decrease or remain the same. If m decreases, ui will
decrease because every value in vgeti is larger than any value in∑K

k=K−m+1 v
k
Q\Di

. If m remains the same, vgeti remains the same,
ui will not increase.

We can see ui is non-increasing when j has more children. Thus,
LDM is incentive compatible.

From Theorem 4, if we want to design an IC diffusion mecha-
nism on graphs, it is enough to design an IC diffusion mechanism on
trees with one additional property. Moreover, the properties related
to individual rationality, social welfare and revenue of Algorithm 5
are the same as its input mechanism M. Since the tree structure is
much simpler than graphs and the additional property is natural, The-
orem 4 can reduce the difficulty of designing diffusion mechanisms

on graphs, which may allow us to handle more intricate settings in
diffusion mechanism design.

6 Conclusions

We designed the layer-based diffusion mechanism (LDM) for multi-
unit auctions with diminishing marginal utility buyers. In the LDM,
buyers are classified into different layers according to their shortest
distance to the seller. The LDM will compute allocation and pay-
ment layer by layer based on a constrained optimization problem
of social welfare. The LDM can incentivize buyers to invite their
neighbors to join the auction and truthfully report their valuations.
We also showed that the seller can get higher revenue by using LDM
than only using VCG (with reserve price) in the first layer. It is the
very first diffusion mechanism to satisfy such desirable properties for
multi-unit-demand settings.

In addition, we show the effectiveness of BFS tree in diffusion
mechanism design. With BFS tree, designing IC mechanisms on
trees with one extra natural property is sufficient to design IC mech-
anisms on graphs. We argue that this transformation can simplify the
design of diffusion mechanism on graphs.

There are many interesting future directions to do based on LDM.
We proposed a general framework to design diffusion auctions for
buyers with diminishing marginal utilities. The only thing we need to
optimize is CR

i . It should contain all buyers with positive potential
utility and buyers in CR

i should have no incentive to change this set.
All CR

i satisfies above two properties will lead to an IC, IR mecha-
nism with Algorithm 1. One trivial method is to set CR

i = Ci, which
is equivalent to VCG mechanism in the first layer. We proposed a
nontrivial method to design CR

i to achieve better social welfare and
revenue than the trivial case, but it relies on one additional prior
knowledge μ. Designing diffusion mechanisms without μ but still
have social welfare and revenue improvements is an interesting
future work, which requires a refined understanding of potential
competitors. Moreover, LDM fails to be extended to more general
combinatorial settings. Finding new methods to design diffusion
combinatorial auctions will be the ultimate goal of this research line.
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