
Verifying Belief-Based Programs via Symbolic Dynamic
Programming

Daxin Liu a,b;*, Qinfei Huangb, Vaishak Belle a and Gerhard Lakemeyer b

aUniversity of Edinburgh, the United Kingdom
bRWTH-Aachen University, Germany

Abstract. Belief-based programming is a probabilistic extension
of the Golog programming language family, where every action and
sensing could be noisy and every test refers to the subjective beliefs
of the agent. Such characteristics make it rather suitable for robot
control in a partial-observable uncertain environment. Recently, ef-
forts have been made in providing formal semantics for belief pro-
grams and investigating the hardness of verifying belief programs.
Nevertheless, a general algorithm that actually conducts the verifica-
tion is missing. In this paper, we propose an algorithm based on sym-
bolic dynamic programming to verify belief programs, an approach
that generalizes the dynamic programming technique for solving
(partially observable) Markov decision processes, i.e. (PO)MDP,
by exploiting the symbolic structure in the solution of first-order
(PO)MDPs induced by belief program execution.

1 Introduction

The action programming language GOLOG [26], short for alGOl
in LOGic, is a powerful tool to express high-level agent behavior.
GOLOG is based on the situation calculus [34], a first-order language
to model how the world changes as a result of actions. Belief pro-
grams, introduced by Belle and Levesque [8] in the ALLEGRO sys-
tem, are probabilistic extensions of the GOLOG programs where ev-
ery action and sensing could be noisy and tests refer to the agent’s
subjective degree of belief. These characteristics, amongst others,
make belief programs rather suitable for robot control in a partially
observable uncertain environment.

Before deployment, it is desirable to verify if a program meets
certain properties. As a running example of a belief program, con-
sider a variant of the coffee robot from [31, 28]. The robot in a one-
dimensional world tries to search the coffee. Initially, the horizontal
position h of the robot is 0 and coffee is at 2. The robot has a knowl-
edge base about her location (usually a belief distribution). The robot
might perform sensing sencfe to detect if the coffee is at her current
position and action east to move a unit east. Note both sencfe and
east could be noisy. E.g. east might end up moving 1 or 2 units with,
respectively, likelihood 0.8 and 0.2. A possible belief program is as

1 while B(h = 2) < 1 do

2 east |sencfe;
3 endWhile

and works as follows: while the robot does not fully believe that she
reached the coffee (Line 1), she non-deterministically selects the ac-
tion east or sensing sencfe to execute (Line 2). The program is an

∗ Corresponding Author. Email:daxin.liu@ed.ac.uk

online program and its execution depends on the outcome of sensing
as input. An interesting property of the program could be: whether
the probability that eventually the robot fully believes she reaches
the coffee is lower than 0.1.

h

To perform verification, Liu and Lakemeyer [31, 28] reconsider
the proposal by Belle and Levesque [8] based on a probabilistic
modal logic of belief and actions, called DSp [29]. Amongst oth-
ers, their proposal allows specifying the properties of programs in a
variant of PCTL logic [19]. For example, the above property can be
expressed as P≤0.1[FB(h = 2: 1)]. They also show that the verifi-
cation problem is closely related to model-checking infinite horizon
partially observable Markov decision process (POMDP), therefore
undecidable.

Despite many theoretical results that were achieved, a general al-
gorithm that actually conducts the verification is missing. In this pa-
per, we propose an algorithm based on symbolic dynamic program-
ming to verify belief programs. Symbolic dynamic programming
(SDP) [36] is a generalization of the dynamic programming tech-
nique for solving (partially observable) Markov decision processes,
i.e. (PO)MDP, that exploits the symbolic structure in the solution of
relational and first-order(FO) logical MDPs. Such a technique suits
us well in the sense that the execution of belief programs yields
multiple ground POMDPs which can be captured by a single FO-
POMDP.

The rest of the paper is arranged as follows: in Section 2, we re-
view background knowledge about the logic of belief and action, i.e.
the logic DSp, the formal semantics of belief programs, and the ver-
ification problem. The symbolic dynamic programming algorithm is
presented in Section 3. Section 4 introduces and evaluates an im-
plementation of the algorithm. We end with a discussion on related
works and future directions in Section 5.

2 Preliminary

2.1 The logic DSp
We use the nullary fragment of the logic DSp, a probabilistic modal
logic of beliefs and actions, to model the agent’s subjective belief.
For simplicity, we only have two sorts: number and action, and by
number, we mean algebraic real number [20] which includes irra-
tional numbers such as

√
2. The language features a finite set of

ECAI 2023
K. Gal et al. (Eds.)
© 2023 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA230429

1497

nullary fluents (of type number) and a fixed countable domain with
the unique name assumption: the set of standard names N = D∪Na

where D are number names and Na are action names. There is a
modal operator B to express the agent’s subjective belief.

Syntax Formally, the vocabulary of the language is taken from the
following. Logical symbols include equality = and

• standard names {n, n′, . . .} and variables {x, y, . . .};
• rigid function symbols +, ×, east(1), sencfe(1), etc.;
• finitely many nullary fluent functions {h1, h2, . . . hk}.
• a special unary fluent l that takes an action as its argument and

returns the action’s likelihood.

Logical symbols include connectives {∧, ∀, ¬}. We treat {∃, ≡, ⊃}
as syntactic abbreviations. For simplicity, no predicates are consid-
ered. However, we will use “≤” (defined on numbers) by assuming
there is a rigid function to simulate it. Terms are the smallest set
of expressions such that: 1) every variable and standard name (or
constant) is a term; 2) if t1, . . . tk are terms and f is k-ary function
symbol, then f(t1, . . . tk) is a term. Well-formed formulas are con-
structed as usual in first-order logic with equality. They can further
be in the context of belief and action modalities. Ground terms are
terms without free variables and primitive terms Pt are terms of the
form f(n1 . . . nm), where ni ∈ D. Additionally, we assume Na is
just the set of action primitive terms.

The logic has an epistemic operator: B(α : x) is to be read as “α
is believed with a probability x” where x is a term of the number sort.
We use K(α) as abbreviation for B(α : 1), read as “α is known”.
There are two action modalities [a], � in that if α is a formula, then
so are [a]α (read:“α holds after a”) and �α (read: “α holds after
any sequence of actions”). For z = a1 · · · ak, we write [z]α to mean
[a1] · · · [ak]α. We use TRUE to denote truth, which is taken as an
abbreviation for, say, ∀x(x = x), and FALSE for its negation. For
α, we use αx

t to denote the formula obtained by substituting free
variable x in α with term t. A formula without B is called objective,
without [a],� is called static, and without fluents, [a],� outside B
is called subjective.

Semantics The semantics is given in terms of possible worlds. In
a dynamic setting, such worlds are defined to interpret not only the
current state of affairs but also how that changes over actions. Let
Z = (Na)

∗ be the set of all finite sequences of actions including 〈〉,
the empty sequence. Then a world maps Pt × Z to N of the right
sort satisfying the rigidity constraint: if t ∈ Pt is rigid , w[t, z] =
w′[t, z′] for all w,w′, z, and z′. Additionally, +,×,≤ are rigid and
interpreted in the usual sense: E.g. w[1 + 1, z] = 2 for all w, z. This
amounts to setting the theory of real as a background theory that
admits quantifier elimination [40].

Let W be the set of all possible worlds. The denotation of ground
terms (wrt a world w, action sequence z) is defined inductively.
If t ∈ N , then ‖t‖w,z = t; If t = f(t1, . . . tm) then ‖t‖w,z =
w[f(r1, . . . rm), z] where ri = ‖ti‖w,z . If t is rigid, we write ‖t‖.

An epistemic state e is a set of distributions d (weighted functions)
that maps W to R

≥0. By a model, we mean a triple 〈e, w, z〉.
Truth for objective sentences is given as:

• e, w, z |= t1 = t2 iff ‖t1‖w,z = ‖t2‖w,z;
• e, w, z |= ¬α iff e, w, z �|= α;
• e, w, z |= α ∧ β iff e, w, z |= α and e, w, z |= β;
• e, w, z |= ∀x.α iff e, w, z |= αx

n for all n ∈ N for the right sort;
• e, w, z |= [a]α iff e, w, z · n |= α where n = ‖a‖w,z;
• e, w, z |= �α iff e, w, z · z′ |= α for all z′ ∈ Z .

To account for stochastic actions, DSp uses a notion called obser-

vational indistinguishability among actions. The idea is that instead
of saying stochastic actions have non-deterministic effects, DSp says
stochastic actions have non-deterministic alternatives which are mu-
tually observationally indistinguishable from the agent’s perspective
and each of which has a deterministic effect. In the coffee robot ex-
ample, to express that action east might end up in moving 1 or 2
units east non-deterministically, DSp uses two actions east(1) and
east(2), and they are interpreted in that the robot intends to move a
unit east but nature may select 1 or 2 as outcomes.

More formally (for simplicity, we assume actions have at most 1
argument), arguments of stochastic action a(y) are uncontrollable
and unobservable while arguments of sensing sen(x) are observ-
able yet uncontrollable to the agent. Under this convention, deter-
ministic actions are just actions without arguments. For example,
east(1), east(2) have uncontrollable and unobservable arguments 1
and 2, while sencfe(1) has an uncontrollable yet observable argu-
ment 1 indicating the sensor receives a reading of 1.

Besides, we define action sequence observational indistinguisha-
bility as follows:

Definition 1 We define z ≈ z′: 1. 〈〉 ≈ z′ iff z′ = 〈〉; 2. z ·r ≈ z′ iff
z′ = z∗ · r, z ≈ z∗ and r is a deterministic action or sensing action;
3. z · a(n) ≈ z′ iff z′ = z∗ · a(n′) for some n′ and z ≈ z∗.

For example, east(1)·east(2) ≈ east(2)·east(3). Lastly, we define
the likelihood of action sequences in a world:

Definition 2 We define l∗ : W ×Z �→ R
≥0:

• l∗(w, 〈〉) = 1 for all w ∈ W;
• l∗(w, z · r) = l∗(w, z)× n where w[l, z](r) = n.

Given e, w, z and formula α, let ‖α‖e,w,z := {〈w′, z′〉 : z′ ≈ z,
e, w′, z′ |= α}. ‖α‖e,w,z is the set of all alternative worlds
and actions that might result in α. For a distribution d, we de-
fine NORM(d, ‖α‖{d},w,z, n) if n = 1

η
× ∑

‖α‖{d},w,z
d(w′) ×

l∗(w′, z′),1 where η is a normalizer with the same expression as the
numerator but replacing α to TRUE. Namely, the set of pairs of worlds
and actions that result in α has proportioned summed weights (or
probability) n. Now, we are ready to give truth for B. Supposing r
is a rigid term,

• e, w, z |= B(α : r) iff for all d ∈ e, NORM(d, ‖α‖{d},w,z, ‖r‖);
We freely use B(α) ≤ r (or “<”) as formulas, they should be

understood as syntactic abbreviations for ∃x.B(α : x) ∧ x ≤ r.
For a sentence α, we write e, w |= α to mean e, w, 〈〉 |= α. When

Σ is a set of sentences and α is a sentence, we write Σ |= α (read:
Σ logically entails α) to mean that for all e and w, if e, w |= α′ for
every α′ ∈ Σ, then e, w |= α. Satisfiability and validity are defined
in the usual way. If α is an objective formula, we write w |= α
instead of e, w |= α. Similarly, we write e |= α instead of e, w |= α
if α is subjective.

Basic action theory To infer belief after actions, DSp encom-
passes an action theory Ddyn , including successor state axioms that
incorporate Reiter’s solution to the frame problem [34] and likeli-
hood axioms, to specify the dynamics of a domain.

• Successor state axioms (SSAs): There is one such axiom for each
fluent h: �[a]h = x ≡ Φ(a, x) 2 where Φ(a, x) is a formula with
free variables among a, x;

1 Since W is uncountable, NORM just requires the sum here to be “well-
defined”. See also [6] for details.

2 Free variables are implicitly universally quantified. The � has lower syn-
tactic precedence than the connectives, and [·] has the highest priority.

D. Liu et al. / Verifying Belief-Based Programs via Symbolic Dynamic Programming1498

• Likelihood axioms (LAs): We assume there are only finitely
many action symbols, and finitely many such axioms, one for each
action symbol. Particularly, LAs are of the form (respectively for
stochastic actions and sensing)
�l(a(y)) = q ≡

∨
i
y = ni ∧ q = n∗

i

�l(sen(x)) = q ≡
∨

i,j
x = n′

i ∧ φj ∧ q = n∗
i,j

where φj are mutually exclusive and complete sentences. Namely,
φj |= ¬φj′ and |= ∨

j φj ≡ TRUE. Essentially, the LAs say that
both stochastic actions and sensing have finite outcomes. More-
over, the likelihood of sensing might depend on the context (φj)
but the likelihood of stochastic actions is fixed. 3 Besides, all ac-
tions have finitely many outcomes with non-zero likelihood.

Example 1 In the robot example, we might have SSAs and LAs as:
�[a]h = x ≡ ∃y.a = east(y) ∧ x = y + h

∨ ∀y.a �= east(y) ∧ x = h

�l(east(y)) = x′ ≡ y = 1 ∧ x′ = 0.8 ∨ y = 2 ∧ x′ = 0.2

∨ y /∈ {1, 2} ∧ x′ = 0

�l(sencfe(x)) = x′ ≡ x = 1 ∧ h = 2 ∧ x′ = 1

∨ x = 0 ∧ h �= 2 ∧ x′ = 1

∨ x = 1 ∧ h �= 2 ∧ x′ = 0

∨ x = 0 ∧ h = 2 ∧ x′ = 0

That is, the robot’s new location x is determined by its current lo-
cation h and the actual moved distance y. Stochastic action east(y)
might end up moving 1 (0.8 likelihood) or 2 units (0.2 likelihood).
Besides, sensing action sencfe is accurate: if the robot is at the cof-
fee’s position, i.e. h = 2, executing sencfe receives a reading 1 with
100% likelihood and a reading 0 with zero likelihood.

Regression & progression The regression of a formula α through
an action a is another α′ that holds prior to a being performed iff [a]α
holds. The idea is to recursively replace formulas of the form [t]h =
n by the RHS of h’s SSA with substitutions. E.g. R([east(2)]h =
2,Ddyn) := (∃y.east(2) = east(y)∧2 = y+h∨∀y.a �= east(y)∧
x = h) ≡ (h = 0), given Ddyn as Example 1.

[30] also proposed a regression operator for belief formulas such
as [east(1)]B(h = 2: 0.2) if an initial belief distribution is given.
A belief distribution is a formula of the form ∀x.B(h = x : f(x))
specifying a distribution of the random variable h where f is a rigid
mathematical function (we write Bf for short). A similar formula
exists in case there are multiple random variables. For simplicity,
we only consider one random variable and initial belief distribution
that only finitely many points have a non-zero degree of belief,
i.e. ∀x.B(h = x : f(x)) ≡ ∧

j B(h = nj : rj). For example,
a possible initial belief distribution for the robot coffee could be
Bf0 ≡ B(h = 0: 1). Namely, the robot fully believes she is at
location 0. With an initial belief distribution, the regression of beliefs
is defined as the evaluation against the initial beliefs. For example:

R([east(2)]B(h = 2: 0.2),Ddyn ,B
f0)

:=
∑
nj

∑
ni

rj × l(east(ni))

{
1 h = ni ⊃ R([east(ni)]h = 2)
0 o.w.

≡0.2 = 1× 0.2

which is then evaluated to TRUE.4

3 It is possible to allow likelihood of stochastic actions to vary as well, for
simplicity, we only consider rigid likelihood.

4 The assumption that only finite action outcomes have non-zero likelihood
and finite values of random variables have a non-zero degree of belief en-
sures summation here is finite and hence can be replaced by a finite plus.

The inverse of regression is progression, which takes a formula ψ
and action a and represents logical consequences in a static formula
ψ′ (formula without [a] and �). Unlike regression, restrictions must
be imposed to ensure ψ′ is first-order [27]. Nevertheless, [29] showed
that if the input is a belief distribution Bf , then the progression is al-
ways first-order and in the form of another belief distribution Bf ′

,
i.e. Bf ∧KDdyn |= [a](Bf ′ ∧KDdyn). For example, the progres-
sion of Bf0 wrt action east(1) is Bf1 , and the progression of Bf1

wrt action sencfe(1) is Bf2 , where f1(x) and f2(x) are as:

f1(x) =

⎧⎨
⎩

0.8 x = 1
0.2 x = 2
0 o.w.

and f2(x) =

{
1 x = 2
0 o.w.

We comment that both of these results are significant improve-
ments and advancements over classical regression and progression
[34] as well as the epistemic non-probabilistic regression and pro-
gression by Scherl and Levesque [37] or Liu and Wen [32].

2.2 Verification of belief programs

Belief programs are probabilistic extensions of GOLOG, where every
action and sensing could be noisy, and every test is referring to the
agent’s subjective beliefs.

Belief program The basic ingredient of belief programs is the so-
called primitive programs which are actions that suppress their un-
controllable parameters. For example, for the action sencfe(1) and
east(2), their respective primitive programs are sencfe and east . A
primitive program � is instantiated by a ground action ta, i.e. � → ta
iff |= ∃y.ta = �[y], where �[y] is the action that restores its sup-
pressed parameters by y.

A program expression can be a primitive program �, a test α?
where α is a static subjective formula, a sequence δ; δ, a non-
deterministic choice (δ|δ), and a non-deterministic iteration δ∗ of
programs. Formally, the program expression can be defined as:

δ := �|α?|(δ; δ)|(δ|δ)|δ∗

The if-statements and while-loops are then defined as abbreviations:

if α then δ1 else δ2 endIf := [α?; δ1]|[¬α?; δ2]
while α do δ endWhile := [α?; δ]∗;¬α

An example is the coffee robot program δcfe in the introduction.
Given a set of formulas without modality D0 that describes the ini-
tial world state, an initial belief distribution Bf , a BAT Ddyn , and a
program expression δ, a belief program BP is a pair of the form:

BP = (D0 ∪ Ddyn ∪Bf ∪KDdyn , δ).

For the coffee robot, a belief program could be

BPcfe = ({h ≤ 0} ∪ Ddyn ∪Bf0 ∪KDdyn , δcfe)

where Ddyn is as in Example 1. Namely, the robot initially is at a non-
positive position h ≤ 0 yet she fully believes that she is at position
0, i.e Bf0 . To handle termination and failure, we reserve two nullary
fluents Final and Fail. Moreover, �[a]Final = u ≡ a = ε ∧
u = 1 ∨ Final = u (likewise for Fail with action f) are implicitly
assumed to be part of Ddyn . Additionally, D0 |= Final = 0 ∧
Fail = 0, and actions ε, f do not occur in δ.

Program semantics & the verification problem A configuration
〈z, δ〉 of a program consists of an action sequence z and a program
expression δ, where z is an action history and δ is the remaining
program to be executed. Given BP = (D0∪Ddyn∪Bf∪KDdyn , δ),
the transition relation e−→ among configurations given e is defined
inductively as:(See [31, 28] for a full list):

D. Liu et al. / Verifying Belief-Based Programs via Symbolic Dynamic Programming 1499

1. 〈z, �〉 e−→ 〈z · t, 〈〉〉, if � → t;
2. 〈z, δ1; δ2〉 e−→ 〈z · t, δ′; δ2〉, if 〈z, δ1〉 e−→ 〈z · t, δ′〉;
3. 〈z, δ∗〉 e−→ 〈z · t, δ′; δ∗〉, if 〈z, δ〉 e−→ 〈z · t, δ′〉 .

The set of final configurations wrt e, i.e. Fin(e), is defined as the
smallest set such that:

1. 〈z, 〈〉〉 ∈ Fin(e), 〈z, δ∗〉 ∈ Fin(e);
2. 〈z, α?〉 ∈ Fin(e) if e, w, z |= α;
3. 〈z, δ1; δ2〉 ∈ Fin(e) if 〈z, δ1〉 ∈ Fin(e) and 〈z, δ2〉 ∈ Fin(e);
4. 〈z, δ1|δ2〉 ∈ Fin(e) if 〈z, δ1〉 ∈ Fin(e) or 〈z, δ2〉 ∈ Fin(e);

The set of failing configuration is given by: Fail(e) = {〈z, δ〉|
〈z, δ〉 /∈ Fin(e),¬∃〈z · t, δ′〉.〈z, δ〉 e−→ 〈z · t, δ′〉}.

The execution of a belief program P in a pair 〈e, w〉 such that
e, w |= D0 ∪ Ddyn ∪ Bf ∪ KDdyn yields a countably infinite
partially observable Markov decision process (POMDP) Me,w

δ =
(S,A, P,O,Ω, s0) as follows:

• S: the set of configurations reachable from s0 under e−→∗
(transi-

tive and reflexive closure of e−→);
• A: the finite set of primitive programs in δ;
• s0: the initial state 〈〈〉, δ〉;
• O: the observations are the reachable belief distributions Bf ′

from Bf , namely, {Bf ′ |∃z ∈ Z.Bf ∧KDdyn |= [z]Bf ′}.
• Ω: S �→ O a deterministic observation mapping as (suppose s =

〈z, δ〉) Ω(s) = Bf ′
iff Bf ∧ Ddyn |= [z]Bf ′

.
• P : S × A × S → R the transition probability P (〈z, δ〉, �, 〈z ·

ta, δ
′〉) given by:

P (·) =

⎧⎪⎪⎨
⎪⎪⎩

n if � → ta, w, z |= l(ta) = n, 〈z, δ〉 e−→ 〈z · ta, δ′〉
1 if 〈z, δ〉 ∈ Fin(e) and � = t = δ′ = ε
1 if 〈z, δ〉 ∈ Fail(e) and � = t = f, δ′ = δ
0 o.w.

We comment that it is a POMDP rather than MDP because we are
interested in the set of possible strategies that the robot can perform.
The fact that the set of observations is just the set of reachable beliefs
distribution means that the robot can only act according to its beliefs
about the environment rather than the actual world state, leading to a
partially observable setting.

The non-determinism of programs is resolved by a policy, which
is an action-selection strategy that maps each state to an action, i.e.,
σ : S → A. We will only focus on the observation-based policies
Σobs : a policy σ : S → A is observation-based iff for all s, s′ ∈ S,
if Ω(s) = Ω(s′) then σ(s) = σ(s′). 5 An infinite path of the form
π = s0

�1−→ s1
�2−→ s2 · · · is called a σ-path if σ(sj) = �j+1 for all

j ≥ 0. The j-th state of any such path is denoted by π[j]. The set of
all σ-paths starting in s is denoted by Pathσ(s,Me,w

δ).
Every policy σ induces a probability space Prσs on the set of in-

finite paths starting in the state s, using the cylinder set construc-
tion [42]. For any finite path prefix πfin = s0

�1−→ s1 · · · sn, the prob-
ability measure is defined as: Prσs0,fin = P (s0, �1, s1) · · ·P (sn−1,
�n, sn). This extends to a unique measure Prσs .

Given a POMDP Me,w
δ , a policy σ, and a static subjective formu-

las ψgoal as goal, we say that a state s = 〈z, δ〉 satisfies ψgoal , i.e.
s |= α iff e, w, z |= ψgoal , an infinite path π satisfies eventually
ψgoal , i.e. π |= Fψgoal , iff ∃k.π[k] |= ψgoal , where π[k] is the k-th

5 The definition is slightly different from the classical notion of observation-
based policy [33] as theirs are defined in terms of observation history. How-
ever, in our case, an observation is a belief distribution, which already en-
codes a history.

state in π. The reachability probability Prσs0(Fψgoal) is then defined
Prσs0({π|π |= Fψgoal}). Given a program BP , a static subjective
formula α, and a threshold τ , the verification problem ask if

max
σ∈Σobs

{Prσs0(Fψgoal)} ≤ τ

for all POMDPs Me,w
δ with e, w |= D0 ∪Ddyn ∪Bf ∪KDdyn . We

write BP |= Pr(Fψgoal) ≤ τ if the program satisfies the property. 6

In the coffee robot example, we might be interested in whether
the maximal reachability probability for the robot to fully believe it
reaches the coffee is no more than 0.1. Namely, deciding BPcfe |=
Pr(FKh = 2) ≤ 0.1.

3 Verification by symbolic dynamic programming

One way to solve a POMDP is value iteration. Since the optimal
policy of a POMDP might not be state-based, one has to transfer
it into a continuous belief MDP so that the optimal policy of the
original POMDP corresponds to the optimal state-based policy of
the belief MDP [1]. The states B of the belief MDP are called belief
states,7 and are distributions over states of the original POMDP.

In value iteration, every belief state b is assigned a value V (b)
representing the maximal reachability probability that could achieve
from the belief state b, hence we are interested in the value of
the initial belief state bI with bI(s0) = 1. The value func-
tion V is essentially the fixed-pointed of the Bellman backup op-
erator and thus can be computed iteratively [11, 39]: V (b) =
maxa∈A

∑
b′∈B P (b, a,b′) × V (b′). While the number of belief

states B is infinite, it is well-known that the optimal value function
for finite horizon H is piece-wise linear and convex, therefore can be
approximated arbitrarily closely as the upper envelope of a finite set
of “α-vectors” V as V (b) = maxα∈V b · α. Hence value iteration
is transformed to compute V via:

V H =
⋃
a∈A

V H
a and V H

a = �o∈OV
H
a,o (1a)

V H
a,o = {αa,o|α ∈ V H−1} (1b)

αa,o(s) =
∑
s′∈S

[[Ω(s′) = o]] · P (s, a, s′) · α(s′) (1c)

where V1 � V2 = {α1 + α2|α1 ∈ V1, α2 ∈ V2}, [[x]] is the indica-
tor function and returns 1 if x is true and 0 otherwise, and P is the
transition function of the original POMDP.

3.1 FO-POMDP for belief programs

A first-order partially observable MDP (FO-POMDP) is a com-
pact representation of (infinite) POMDP which abstractly defines the
states SFO, actions AFO, observations OFO, transition probability PFO

and observation function ΩFO. It is suitable for our need to abstractly
represent the underlying infinite POMDPs generated by the execu-
tion of belief programs Me,w

δ .
To begin with, we need the notion of characteristic program graph

Gδ [13] of a program δ. The nodes of Gδ are the reachable subpro-
grams Sub(δ), each of which is associated with a termination condi-
tion Fin(δ) (initial node v0 corresponds to the overall program) and

6 Here, we only consider the upper bound. A dual question is to consider the
lower bound, i.e. determining if τ ≤ minσ∈Σobs

{Prσs0 (Fψgoal)} for all
POMDPMe,w

δ which involves policy synthesis [33]. We leave it for future.
7 This is in contrast to our model of belief B. Here, belief is just a distribution

over states, that is, it is a meta-linguistic notion while B is a logical notion.

D. Liu et al. / Verifying Belief-Based Programs via Symbolic Dynamic Programming1500

an edge δ1
�/α−−→ δ2 represents a transition from δ1 to δ2 by the primi-

tive program � if test condition α holds. Moreover, failure conditions
are given by Fail(δ′) ::= ¬(Fin(δ′) ∨ ∨

δ′
�/α−−→δ′′

α). In the coffee

robot program, Gδcfe has only one node with two self-loops.

v0

east

sencfe

Given a belief program BP , we define a FO-POMDP MBP
FO =

(SFO, AFO, PFO, s0, OFO,ΩFO) in the following way:

• SFO: the set of states are of the form 〈φ, δ〉, where φ is a first-order
DSp formula. Intuitively, 〈φ, δ〉 represents the set of all possible
worlds w, epistemic states e, and program configurations 〈z, δ〉
such that e, w, z |= φ;

• AFO: the finite set of primitive programs in δ;
• s0FO = 〈D0, δ〉: is the initial state.8

• OFO: the observations are the same as in Me,w
δ ;

• ΩFO: a deterministic observation function ΩFO(〈φ, δ〉) = Bf ′
if

φ |= Bf ′
;

• PFO(〈φ1, δ1〉, �, 〈φ2, δ2〉) is given as:

PFO(·) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n if δ1
�/β−−→ δ2 ∈ Gδ for some β and

∃ta.� → ta and φ1 |= l(ta) = n ∧ β
1 if φ1 |= Final = 1 and � = δ2 = ε
1 if φ1 |= Fail = 1 and � = δ2 = f
0 o.w.

Case Statement To concisely represent PFO and distributions over
states SFO of the FO-POMDP, we introduce a tabular meta-logical
device called case statement [35]. A case-statement Case defines a
distribution over the state 〈φ, δ〉 ∈ SFO as

Case[φ1, δ1, t1; . . . φk, δk, tk] ≡
〈φ1, δ1〉 : t1

...
〈φk, δk〉 : tk

Additionally, Case = t iff for 1 ≤ i ≤ k, if φi holds and the
remaining program is δi, then t = ti. We assume t1, . . . tk are con-
stants for simplicity. For example, the following case statement ex-
presses a distribution that assigns all weights to the state that satisfies
B(h = 2: 1) with δcfe as the remaining program:

Case0 := 〈Kh = 2, δcfe〉 : 1 (2)

For a given program BP , we might wish to use some logical op-
erator over its reachable sub-program Sub(δ) in case statements as
shorthand, they are defined as

Case[φ, δ1 ∨ δ2, t] := Case[φ, δ1, t;φ, δ2, t]

Case[φ,¬δ1, t] := Case[φ, δ2, t; . . . φ, δk, t]

where δ2, . . . δk are programs in Sub(δ) and distinct from δ1. Fol-
lowing this definition, we use δT to mean the disjunctions for all
δi ∈ Sub(δ) and δF for its negation.

Besides, we define sum ⊕ (likewise for product ⊗) over two case
statements as (we might use a scalar value n in ⊕ or ⊗, they should

8 The BAT and initial belief distribution Ddyn ∧Bf ∧KDdyn is implicitly
included.

be understood as 〈TRUE, δTRUE〉 : n)

〈φ1, δ1〉 : t1
〈φ2, δ2〉 : t2 ⊕ 〈φ′

1, δ
′
1〉 : t′1

〈φ′
2, δ

′
2〉 : t′2 =

〈φ1 ∧ φ′
1, δ1 ∧ δ′1〉 : t1 + t′1

〈φ1 ∧ φ′
2, δ1 ∧ δ′2〉 : t1 + t′2

〈φ2 ∧ φ′
1, δ2 ∧ δ′1〉 : t2 + t′1

〈φ2 ∧ φ′
2, δ2 ∧ δ′2〉 : t2 + t′2

Lastly, we need to compute the preimage of a case statement wrt

a ground action ta in a program graph Gδ: (supposing δi,j
�/βi,j−−−−→

δi ∈ Gδ and � → ta)

Pre(Case[φi, δi, ti], Gδ, ta) := Case[βi,j ∧ [ta]φi, δi,j , ti].

If no ambiguity, we write Pre(Case, ta) or Pre(Case) for short.
Essentially, Pre(Case) represents the conditions that prior distribu-
tions over SFO should satisfy in order to result in Case after the ac-
tion ta. For example, 〈[sencfe(1)]Kh = 2, δcfe〉 : 1 is the preim-
age of Case0 wrt Gδcfe and action sencfe(1). This is because Gδcfe

only has self-loops, the program expression previous to the action
sencfe(1) can only be δcfe itself.

Now we show how to represent PFO. First, for each ground action
ta, according to the BAT, l(ta) can be represented by a case state-
ment: l(ta) := Case[φj , δT , nj], where φj is the likelihood condi-
tions and nj is the corresponding values. In case ta is a stochastic
action, φj ≡ TRUE. Next, recall that PFO in MBP

FO not only depends
on l(ta) but also the program graph Gδ . Hence, given Gδ , (supposing

δi
�/βi−−−→ δi′ ∈ Gδ and � → ta), we define:

P
Gδ
FO (�, ta) := Case[βi, δi, 1]⊗ l(ta).

Then, we can represent the transition probability PFO by a set of case
statements, one for each primitive program and ground action. In the
coffee robot program example, PFO contains the following: 9

P
Gδ
FO (east , east(1)) := 〈TRUE, δcfe〉 : 0.8

P
Gδ
FO (east , east(2)) := 〈TRUE, δcfe〉 : 0.2

P
Gδ
FO (sencfe, sencfe(1)) := 〈h = 2, δcfe〉 : 1

P
Gδ
FO (sencfe, sencfe(0)) := 〈h �= 2, δcfe〉 : 1

3.2 Symbolic dynamic programming

To solve the FO-POMDP for a program BP , we propose a sym-
bolic dynamic programming (SDP) algorithm in the form of lifted
α-vectors. Lifted α-vectors will be represented as case statements,
e.g. αCase and the lifted POMDP value function will be represented
as a maximization over a set V H = {αCase}:

V H(b) = max
αCase∈V H

b⊗ αCase. (3)

For a goal ψgoal , we initialize the V 0 by the single case statement
αCase0 = 〈ψgoal , δT 〉 : 1 . Intuitively, if initially ψgoal already
holds, then the reachability would be 1 with the optimal policy saying
do nothing. For example, we have αCase0 := Case0 as in Eq. (2)
for the goal Kh = 2 and program BPcfe .

We comment that an important concern in the implementation of
evaluating V H(b) for a belief state b or, more general, computing
⊕,⊗ over case statements is to reduce the number of cases by remov-
ing inconsistent cases. We achieve this by an external theorem prover.
Moreover, while it is possible to eliminate [a] for objective formulas
by regression (wrt BAT Ddyn) in order to identify equivalent cases,

9 We omit cases with 0 values for short.

D. Liu et al. / Verifying Belief-Based Programs via Symbolic Dynamic Programming 1501

it is impossible to eliminate B as regression of B is essentially eval-
uating it against an input belief distribution Bf . Nevertheless, such
a procedure requires extra effort (we defer a discussion on this to the
Implementation section). For the purpose of presentation, we elimi-
nate [a] whenever possible by regression.

Relevant observations Another problem in value iteration for the
FO-POMDP is that observations OFO are infinite, hence it is infeasi-
ble to perform iterations as in Eq. (1a). The idea here is to identify the
set of relevant observations at iterations [36]. Given a belief distri-
bution (or observation) Bf and a primitive program �, the set of rel-
evant observations O� are fixed and determined by the set of ground
actions ta s.t. � → ta (as new observations are the progressions of
Bf wrt ta). We denote the set of all relevant observations ORel as
ORel =

⋃
� O

�. Additionally, O� =
⋃

ti
Oti where � → ti.

In our coffee robot example, we have ORel = Oeast ∪ Osencfe =
Oeast(1) ∪ Osencfe(1) ∪ Osencfe(0). Note that Oeast(2) = Oeast(1)

because starting from any belief distribution, action east(2) and
east(1) will result in the same belief distribution as the robot has
no knowledge about the actual outcome and yields the same beliefs.

We propose an anytime SDP algorithm that runs for a given num-
ber of iterations N (N represents policies’ maximal horizons in con-
sideration) as follows:

• Step 1: For H = 0, set αCase10 = 〈ψgoal , δT 〉 : 1 , and V 0 =

{αCase10}.
• Step 2: compute V H(bI) via Eq.(3) for the initial belief state

bI := 〈D0, δ〉 : 1 . Regress formulas in V H(bI) wrt Bf

and Ddyn . If there exists a case 〈φi, δi〉 : ti ∈ V H(bI) such
that φi is satisfiable, δi = δ, and ti > τ , then return “BP �

Pr(Fψgoal) ≤ τ”, else set H = H + 1.
• Step 3: For each primitive program � ∈ AFO and each o ∈ ORel,

compute a αCase�,o,jH for each αCasejH−1 ∈ V H−1 by sum-
ming over all nature’s choice of outcomes ti for �:

αCase�,o,jH =⊕ti [[o ∈ Oti)]]⊗
P

Gδ
FO (�, ti)⊗ Pre(αCasejH−1, Gδ, ti)

where [[o ∈ Oti)]] returns 1 if o ∈ Oti else 0.
• Step 4: Compute the set V H

�,o by:

V H
�,o = {αCase�,o,jH |αCasejH−1 ∈ V H−1}

• Step 5: Compute the set V H
� for primitive program � by summing

over all relevant observations in O�: V H
� = �o∈O�V H

�,o.
• Step 6: Union the sets V H

� for all primitive program � to form
V H : V H =

⋃
� V

H
a .

• Step 7: If horizon H < N go to step 2, else returns “unkown”

In the robot example, we have:
V 0(bI) = 〈h ≤ 0, δcfe〉 : 1 ⊗ 〈K(h = 2), δT 〉 : 1

= 〈h ≤ 0 ∧K(h = 2), δcfe〉 : 1
After eliminating B by regression (wrt Bf0 and Ddyn), we have

V 0(bI) = 〈h ≤ 0 ∧ FALSE, δcfe〉 : 1 = 0.

This is because Bf0 says Kh = 0 which implies ¬Kh = 2 and the
fact that any inconsistent case statement amounts to 0. Namely, the
maximal reachability is 0 for policies with 0 horizons.

When setting H = 1, there are three distinct relevant observa-
tions ORel and two primitive programs {east , sencfe}. Below, we
use E,S as shorthand for east , sencfe respectively.

αCaseE,OE(1),1
1

=1× P
Gδ
FO (E,E(1))⊗ Pre(〈K(h = 2), δcfe〉 : 1 , E(1))

⊕1× P
Gδ
FO (E,E(2))⊗ Pre(〈K(h = 2), δcfe〉 : 1 , E(2))

= 〈TRUE, δcfe〉 : 0.8 ⊗ 〈[E(1)]Kh = 2, δcfe〉 : 1
⊕ 〈TRUE, δcfe〉 : 0.2 ⊗ 〈[E(2)]Kh = 2, δcfe〉 : 1
= 〈[E(1)]Kh = 2, δcfe〉 : 1

The last equality is because [E(1)]Kh = 2 and [E(2)]Kh = 2 are
logically equivalent: again the robot has no idea about the outcome
of east . Likewise:

αCaseS,O
S(1),1

1

=1× P
Gδ
FO (S, S(1))⊗ Pre(〈K(h = 2), δcfe〉 : 1 , S(1))

⊕0× P
Gδ
FO (S, S(0))⊗ Pre(〈K(h = 2), δcfe〉 : 1 , S(0))

= 〈h = 2, δcfe〉 : 1 ⊗ 〈[S(1)]Kh = 2, δcfe〉 : 1
= 〈h = 2 ∧ [S(1)]Kh = 2, δcfe〉 : 1

And αCaseS,O
S(0),1

1 = 〈h �= 2 ∧ [S(0)]Kh = 2, δcfe〉 : 1 . By

Steps 4 and 5, we have V 1
E = {αCaseE,OE(1),1

1 } and

V 1
S = V 1

S,S(1) � V 1
S,S(0) =

〈h = 2 ∧ [S(1)]Kh = 2, δcfe〉 : 1
〈h �= 2 ∧ [S(0)]Kh = 2, δcfe〉 : 1

Thus, V 1 = V 1
E ∪ V 1

S contains two case statements above.
V 1(bI) = max{ 〈h ≤ 0 ∧ [E(1)]Kh = 2, δcfe〉 : 1 ,

〈h ≤ 0 ∧ h = 2 ∧ [S(1)]Kh = 2, δcfe〉 : 1
〈h ≤ 0 ∧ h �= 2 ∧ [S(0)]Kh = 2, δcfe〉 : 1 }

If we regress cases against Bf0 and Ddyn , we have
V 1(bI) = max{ 〈h ≤ 0 ∧ FALSE, δcfe〉 : 1 ,

〈h ≤ 0 ∧ h = 2 ∧ TRUE, δcfe〉 : 1
〈h < 2 ∧ FALSE, δcfe〉 : 1 } = 0.

The

first case 〈h ≤ 0 ∧ FALSE, δcfe〉 : 1 is due to that starting from
Bf0 , after the stochastic action east(1), the agent would believe
B(h = 1: 0.8) and B(h = 2: 0.2), hence, [E(1)]K(h = 2) does
not hold. Likewise [S(1)]Kh = 2 ≡ TRUE and [S(0)]Kh = 2 ≡
FALSE. The result suggests that the maximal reachability is policies
with at most 1 horizon is still 0.

For H = 2, observing the fact that [east(1)]Kh = 2 and
[east(0)]Kh = 2 is impossible under Bf0 and Ddyn , after elimi-
nating inconsistent cases we have

V 2
E = { 〈h = 1 ∧ [E(1) · S(1)]Kh = 2, δcfe〉 : 0.8

〈h = 0 ∧ [E(2) · S(1)]Kh = 2, δcfe〉 : 0.2 }

V 2
S = { 〈h = 2 ∧ [S(1) · S(1)]Kh = 2, δcfe〉 : 1

〈h �= 2 ∧ [E(0) · S(0)]Kh = 2, δcfe〉 : 1 }
Therefore the evaluation of V 2(bI) results in

V 2(bI) = max{0, 〈h = 0, δcfe〉 : 0.2
〈h < 0, δcfe〉 : 0 }. Hence, the maximal

reachability is 0.2 if initially h = 0 (recall that D0 = {h ≤ 0}), and
it is obtained by the program (or policy) east ; sencfe . Since 0.2 >
0.1, the algorithm terminates with BPcfe � Pr(Fψgoal) ≤ 0.1.

Theorem 1 Given a belief program BP , a goal ψgoal , a threshold
τ , the SDP algorithm above returns “BP � Pr(Fψgoal) ≤ τ” iff
BP � Pr(Fψgoal) ≤ τ .

Proof Sketch [9] proves the correctness of value iteration for reach-
ability probability in POMDPs. Hence it remains to show that the

D. Liu et al. / Verifying Belief-Based Programs via Symbolic Dynamic Programming1502

FO-POMDP for a belief program is a faithful abstraction of the un-
derlying infinite ground POMDPs, which can be proved based on the
facts that 1) every observation-based policy of the FO-POMDP is an
observation-based policy of the ground POMDPs and vice versa; 2)
every state 〈φ, δ〉 in FO-POMDP abstractly represents a set of pro-
gram configurations (states of the ground POMDP) which satisfy φ.

4 Implementation & Evaluation

The main challenge in implementation is how to implement the case
statement and operations over it. For this, we exploit the idea of first-
order algebraic decision diagram (FOADD) in [35]. The algebraic
decision diagram (ADD) [2, 18] is a data structure that compactly
represents a Boolean function {0, 1}n �→ R using a directed acyclic
graph. Nevertheless, the propositional nature prevents us from using
ADDs directly since case statements contain general FOL formu-
las (potentially with modality [a] and B) and program expressions.
Our solution is to maintain a mapping that maps each first-order sen-
tence to a corresponding proposition (hence the name FOADD). In
the same spirit, the mapping also maps each reachable sub-program
δi ∈ Sub(δ) to a proposition pδi (mutually exclusive). Below is an
illustration of the FOADD for Case0 in Eq. (2).

pK(h=2)

pδcfe

1 0

With the FOADD, the operators ⊕ and ⊗ defined over case state-
ments can be implemented by direct use of standard Apply opera-
tions such as addition and multiplication for ADDs. A notable ex-
ception is the Pre function which requires a program graph Gδ and
a ground action ta as inputs. In practice, we process as follows:

1. updating the FOL-Propositions mapping by adding [ta] in front of
all formulas (excluding δi ∈ Sub(δ)) in the given FOADD;

2. collecting edges E := {δi,j �/βi,j−−−−→ δi ∈ Gδ and � → ta} whose
label � can instantiate the ground action ta. Let Δ =

⋃
i{δi} be

the set of relevant program expressions (whose predecessors need
to be computed);

3. setting propositions Sub(δ)−Δ to be FALSE;
4. replacing propositions δi ∈ Δ with

∨
j pδi,j ∧ pβi,j .

We comment our notion of FOADD goes beyond the one by San-
ner [35] as our mapping includes sentences that might contain modal-
ities, even nested modalities.

Reducing space Several tricks can be used to reduce the number
of introduced propositions.

1. For objective formulas, one could use regression to eliminate
modality [a] and identify potential equivalent formulas. E.g. under
the BAT of coffee domain Ddyn , the formula h = 1 is logically
equivalent to [east(1)]h = 2;

2. Besides, one can rewrite terms [22] to identify potential equivalent
formulas. E.g. we can rewrite h+ 1 + 1 to h+ 2;

3. For subjective formulas, since the agent has no knowledge about
the actual outcome of stochastic actions, we could ignore their
uncontrollable parameters. E.g. since [east(1)]B(α : r) is equiv-
alent to [east(2)]B(α : r), we simply ignore arguments {1, 2}.

Although the contribution of the paper is mainly theoretical and
conceptual as the primary focus is on converting SDP [36] for ver-
ification, we implemented the algorithm (with the above tricks) in

a prototype system and evaluate it for the coffee robot domain. We
conceive an extended evaluation for variants of domains, programs,
and program properties in the future [12]. We exploit PREGO [7] for
regression and the Z3 theorem prover [17] for satisfiability check-
ing. Besides, Z3 provides built-in rules for term rewriting. The ex-
periment is conducted on an Intel@ CoreTM i5-1135G7 @2.4GHz
with 8GB RAM. The table below demonstrates time and space con-
sumption under different horizon H settings. “PRM” stands for the
primitive version while “RDC” stands for the version of SDP that ap-
plies tricks to reduce space. The result suggests that while the tricks
can significantly reduce the number of αCase in the value function
(#V) and the number of propositions in ADDs (#Prop), especially
when H grows large, it requires significantly more time to process.
Unfortunately, both versions run out of memory for H = 5. This is
not surprising since the set of α-vectors grows exponentially with ev-
ery iteration [38]. After all, the exact value iteration could not solve
the well-known Tiger domain for H = 2 with more than 1 door [36].

H
#V #Prop Time(in ms)

PRM RDC PRM RDC PRM RDC
0 1 1 2 2 0 0
1 2 2 6 7 16 31
2 6 6 15 27 5972 35
3 22 42 34 106 41613 47
4 132 1806 78 422 328472 500

5 Related Work & Conclusion

We review related works from the perspective of GOLOG program
verification and symbolic model-checking.

Our notion of belief programs stems from [31, 28]. A primitive
form of belief programs (propositional beliefs) can be found in [25].
The first work on verifying GOLOG program is [15, 16]. Later, veri-
fying variants of GOLOG programs and program properties are stud-
ied. E.g. [14] investigated the verification of DT-GOLOG program,
a variant with decision theoretical feature, against PCTL-like prop-
erties. [43] studied the verification of ALCOK-GOLOG programs,
a variant with features of knowledge and sensing, against LTL-like
properties [43]. Similarly, [13, 43, 44] resp. studied the verification of
CTL∗, LTL, and CTL properties of GOLOG programs. On verifying
algorithms, a common step of many works above is to abstract the in-
finite ground transition systems (or MDP, POMDP) induced by pro-
gram execution to abstract (symbolic) ones, and thereafter perform
symbolic model-checking. If the abstractions are finite [43, 44, 14],
tools such as PRISM [23] and Storm [21] can be used. Otherwise, one
has to devise GOLOG-specific algorithms that, e.g. do similar fixpoint
computations as (symbolic) model-checking techniques [13].

On the other hand, symbolic methods are common in model-
checking to tackle the state space explosion problem [5]. In this re-
gard, the most relevant work to us is [36] where an SDP algorithm
is proposed for value iteration in FO-POMDP, nevertheless, states
of FO-POMDP there only contain FOL formulas while ours include
modality and program expressions as well, leading to special treat-
ments in computing preimage and evaluating for case statements.
Prior to [36], symbolic model-checking can be applied to transition
systems [5], Markov chains [4], MDP [3], first-order MDP [35], or
relational POMDP [41], stochastic game [24].

Future work includes exploring the possibility of integrating point-
based value iteration [38] in verification. Besides, it would be desir-
able to provide also a lower bound on reachability probability [10].

D. Liu et al. / Verifying Belief-Based Programs via Symbolic Dynamic Programming 1503

Acknowledgements

This research was supported partly by a Royal Society University
Research Fellowship, UK, partly by a grant from the UKRI Strate-
gic Priorities Fund, UK to the UKRI Research Node on Trustworthy
Autonomous Systems Governance and Regulation (EP/V026607/1,
2020–2024), partly by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) RTG 2236/2 ‘UnRAVeL’, and partly
by the EU ICT-48 2020 project TAILOR (No. 952215).

References

[1] Karl J Astrom, ‘Optimal control of markov decision processes with in-
complete state estimation’, J. Math. Anal. Applic., 10, 174–205, (1965).

[2] R Iris Bahar, Erica A Frohm, Charles M Gaona, Gary D Hachtel, En-
rico Macii, Abelardo Pardo, and Fabio Somenzi, ‘Algebric decision di-
agrams and their applications’, Formal methods in system design, 10,
171–206, (1997).

[3] Christel Baier, On algorithmic verification methods for probabilistic
systems, Ph.D. dissertation, Habilitation thesis, Fakultät für Mathe-
matik & Informatik, Universität Mannheim, 1998.

[4] Christel Baier, Edmund M Clarke, Vasiliki Hartonas-Garmhausen,
Marta Kwiatkowska, and Mark Ryan, ‘Symbolic model checking for
probabilistic processes’, in Automata, Languages and Programming:
24th International Colloquium, ICALP’97 Bologna, Italy, July 7–11,
1997 Proceedings 24, pp. 430–440. Springer, (1997).

[5] Christel Baier and Joost-Pieter Katoen, Principles of model checking,
MIT press, 2008.

[6] Vaishak Belle and Gerhard Lakemeyer, ‘Reasoning about probabilities
in unbounded first-order dynamical domains.’, in IJCAI, pp. 828–836,
(2017).

[7] Vaishak Belle and Hector Levesque, ‘Prego: an action language for
belief-based cognitive robotics in continuous domains’, in AAAI, vol-
ume 28, (2014).

[8] Vaishak Belle and Hector Levesque, ‘Allegro: Belief-based program-
ming in stochastic dynamical domains’, in IJCAI, (2015).

[9] Alexander Bork, Sebastian Junges, Joost-Pieter Katoen, and Tim Quat-
mann, ‘Verification of indefinite-horizon pomdps’, in ATVA, pp. 288–
304. Springer, (2020).

[10] Alexander Bork, Joost-Pieter Katoen, and Tim Quatmann, ‘Under-
approximating expected total rewards in pomdps’, in TACAS, pp. 22–
40. Springer, (2022).

[11] Anthony R Cassandra, Michael L Littman, and Nevin Lianwen Zhang,
‘Incremental pruning: A simple, fast, exact method for partially ob-
servable markov decision processes’, arXiv preprint arXiv:1302.1525,
(2013).

[12] Jens Claßen, ‘Symbolic verification of golog programs with first-order
bdds’, in KR, (2018).

[13] Jens Claßen and Gerhard Lakemeyer, ‘A logic for non-terminating
golog programs.’, in KR, pp. 589–599, (2008).

[14] Jens Claßen and Benjamin Zarrieß, ‘Decidable verification of decision-
theoretic golog’, in International Symposium on Frontiers of Combin-
ing Systems, pp. 227–243. Springer, (2017).

[15] Giuseppe De Giacomo, Eugenia Ternovska, and Ray Reiter, ‘Non-
terminating processes in the situation calculus’, in Proceedings of the
AAAI’97 Workshop on Robots, Softbots, Immobots: Theories of Action,
Planning and Control, (1997).

[16] Giuseppe De Giacomo, Eugenia Ternovska, and Ray Reiter, ‘Non-
terminating processes in the situation calculus’, Annals of Mathematics
and Artificial Intelligence, 88, 623–640, (2020).

[17] Leonardo De Moura and Nikolaj Bjørner, ‘Z3: An efficient smt solver’,
in Tools and Algorithms for the Construction and Analysis of Systems:
14th International Conference, TACAS 2008, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS
2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings 14,
pp. 337–340. Springer, (2008).

[18] Frederik Gossen, Alnis Murtovi, Philip Zweihoff, and Bernhard
Steffen, ‘Add-lib: Decision diagrams in practice’, arXiv preprint
arXiv:1912.11308, (2019).

[19] Hans Hansson and Bengt Jonsson, ‘A logic for reasoning about time
and reliability’, Formal aspects of computing, 6, 512–535, (1994).

[20] Godfrey Harold Hardy, Edward Maitland Wright, et al., An introduction
to the theory of numbers, Oxford university press, 1979.

[21] Christian Hensel, Sebastian Junges, Joost-Pieter Katoen, Tim Quat-
mann, and Matthias Volk, ‘The probabilistic model checker storm’, In-
ternational Journal on Software Tools for Technology Transfer, 1–22,
(2021).

[22] Gérard Huet, ‘Confluent reductions: Abstract properties and applica-
tions to term rewriting systems: Abstract properties and applications to
term rewriting systems’, Journal of the ACM (JACM), 27(4), 797–821,
(1980).

[23] M. Kwiatkowska, G. Norman, and D. Parker, ‘PRISM 4.0: Verification
of probabilistic real-time systems’, in Proc. 23rd International Con-
ference on Computer Aided Verification (CAV’11), eds., G. Gopalakr-
ishnan and S. Qadeer, volume 6806 of LNCS, pp. 585–591. Springer,
(2011).

[24] Marta Kwiatkowska, Gethin Norman, David Parker, and Gabriel
Santos, ‘Symbolic verification and strategy synthesis for turn-based
stochastic games’, in Principles of Systems Design: Essays Dedicated
to Thomas A. Henzinger on the Occasion of His 60th Birthday, 388–
406, Springer, (2022).

[25] Jérôme Lang and Bruno Zanuttini, ‘Probabilistic knowledge-based pro-
grams’, in IJCAI, (2015).

[26] Hector J Levesque, Raymond Reiter, Yves Lespérance, Fangzhen Lin,
and Richard B Scherl, ‘Golog: A logic programming language for dy-
namic domains’, The Journal of Logic Programming, 31(1-3), 59–83,
(1997).

[27] Fangzhen Lin and Ray Reiter, ‘How to progress a database’, Artificial
Intelligence, 92(1-2), 131–167, (1997).

[28] Daxin Liu, Projection in a probabilistic epistemic logic and its appli-
cation to belief-based program verification, PhD dissertation, RWTH
Aachen University, 2023.

[29] Daxin Liu and Qihui Feng, ‘On the progression of belief’, in KR, vol-
ume 18, pp. 465–474, (2021).

[30] Daxin Liu and Gerhard Lakemeyer, ‘Reasoning about beliefs and meta-
beliefs by regression in an expressive probabilistic action logic’, in IJ-
CAI, (2021).

[31] Daxin Liu and Gerhard Lakemeyer, ‘On the verification of belief pro-
grams’, arXiv preprint arXiv:2204.12562, (2022).

[32] Yongmei Liu and Ximing Wen, ‘On the progression of knowledge in
the situation calculus’, in IJCAI, volume 22, p. 976, (2011).

[33] Gethin Norman, David Parker, and Xueyi Zou, ‘Verification and control
of partially observable probabilistic systems’, Real-Time Systems, 53,
354–402, (2017).

[34] Raymond Reiter, Knowledge in action: logical foundations for specify-
ing and implementing dynamical systems, MIT press, 2001.

[35] Scott Sanner and Craig Boutilier, ‘Practical solution techniques for
first-order mdps’, Artificial Intelligence, 173(5-6), 748–788, (2009).

[36] Scott Sanner and Kristian Kersting, ‘Symbolic dynamic programming
for first-order pomdps’, in AAAI, volume 24, pp. 1140–1146, (2010).

[37] Richard B Scherl and Hector J Levesque, ‘Knowledge, action, and the
frame problem’, Artificial Intelligence, 144(1-2), 1–39, (2003).

[38] Guy Shani, Joelle Pineau, and Robert Kaplow, ‘A survey of point-based
pomdp solvers’, Autonomous Agents and Multi-Agent Systems, 27, 1–
51, (2013).

[39] Edward J Sondik, ‘The optimal control of partially observable markov
processes over the infinite horizon: Discounted costs’, Operations re-
search, 26(2), 282–304, (1978).

[40] Alfred Tarski, A decision method for elementary algebra and geometry,
Springer, 1998.

[41] Chenggang Wang and Roni Khardon, ‘Relational partially observable
mdps’, in AAAI, volume 24, pp. 1153–1158, (2010).

[42] Wolfgang Woess, Denumerable Markov chains, Springer, 2009.
[43] Benjamin Zarrieß and Jens Claßen, ‘Verification of knowledge-based

programs over description logic actions.’, in IJCAI, pp. 3278–3284,
(2015).

[44] Benjamin Zarrieß and Jens Claßen, ‘Decidable verification of golog
programs over non-local effect actions.’, in AAAI, pp. 1109–1115,
(2016).

D. Liu et al. / Verifying Belief-Based Programs via Symbolic Dynamic Programming1504

