
Model-Based Reinforcement Learning with Multi-Step
Plan Value Estimation

Haoxin Lina,b;*, Yihao Suna;*, Jiaji Zhanga and Yang Yua,b,c;**

aNational Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, Jiangsu, China
bPolixir Technologies, Nanjing, Jiangsu, China

cPeng Cheng Laboratory, Shenzhen, Guangdong, China

Abstract. A promising way to improve the sample efficiency of
reinforcement learning is model-based methods, in which many ex-
plorations and evaluations can happen in the learned models to save
real-world samples. However, when the learned model has a non-
negligible model error, sequential steps in the model are hard to
be accurately evaluated, limiting the model’s utilization. This paper
proposes to alleviate this issue by introducing multi-step plans into
policy optimization for model-based RL. We employ the multi-step
plan value estimation, which evaluates the expected discounted re-
turn after executing a sequence of action plans at a given state, and
updates the policy by directly computing the multi-step policy gradi-
ent via plan value estimation. The new model-based reinforcement
learning algorithm MPPVE (Model-based Planning Policy Learning
with Multi-step Plan Value Estimation) shows a better utilization
of the learned model and achieves a better sample efficiency than
state-of-the-art model-based RL approaches. The code is available at
https://github.com/HxLyn3/MPPVE.

1 Introduction

Reinforcement Learning (RL) has attracted close attention in recent
years. Despite its empirical success in simulated domains and games,
insufficient sample efficiency is still one of the critical problems
hindering the application of RL in reality [32]. One promising way
to improve the sample efficiency is to train and utilize world models
[32], which is known as model-based RL (MBRL). World model
learning has recently received significant developments, including the
elimination of the compounding error issue [31] and causal model
learning studies [9, 34] for achieving high-fidelity models, and has
also gained real-world applications [27, 26]. Nevertheless, this paper
focuses on the dyna-style MBRL framework [29] that augments the
replay buffer by the world model generated data for off-policy RL.

In dyna-style MBRL, the model is often learned by supervised
learning to fit the observed transition data, which is simple to train
but exhibits non-negligible model error [31]. Specifically, consider
a generated k-step model rollout st, at, ŝt+1, at+1, ..., ŝt+k, where
ŝ stands for fake states. The deviation error of fake states increases
with k since the error accumulates gradually as the state transitions in
imagination. If updated on the fake states with a large deviation, the
policy will be misled by policy gradients given by biased state-action

∗ Equal Contribution.
∗∗ Corresponding Author. Email: yuy@nju.edu.cn

value estimation. The influence of model error on the directions of
policy gradients is demonstrated in Figure 1.

Figure 1. We make real branched rollouts in the real world and utilize the
learned model to generate the fake, starting from some real states. For each
fake rollout and its corresponding real rollout, we show their deviation along
with the normalized cosine similarity between their multi-step policy gradients.

Therefore, the dyna-style MBRL often introduces techniques to
reduce the impact of the model error. For example, MBPO [14] pro-
poses the branched rollouts scheme with a gradually growing branch
length to truncate imaginary model rollouts, avoiding the participation
of unreliable fake samples in policy optimization. BMPO [17] further
truncates model rollouts into a shorter branch length than MBPO after
the same number of steps of environmental sampling since it can
make imaginary rollouts from both forward and backward directions
with the bidirectional dynamics model.

We argue that, while the above previous methods tried to reduce
the impact of the accumulated model error by reducing the rollout
steps, avoiding the explicit reliance on the rolled-out fake states can be
helpful. This paper proposes employing k-step plan value estimation
Q(st, at, ..., at+k−1) to evaluate sequential action plans. When using
the k-step rollout to update the policy, we can compute the policy
gradient only on the starting real state st, but not on any fake states.
Therefore, the k-step policy gradients directly given by the plan value
are less influenced by the model error. Based on this key idea, we
formulate a new model-based algorithm called Model-based Planning
Policy Learning with Multi-step Plan Value Estimation (MPPVE).
The difference between MPPVE and previous model-based methods
in updating the actor is demonstrated in Figure 2.

In general, our contributions are summarized as follows:

• We present a tabular planning policy iteration method alternating
between planning policy evaluation and planning policy improve-
ment, and theoretically prove the convergence of the optimal policy.

ECAI 2023
K. Gal et al. (Eds.)
© 2023 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA230427

1481

https://github.com/HxLyn3/MPPVE

����

��

···
���	 ���
�	 �
��

��
���

(a) Data generation. Environmental data is stored in Denv, while model data is stored in Dmodel.

����

��
���

�

�

���� ��

���� ��

�

���

�

���

: action value, ���� ������ �� : actor, ������

(b) Update actor with action-value.

···
�� ���	 ���
�	 ���

��

���	 ���
�	

����� ��� ���	� � � � � ���
�	�

���
� ���	 �����

� ���
�	 �������
�

����
��

: dynamics model, ��� � !��� �� : multi-step plan value����� ��� ���	� � � � � ���
�	�

(c) Update actor with multi-step plan value.

Figure 2. A comparison between MPPVE and previous model-based methods in updating actor. (a) Data generation, where green st stands for the real
environmental state, red ŝt+1, ..., ŝt+k stand for fake states, and the darker the red becomes, the greater the deviation error is in expectation. (b) Illustration of
how previous model-based methods update actor with action-value estimation. (c) Illustration of how MPPVE updates actor with k-step plan value estimation.
The k-step policy gradients are given by the plan value estimation directly when the actor plans starting from the real environmental state.

• We propose a new model-based algorithm called MPPVE for gen-
eral continuous settings based on the theoretical tabular planning
policy iteration, which updates the policy by directly computing
multi-step policy gradients via plan value estimation for short plans
starting from real environmental states, mitigating the misleading
impacts of the compounding error.

• We empirically verify that multi-step policy gradients computed
by MPPVE are less influenced by model error and more accurate
than those computed by previous model-based RL methods.

• We show that MPPVE outperforms recent state-of-the-art model-
based algorithms in terms of sample efficiency while retaining
competitive performance close to the convergence of model-free
algorithms on MuJoCo [30] benchmarks.

2 Related Work

This work is related to dyna-style MBRL [29] and multi-step planning.
Dyna-style MBRL methods generate some fake transitions with

a dynamics model for accelerating value approximation or policy
learning. MVE [12] uses a dynamics model to simulate the short-term
horizon and Q-Learning to estimate the long-term value, improving
the quality of target values for training. STEVE [5] builds on MVE
to better estimate Q value by stochastic ensemble model-based value
expansion. SLBO [20] regards the dynamics model as a simulator and
directly uses TRPO [25] to optimize the policy with whole trajectories
sampled in it. Moreover, MBPO [14] builds on SAC [13], which is
an off-policy RL algorithm, and updates the policy with a mixture of
the data from the real environment and imaginary branched rollouts.
Some recent dyna-style MBRL methods pay attention to reducing the
influences of model error. For instance, M2AC [24] masks the high-
uncertainty model-generated data with a masking mechanism. BMPO
[17] utilizes both the forward and backward model to separate the
compounding error in different directions, which can acquire model
data with less error than only using the forward model. This work also
adopts the dyna-style MBRL framework and focuses on mitigating
the impact of the accumulated model error.

Multi-step planning methods usually utilize the learned dynamics
model to make plans. Model Predictive Control (MPC) [6] obtains an
optimal action sequence by sampling multiple sequences and applying

the first action of the sequence to the environment. MB-MF [22]
adopts the random-shooting method as an instantiation of MPC, which
samples several action sequences randomly and uniformly in a learned
neural model. PETS [10] uses CEM [4] instead, which samples actions
from a distribution close to previous samples that yielded high rewards
to improve the optimization efficiency.

The planning can be incorporated into the differentiable neural
network to learn the planning policy end-to-end directly [23, 28,
15]. MAAC [11] proposes to estimate the policy gradients by back-
propagating through the learned dynamics model using the path-
wise derivative estimator during model-based planning. Furthermore,
DDPPO [18] additionally learns a gradient model by minimizing
the gradient error of the dynamics model to provide more accurate
policy gradients through the model. This work also learns the planning
policy end-to-end, but back-propagates the policy gradients through
multi-step plan value instead, avoiding the reliance on the fake states.

The concept of multi-step sequential actions is introduced in other
model-based approaches. [1, 2, 16, 7] propose a multi-step dynamics
model to directly output the outcome of executing a sequence of
actions. Unlike these, we involve the concept of multi-step sequential
actions in the value function instead of the dynamics model.

Multi-step plan value used in this paper is also presented in GPM
[33]. Our approach differs from GPM in the following two aspects: 1)
GPM adopts the model-free paradigm while ours adopts the model-
based paradigm; 2) GPM aims to enhance exploration and therefore
present a plan generator to output multi-step actions based on the
plan value, while we propose model-based planning policy improve-
ment based on the plan value estimation to mitigate the influence of
compounding error and increase the sample efficiency.

3 Preliminaries

A tuple (S,A, p, r, γ) is considered to describe Markov Decision Pro-
cess (MDP), where S and A are state and action spaces respectively,
probability density function p : S × S × A → [0,∞) represents
the transition distribution over st+1 ∈ S conditioned on st ∈ S and
at ∈ A, r : S × A × R → [0,∞) is the reward distribution condi-
tioned on st ∈ S and at ∈ A, and γ is the discount factor. We will use
ρπ : S → [0,∞) to denote on-policy distribution over states induced

H. Lin et al. / Model-Based Reinforcement Learning with Multi-Step Plan Value Estimation1482

by dynamics function p(st+1|st, at) and policy π(at|st). The goal
of RL is to find the optimal policy that maximizes the expectation of
cumulative discounted reward: Eρπ

[∑∞
t=0 γ

trt
]
.

Recent MBRL methods aim to build a model of the dynamics
function p using supervised learning with data Denv collected via
interaction in the real environment. Then fake data Dmodel generated
via model rollouts will be used for an RL algorithm additionally with
real data to improve the sample efficiency.

4 Method

In this section, we will first derive tabular planning policy iteration,
and verify that the optimal policy can be attained with a convergence
guarantee. Then we will present a practical neuron-based algorithm
for general continuous environments based on this theory.

4.1 Derivation of Planning Policy Iteration

Planning policy iteration is a multi-step extension of policy iteration
for optimizing planning policy that alternates between planning policy
evaluation and planning policy improvement. With the consideration
of theoretical analysis, our derivation will focus on the tabular setting.

4.1.1 Planning Policy

With the dynamics function p, at any state, the agent can generate a
plan consisting of a sequence of actions to perform in the next few
steps in turn. We denote the k-step planning policy as πk, then given
state st, the plan τ k

t = (at, at+1, . . . , at+k−1) can be predicted with
τ k

t ∼ πk(·|st). Concretely, for m ∈ {0, 1, . . . , k − 1}, at+m ∼
π(·|st+m), st+m+1 ∼ p(·|st+m, at+m), we have

πk(τ k
t |st) = π(at|st)

∑

sk−1
t+1

[
t+k−1∏
i=t+1

p(si|si−1, ai−1)π(ai|si)
]
,

(1)
where sk−1

t+1 = (st+1, . . . , st+k−1) is the state sequence at future
k − 1 steps. The planning policy just gives a temporally consecutive
plan of fixed length k, not a full plan that plans actions until the
termination can be reached.

4.1.2 Planning Policy Evaluation

Given a stochastic policy π ∈ Π, the k-step plan value [33] function
is defined as

Qπ(st, τ
k
t) = Qπ(st, at, at+1, ..., at+k−1)

=Ep,r,π

[
k−1∑
m=0

γmrt+m + γk
∞∑

m=0

γmrt+k+m

]
(2)

=Ep,r

[
k−1∑
m=0

γmrt+m + γk
Eτ̂k∼πk

[
Qπ(st+k, τ̂

k)
]]

. (3)

The former k items (rt, rt+1, ..., rt+k−1) are instant rewards respec-
tively for k-step actions in the plan τ k

t taken at state st step by step,
while the following items are future rewards for starting making deci-
sions according to π from state st+k.

According to the recursive Bellman equation (3), the extended
Bellman backup operator T π can be written as

T πQ(st, τ
k
t) = Ep,r

[
k−1∑
m=0

γmrt+m

]
+ γk

Ep [V (st+k)] , (4)

where

V (st) = Eτk
t ∼πk

[
Q(st, τ

k
t)
]

(5)

is the state value function. This update equation for k-step plan value
function is different from multi-step Temporal Difference (TD) Learn-
ing [3], though there is naturally multi-step bootstrapping in plan
value learning. Specifically, the plan value is updated without bias
since the multi-step rewards (rt, rt+1, ..., rt+k−1) correspond to the
input plan, while the multi-step TD Learning for single-step action-
value needs importance sampling or Tree-backup [3] to correct the
bias from the difference between target policy and behavior policy.

Starting from any function Q : S × Ak → R and applying T π

repeatedly, we can obtain the plan value function of the policy π.

Lemma 1 (Planning Policy Evaluation). Given any initial mapping
Q0 : S ×Ak → R with |A| < ∞, update Qi to Qi+1 with Qi+1 =
T πQi for all i ∈ N , {Qi} will converge to the plan value of policy
π as i → ∞.

Proof. For any i ∈ N , after updating Qi to Qi+1 with T π , we have

Qi+1(st, τ
k
t) = T πQi(st, τ

k
t)

=Ep,r

[
k−1∑
m=0

γmrt+m + γk
Eτ̂k∼πk

[
Qi(st+k, τ̂

k)
]]

,
(6)

for any st ∈ S and τ k
t ∈ Ak. Then

‖Qi+1 −Qπ‖∞ = max
st∈S,τk

t ∈Ak

∣∣∣Qi+1(st, τ
k
t)−Qπ(st, τ

k
t)
∣∣∣

≤ max
st∈S,τk

t ∈Ak
γk‖Qi −Qπ‖∞ = γk‖Qi −Qπ‖∞.

(7)
So Qi = Qπ is a fixed point of this update rule, and the sequence
{Qi} will converge to the plan value of policy π as i → ∞.

4.1.3 Planning Policy Improvement

After attaining the corresponding plan value, the policy π can be
updated with

πnew = argmax
π∈Π

∑

τk
t ∈Ak

πk(τ k
t |st)Qπold(st, τ

k
t) (8)

for each state. We will show that πnew achieves greater plan value
than πold after applying Eq.(8).

Lemma 2 (Planning Policy Improvement). Given any mapping
πold ∈ Π : S → Δ(A) with |A| < ∞, update πold to πnew with
Eq.(8), then Qπnew (st, τ

k
t) ≥ Qπold(st, τ

k
t), ∀st ∈ S, τ k

t ∈ Ak.

Proof. By definition of the state value function, we have

V πold(st) =
∑

τk
t ∈Ak

πk
old(τ

k
t |st)Qπold(st, τ

k
t)

≤
∑

τk
t ∈Ak

πk
new(τ

k
t |st)Qπold(st, τ

k
t),

(9)

H. Lin et al. / Model-Based Reinforcement Learning with Multi-Step Plan Value Estimation 1483

for any st ∈ S. Reapplying the inequality (9), the result is given by

Qπold(st, τ
k
t) = Ep,r

[
k−1∑
m=0

γmrt+m + γkV πold(st+k)

]

≤Ep,r

⎡
⎣

k−1∑
m=0

γmrt+m + γk
∑

τk∈Ak

πk
new(τ

k|st+k)Q
πold(st+k, τ

k)

⎤
⎦

=Ep,r,πnew

[
2k−1∑
m=0

γmrt+m + γ2kV πold(st+2k)

]
≤ · · ·

≤Ep,r,πnew

[∞∑
m=0

γmrt+m

]
= Qπnew (st, τ

k
t),

(10)
∀st ∈ S, τ k

t ∈ Ak.

4.1.4 Planning Policy Iteration

The whole planning policy iteration process alternates between plan-
ning policy evaluation and planning policy improvement until the
sequence of policy {πk} converges to the optimal policy π∗ whose
plan value of any state-plan pair is the greatest among all π ∈ Π.

Theorem 1 (Planning Policy Iteration). Given any initial mapping
π0 ∈ Π : S → Δ(A) with |A| < ∞, compute corresponding
Qπi in planning policy evaluation step and update πi to πi+1 in
planning policy improvement step for all i ∈ N , {πi} will converge
to the optimal policy π∗ that Qπ∗(st, τ

k
t) ≥ Qπ(st, τ

k
t), ∀st ∈ S,

τ k
t ∈ Ak, and π ∈ Π.

Proof. The sequence {πi} will converge to some π∗ since {Qπi}
is monotonically increasing with i and bounded above π ∈ Π. By
Lemma 2, at convergence, we can’t find any π ∈ Π satisfying

V π∗(st) <
∑

τk
t ∈Ak

πk(τ k
t |st)Qπ∗(st, τ

k
t), (11)

for any st ∈ S. Then we obtain

Qπ∗(st, τ
k
t) = Ep,r

[
k−1∑
m=0

γmrt+m + γkV π∗(st+k)

]

≥Ep,r

⎡
⎣

k−1∑
m=0

γmrt+m + γk
∑

τk∈Ak

πk(τ k|st+k)Q
π∗(st+k, τ

k)

⎤
⎦

=Ep,r,π

[
2k−1∑
m=0

γmrt+m + γ2kV π∗(st+2k)

]
≥ · · ·

≥Ep,r,π

[∞∑
m=0

γmrt+m

]
= Qπ(st, τ

k
t),

(12)
∀st ∈ S, τ k

t ∈ Ak, and π ∈ Π. Hence π∗ is the optimal policy.

4.2 Model-based Planning Policy Learning with
Multi-step Plan Value Estimation

The tabular planning policy iteration cannot be directly applied to
scenarios with inaccessible dynamics functions and continuous envi-
ronmental state-action space. Therefore, we propose a neuron-based
algorithm based on planning policy iteration for general application,
called Model-based Planning Policy Learning with Multi-step Plan
Value Estimation (MPPVE).

Algorithm 1 MPPVE

Input: Initial neural parameters θ, φ, ψ, ψ−, plan length k, environ-
ment buffer Denv, model buffer Dmodel, start size U , batch size B,
and learning rate λQ, λπ .

1: Explore for U environmental steps and add data to Denv

2: for N epochs do

3: Train model pθ on Denv by maximizing Eq.(13)
4: for E steps do

5: Perform action in the environment according to πφ; add the
environmental transition to Denv

6: for M model rollouts do

7: Sample st from Denv to make model rollout using policy
πφ; add generated samples to Dmodel

8: end for

9: for G critic updates do

10: Sample B k-step trajectories from Denv ∪ Dmodel to up-
date critic Qψ via ψ ← ψ − λQ∇̂ψJQ(ψ) by Eq.(18)

11: Update target critic via ψ− ← τψ + (1− τ)ψ−

12: end for

13: Sample B states from Denv to update policy πφ via φ ←
φ− λπ∇̂φJπk (φ) by Eq.(21)

14: end for

15: end for

As shown in Figure 2(c), our MPPVE adopts the framework of
model-based policy optimization [14], which is divided into dynam-
ics model pθ , actor πφ and critic Qψ , where θ, φ and ψ are neural
parameters. The algorithm will be described in three parts: 1) model
learning; 2) multi-step plan value estimation; 3) model-based planning
policy improvement.

4.2.1 Model Learning

Like MBPO [14], we use an ensemble neural network that takes the
state-action pair as input and outputs Gaussian distribution of the
next state and reward to jointly represent the dynamics function p
and the reward function r. That is, pθ(st+1, rt|st, at) comes from
N (μθ(st, at),Σθ(st, at)), where μθ(st, at) and Σθ(st, at)) are the
outputs of the network. The environmental model is trained to maxi-
mize the expected likelihood:

Jp(θ) = E(st,at,rt,st+1)∼Denv [log pθ(st+1, rt|st, at)] . (13)

4.2.2 Multi-step Plan Value Estimation

In order to approximate k-step plan value function with continuous in-
puts, we use a deep Q-network [21, 19]: Qψ(st, τ

k
t) with parameters

ψ. The plan value is estimated by minimizing the expected multi-step
TD error:

JQ(ψ) = E
(st,τ

k
t ,r

k
t ,st+k)∼Denv∪Dmodel

[
lTD(st, τ

k
t , r

k
t , st+k)

]
,

(14)
with

rk
t = (rt, rt+1, ..., rt+k−1), (15)

lTD(st, τ
k
t , r

k
t , st+k) =

1

2

(
Qψ(st, τ

k
t)− yψ−(r

k
t , st+k)

)2

,

(16)

yψ−(r
k
t , st+k) =

k−1∑
m=0

γmrt+m+γk
Eτ̂k

[
Qψ−(st+k, τ̂

k)
]
, (17)

H. Lin et al. / Model-Based Reinforcement Learning with Multi-Step Plan Value Estimation1484

Figure 3. Learning curves of our MPPVE (red) and other six baselines on MuJoCo (v3 version) continuous control tasks. The blue dashed lines indicate the
asymptotic performance of SAC in these tasks for reference. The solid lines indicate the mean, and shaded areas indicate the standard error over eight different
random seeds. Each evaluation, taken every 1,000 environmental steps, calculates the average return over ten episodes.

where ψ− is the parameters of the target network, which is used for
stabilizing training [21]. The gradient of Eq.(14) can be estimated
without bias by

∇̂ψJQ(ψ) =
(
Qψ(st, τ

k
t)− ŷψ−(r

k
t , st+k)

)
∇ψQψ(st, τ

k
t),

(18)
with

ŷψ−(r
k
t , st+k) =

k−1∑
m=0

γmrt+m + γkQψ−(st+k, τ
k
t+k), (19)

where (st, τ
k
t , r

k
t , st+k) is sampled from the replay buffer and τ k

t+k

is sampled according to current planning policy.

4.2.3 Model-based Planning Policy Improvement

The probabilistic policy πφ is represented by the conditioned Gaus-
sian distribution of the action. That is, πφ(at|st) comes from
N (uφ(st), σφ(st)), where uφ(st) and σφ(st) are the outputs of the
policy network. As shown in Eq.(1), a k-step model-based planning
policy πk

φ,θ is composed of dynamics model pθ and policy πφ. Since
the plan value function is represented by a differentiable neural net-
work, we can train model-based planning policy by minimizing

Jπk (φ) = Est∼Denv

[
Eτk

t ∼πk
φ,θ

(·|st)
[
−Qψ(st, τ

k
t)
]]

, (20)

whose gradient can be approximated by

∇̂φJπk (φ) =
(
−∇τk

t
Qψ(st, τ

k
t)
)
∇φτ

k
t , (21)

where τ k
t is sampled according to current planning policy πk

φ,θ .
During the model-based planning policy improvement step, the

actor makes k-step plans starting from st using policy πφ and model
pθ . Then, the corresponding state-plan pairs are fed into the neural
plan value function to directly compute the gradient (21). Therefore,
the policy gradients within these k steps are mainly affected by the
bias of plan value estimation at st, avoiding the influence of action-
value estimation with compounding error at the following k− 1 states
in previous model-based methods.

The complete algorithm is described in Algorithm 1. We also utilize

model rollouts to generate fake transitions, as MBPO [14]. The pri-
mary difference from MBPO is that only the critic is additionally
trained with k-step rollouts starting from fake states to support larger
Update-To-Data (UTD) [8] ratio in our algorithm, while the actor is
trained merely with k-step rollouts starting from real states at a lower
update frequency than the critic. There are two reasons for the modifi-
cation: 1) plan value is more difficult to estimate than action-value,
then the critic can guide the actor only after learning with sufficient
and diverse samples; 2) it ensures that the k-step policy gradient is
computed only on the starting real state, but not on any fake states.

5 Experiments

In this section, we conduct three experiments to answer: 1) How
well does our method perform on benchmark tasks of reinforcement
learning, in contrast to a broader range of state-of-the-art model-
free and model-based RL methods? 2) Does our proposed model-
based planning policy improvement based on plan value estimation
provide more accurate policy gradients than previous model-based
RL methods? 3) How does the plan length k affect our method?

5.1 Comparison in RL Benchmarks

We evaluate our method MPPVE on seven MuJoCo continuous control
tasks [30], including InvertedPendulum, Hopper, Swimmer, HalfChee-
tah, Walker2d, Ant, and Humanoid. All the tasks adopt version v3
and follow the default settings. Four model-based methods and two
model-free methods are selected as our baselines:

• STEVE [5] uses the k-step return computed from the ensemble
dynamics model, ensemble reward model, and ensemble Q as Q
targets to facilitate an efficient action-value estimation.

• MBPO [14] is a representative model-based algorithm. Updating
the policy with a mixture of data from the real environment and
imaginary branched rollouts improves the efficiency of policy op-
timization. A comparison to MBPO is necessary since we follow
the model-based framework of MBPO.

• MBPO + STEVE is a combination of MBPO and STEVE. Re-
placing the value estimation in MBPO with the value expansion
method in STEVE while keeping the original policy optimization
process of MBPO, MBPO combined with STEVE enables both

H. Lin et al. / Model-Based Reinforcement Learning with Multi-Step Plan Value Estimation 1485

� � � � � � �

�����������	��
����

���

���

���

���

���

��	

��

���

���

�
�
�
��
�
��
�	

�

�
��

�
��
��
�
�

�
�
�
��
��
�
��
�

�����������

�
��

����

���� ���� ���� ���� ���
 ����

�����������	��
����

���

���

���

��	

��

���

���

�
�
�
��
�
��
�	

�

�
��

�
��
��
�
�

�
�
�
��
��
�
��
�

�	

��

�
��

����

��� ��� ��� ��� ��
 ���

�����������	��
����

���

���

���

���

��	

��

���

���

�
�
�
��
�
��
�	

�

�
��

�
��
��
�
�

�
�
�
��
��
�
��
�

�
�

�
��

����

(a)

� � � � �

����� �����	�
����

���

���

���

���

��	

��

���

�
�
�
��
�
��
�	

�

�
��

�
��
��
�
�

�
�
�
��
��
�
��
�

�����������

�
��

����

���� ���� ���� ���� ���
 ����

����� �����	�
����

���

���

���

��	

��

���

���

�
�
�
��
�
��
�	

�

�
��

�
��
��
�
�

�
�
�
��
��
�
��
�

�	

��

�
��

����

��� ��� ��� ��� ��
 ���

����� �����	�
����

���

���

��	

��

���

���

�
�
�
��
�
��
�	

�

�
��

�
��
��
�
�

�
�
�
��
��
�
��
�

�
�

�
��

����

(b)

����� ����� ����� ����� ���	�

�����������	��
����

�
�

�
�

�
�

�
�

�
�

�
�

�
�
��
�
��
��
�
�
	
�

�
��
�

���
��
��
��
�
��
��

�����������

�
��

����

��
���
��� ��
����
��� ��
����
��� ��
����
��� ��
����
��

�����������	��
����

�
��

�
�	

�
��

�
�	

�
��

�
�	

�
��

�
�
��
�
��
��
�
�
	
�

�
��
�

���
��
��
��
�
��
��

�	

��

�
��

����

��
���
�� ��
���
�� ��
���
�� ��
���
�� ��
���
��

�����������	��
����

�
��

�
�	

�
��

�
�	

�
��

�
�	

�
��

�
�	

�
�
��
�
��
��
�
�
	
�

�
��
�

���
��
��
��
�
��
��

�
�

�
��

����

(c)

Figure 4. We compare the influence of model error on the directions of k-step policy gradients given by MPPVE and MBPO on the tasks of HalfCheetah
(k = 3), Hopper (k = 4) and Ant (k = 4). We make real branched rollouts in the real world and utilize the learned model to generate the fake, starting from some
real states. (a) For each fake rollout and its corresponding real rollout, we show their deviation along with the normalized cosine similarity between their k-step
policy gradients. (b) We select some samples and plot further, where each group of orange and blue points on the same X-coordinate corresponds to the same
starting real state. (c) We count the ratio of points with severely inaccurate k-step policy gradients for each interval of state rollout error.

efficient value estimation and policy optimization. We compare
MPPVE with this algorithm to show that we improve the sample
efficiency more than purely adding value expansion to MBPO.

• DDPPO [18] adopts a two-model-based learning method to control
the prediction error and the gradient error of the dynamics model.
In the policy optimization phase, it uses the prediction model to roll
out the data and the gradient model to calculate the policy gradient.
We compare MPPVE with this model-based algorithm to show that
even without a gradient model the policy gradient can be accurate
enough to achieve a better sample efficiency.

• GPM [33] is a model-free algorithm that also proposes the concept
of plan value and features an inherent mechanism for generating
temporally coordinated plans for exploration. We compare MPPVE
with GPM to demonstrate the power of multi-step plan value in the
model-based paradigm.

• SAC [13] is the state-of-the-art model-free algorithm that can
obtain competitive rewards after training. We use SAC’s asymptotic
performance for reference to better evaluate all the algorithms.

Figure 3 shows all approaches’ learning curves, along with SAC’s
asymptotic performance. MPPVE achieves great performance after
fewer environmental samples than baselines. Take Hopper as an ex-
ample, MPPVE has achieved 90% performance (about 3000) after
50k steps, while DDPPO, MBPO and MBPO + STEVE, need about
75k steps, and other three methods, STEVE, SAC, GPM, can achieve
only about 1000 after 100k steps. MPPVE performs about 1.5x faster
than DDPPO, MBPO and MBPO + STEVE, and dominates STEVE,
SAC and GPM, in terms of learning speed on the Hopper task. After

training, MPPVE can achieve a final performance close to the asymp-
totic performance of SAC on all these seven MuJoCo benchmarks.
These results show that MPPVE has both high sample efficiency and
competitive performance.

5.2 On Policy Gradients

We conduct a study to verify that multi-step policy gradients com-
puted by our MPPVE are less influenced by model error and more
accurate than those computed by previous model-based RL methods,
as we claimed. Without loss of rigor, we only choose MBPO for com-
parison since many other model-based methods follow the same way
of computing the policy gradients as MBPO.

In order to exclude irrelevant factors as far as possible, we fix the
policy and the learned dynamics model after enough environmental
samples, then learn the multi-step plan value function and action-
value function, respectively, until they are both converged. Next, we
measure the influence of model error on the directions of policy gra-
dients computed by MPPVE and MBPO, respectively. Specifically,
we sample some real environmental states from the replay buffer and
start from them to make k-step real rollouts with perfect oracle dy-
namics and generate k-step imaginary rollouts with the learned model.
Both MPPVE and MBPO can compute k-step policy gradients on the
generated fake rollouts and their corresponding real rollouts. MPPVE
utilizes k-step plan value estimation on the first states of the rollouts
to compute k-step policy gradients directly, while MBPO needs to
compute the single-step policy gradients with action-value estimation

H. Lin et al. / Model-Based Reinforcement Learning with Multi-Step Plan Value Estimation1486

(a) Performance (b) Policy evaluation (c) Average of value bias (d) Standard error of value bias

Figure 5. Study of plan length on Hopper task, through comparison of MPPVE with k = 1, k = 3, k = 5 and k = 10 respectively. (a) Evaluation of episodic
reward during the learning process. (b) Learning plan value estimation for the same fixed policy. (c) Average of the bias between neural value estimation and true
value evaluation over state-action(s) space. (d) Standard error of the bias between neural value estimation and true value evaluation over state-action(s) space.

on all states of the rollouts and averages over the k steps. For each
fake rollout and its corresponding real rollout, we can measure their
deviation along with the normalized cosine similarity between their
k-step policy gradients given by MBPO or MPPVE.

Figure 4(a) shows the influence of model error on the directions of
k-step policy gradients on the tasks of HalfCheetah (k = 3), Hopper
(k = 4) and Ant (k = 4), where orange stands for MPPVE while blue
stands for MBPO. Each point corresponds to one starting real state for
making k-step rollouts, and its X-coordinate is the error of the fake
rollout from the real rollout, while its Y-coordinate is the normalized
cosine similarity between k-step policy gradients computed on the real
rollout and the fake rollout. On the one hand, the point with more state
rollout error tends to have a smaller normalized cosine similarity of
policy gradients, both for MPPVE and MBPO. The tendency reveals
the influence of model error on the policy gradients. On the other
hand, the figure demonstrates that the orange points are almost overall
above the blue points, which means that the k-step policy gradients
computed by our MPPVE are less influenced by model error.

For the sake of clear comparison, we select only about a dozen real
states and plot further. Figure 4(b) shows the result, where each group
of orange and blue points on the same X-coordinate corresponds to the
same starting real state for rollout. We connect the points of the same
color to form a line. The orange line is always above the blue line,
indicating the advantage of MPPVE in computing policy gradients.

Furthermore, we count the ratio of points with normalized cosine
similarity between k-step policy gradients computed on real and fake
rollouts smaller than 0.5 for each interval of state rollout error, as
shown in Figure 4(c). A normalized cosine similarity smaller than
0.5 means that the direction of the k-step policy gradient deviates
by more than 90 degrees. As for MBPO, the ratio of severely biased
policy gradients increases as the state rollout error increases and
reaches approximately 1 when the state rollout error is great enough.
By contrast, our MPPVE only provides severely inaccurate policy
gradients with a tiny ratio, even under a great state rollout error.

In summary, by directly computing multi-step policy gradients
via plan value estimation, MPPVE provides policy gradients more
accurately than MBPO, whose computation of policy gradients is also
adopted by other previous state-of-the-art model-based RL methods.

5.3 On Plan Length

The previous section empirically shows the advantage of MPPVE.
Furthermore, a natural question is what plan length k is appropriate.
Intuitively, a larger length allows the policy to be updated on longer

model rollouts, which may improve the sample efficiency. Neverthe-
less, it also makes learning the plan value function more difficult. We
next make ablations to better understand the effect of plan length k.

Figure 5 presents an empirical study of this hyper-parameter. The
performance increases first and then decreases as plan length k in-
creases. Specifically, k = 3 and k = 5 learn fastest at the beginning
of training followed by k = 1 and k = 10, while k = 1 and k = 3
are more stable than k = 5 and k = 10 in the subsequent training
phase and also perform better. Figure 5(b), 5(c) and 5(d) explain why
they perform differently. We plot their policy evaluation curves for the
same fixed policy in Figure 5(b). It indicates that a larger k can make
learning the plan value function faster. We then quantitatively analyze
their estimation quality in Figure 5(c) and 5(d). Specifically, we define
the normalized bias of the k-step plan value estimation Qψ(st, τ

k
t) to

be (Qψ(st, τ
k
t) − Qπ(st, τ

k
t))/|Es∼ρπ [Eτk∼πk(·|s)[Q

π(s, τ k)]]|,
where actual plan value Qπ(st, τ

k
t) is obtained by Monte Carlo sam-

pling in the real environment. Strikingly, compared to the other two
settings, k = 5 and k = 10 have a high normalized average and stan-
dard error of bias during training, indicating the value function with
too large plan length is hard to fit and causes fluctuations in policy
learning. k = 3 achieves a trade-off between stability and learning
speed of plan value estimation, so it performs best.

In conclusion, enlarging k felicitously can lead to great sample
efficiency. However, an extremely large k lets the training of MPPVE
become unstable. The problem of stabilizing MPPVE when the plan
length is large to improve the sample efficiency further is thrown out.

6 Conclusion

In this work, we propose a novel model-based RL method, namely
Model-based Planning Policy Learning with Multi-step Plan Value
Estimation (MPPVE). The algorithm is from the tabular planning
policy iteration, whose theoretical derivation shows that any initial
policy can converge to the optimal policy when applied in tabular
settings. For general continuous settings, we empirically show that
directly computing multi-step policy gradients via plan value estima-
tion, the key idea of MPPVE, is less influenced by model error and
provides more accurate policy gradients than previous model-based
RL methods. Experimental results demonstrate that MPPVE achieves
better sample efficiency than previous state-of-the-art model-free and
model-based methods while retaining competitive performance on
several continuous control tasks. In the future, we will explore the
scalability of MPPVE and study how to estimate plan value stably
when the plan length is large to improve the sample efficiency further.

H. Lin et al. / Model-Based Reinforcement Learning with Multi-Step Plan Value Estimation 1487

7 Acknowledgments

This work is supported by National Key Research and Development
Program of China (2020AAA0107200), the National Science Foun-
dation of China (61921006), and The Major Key Project of PCL
(PCL2021A12).

References

[1] Kavosh Asadi, Evan Cater, Dipendra Misra, and Michael L. Littman,
‘Towards a simple approach to multi-step model-based reinforcement
learning’, CoRR, abs/1811.00128, (2018).

[2] Kavosh Asadi, Dipendra Misra, Seungchan Kim, and Michael L.
Littman, ‘Combating the compounding-error problem with a multi-step
model’, CoRR, abs/1905.13320, (2019).

[3] Kristopher De Asis, J. Fernando Hernandez-Garcia, G. Zacharias Hol-
land, and Richard S. Sutton, ‘Multi-step reinforcement learning: A unify-
ing algorithm’, in Proceedings of the 32nd AAAI Conference on Artificial
Intelligence (AAAI’18), New Orleans, Louisiana, (2018).

[4] Zdravko I. Botev, Dirk P. Kroese, Reuven Y. Rubinstein, and Pierre
L’Ecuyer, ‘Chapter 3 - the cross-entropy method for optimization’, in
Handbook of Statistics, volume 31 of Handbook of Statistics, 35–59,
Elsevier, (2013).

[5] Jacob Buckman, Danijar Hafner, George Tucker, Eugene Brevdo, and
Honglak Lee, ‘Sample-efficient reinforcement learning with stochastic
ensemble value expansion’, (2018).

[6] E.F. Camacho and C.B. Alba, Model Predictive Control, Advanced
Textbooks in Control and Signal Processing, Springer London, 2013.

[7] Tong Che, Yuchen Lu, George Tucker, Surya Bhupatiraju, Shane Gu,
Sergey Levine, and Yoshua Bengio. Combining model-based and model-
free RL via multi-step control variates. https://openreview.net, 2018.

[8] Xinyue Chen, Che Wang, Zijian Zhou, and Keith W. Ross, ‘Random-
ized ensembled double q-learning: Learning fast without a model’, in
9th International Conference on Learning Representations (ICLR’21),
Virtual Conference, (2021).

[9] Xiong-Hui Chen, Yang Yu, Zheng-Mao Zhu, Zhihua Yu, Zhenjun Chen,
Chenghe Wang, Yinan Wu, Hongqiu Wu, Rong-Jun Qin, Ruijin Ding,
and Fangsheng Huang, ‘Adversarial counterfactual environment model
learning’, CoRR, abs/2206.04890, (2022).

[10] Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey
Levine, ‘Deep reinforcement learning in a handful of trials using proba-
bilistic dynamics models’, in Advances in Neural Information Processing
Systems 31 (NeurIPS’18), Montréal, Canada, (2018).

[11] Ignasi Clavera, Yao Fu, and Pieter Abbeel, ‘Model-augmented actor-
critic: Backpropagating through paths’, in 8th International Conference
on Learning Representations (ICLR’20), Addis Ababa, Ethiopia, (2020).

[12] Vladimir Feinberg, Alvin Wan, Ion Stoica, Michael I. Jordan, Joseph E.
Gonzalez, and Sergey Levine, ‘Model-based value estimation for ef-
ficient model-free reinforcement learning’, CoRR, abs/1803.00101,
(2018).

[13] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine, ‘Soft
actor-critic: Off-policy maximum entropy deep reinforcement learning
with a stochastic actor’, in Proceedings of the 35th International Confer-
ence on Machine Learning (ICML’18), Stockholm, Sweden, (2018).

[14] Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine, ‘When
to trust your model: Model-based policy optimization’, in Advances in
Neural Information Processing Systems 32 (NeurIPS’19), Vancouver,
Canada, (2019).

[15] Péter Karkus, Xiao Ma, David Hsu, Leslie Pack Kaelbling, Wee Sun Lee,
and Tomás Lozano-Pérez, ‘Differentiable algorithm networks for com-
posable robot learning’, in Robotics: Science and Systems XV (RSS’19),
Freiburg im Breisgau, Germany, (2019).

[16] Nan Rosemary Ke, Amanpreet Singh, Ahmed Touati, Anirudh Goyal,
Yoshua Bengio, Devi Parikh, and Dhruv Batra, ‘Modeling the long
term future in model-based reinforcement learning’, in 7th International
Conference on Learning Representations (ICLR’19), New Orleans, LA,
(2019).

[17] Hang Lai, Jian Shen, Weinan Zhang, and Yong Yu, ‘Bidirectional model-
based policy optimization’, in Proceedings of the 37th International Con-
ference on Machine Learning (ICML’20), Virtual Conference, (2020).

[18] Chongchong Li, Yue Wang, Wei Chen, Yuting Liu, Zhi-Ming Ma, and
Tie-Yan Liu, ‘Gradient information matters in policy optimization by

back-propagating through model’, in 10th International Conference on
Learning Representations (ICLR’22), Virtual Conference, (2022).

[19] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess,
Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra, ‘Continuous
control with deep reinforcement learning’, in 4th International Confer-
ence on Learning Representations (ICLR’16), San Juan, Puerto Rico,
(2016).

[20] Yuping Luo, Huazhe Xu, Yuanzhi Li, Yuandong Tian, Trevor Darrell,
and Tengyu Ma, ‘Algorithmic framework for model-based deep rein-
forcement learning with theoretical guarantees’, in 7th International
Conference on Learning Representations (ICLR’19), New Orleans, LA,
(2019).

[21] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu,
Joel Veness, Marc G. Bellemare, Alex Graves, Martin A. Riedmiller, An-
dreas Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir
Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis, ‘Human-level control through
deep reinforcement learning’, Nature, 518(7540), 529–533, (2015).

[22] Anusha Nagabandi, Gregory Kahn, Ronald S. Fearing, and Sergey
Levine, ‘Neural network dynamics for model-based deep reinforce-
ment learning with model-free fine-tuning’, in 2018 IEEE International
Conference on Robotics and Automation (ICRA’18), Brisbane, Australia,
(2018).

[23] Masashi Okada, Luca Rigazio, and Takenobu Aoshima, ‘Path in-
tegral networks: End-to-end differentiable optimal control’, CoRR,
abs/1706.09597, (2017).

[24] Feiyang Pan, Jia He, Dandan Tu, and Qing He, ‘Trust the model when it
is confident: Masked model-based actor-critic’, in Advances in Neural
Information Processing Systems 33 (NeurIPS’20), Virtual Conference,
(2020).

[25] John Schulman, Sergey Levine, Pieter Abbeel, Michael I. Jordan, and
Philipp Moritz, ‘Trust region policy optimization’, in Proceedings of the
32nd International Conference on Machine Learning (ICML’15), Lille,
France, (2015).

[26] Wenjie Shang, Qingyang Li, Zhiwei Qin, Yang Yu, Yiping Meng, and
Jieping Ye, ‘Partially observable environment estimation with uplift
inference for reinforcement learning based recommendation’, Machine
Learning, 110(9), 2603–2640, (2021).

[27] Jing-Cheng Shi, Yang Yu, Qing Da, Shi-Yong Chen, and Anxiang Zeng,
‘Virtual-taobao: Virtualizing real-world online retail environment for
reinforcement learning’, in Proceedings of the 33rd AAAI Conference
on Artificial Intelligence (AAAI’19), Honolulu, Hawaii, (2019).

[28] Aravind Srinivas, Allan Jabri, Pieter Abbeel, Sergey Levine, and Chelsea
Finn, ‘Universal planning networks: Learning generalizable represen-
tations for visuomotor control’, in Proceedings of the 35th Interna-
tional Conference on Machine Learning (ICML’18), Stockholm, Swe-
den, (2018).

[29] Richard S. Sutton, ‘Integrated architectures for learning, planning, and
reacting based on approximating dynamic programming’, in Proceedings
of the 7th International Conference on Machine Learning (ICML’90),
Austin, Texas, (1990).

[30] Emanuel Todorov, Tom Erez, and Yuval Tassa, ‘Mujoco: A physics en-
gine for model-based control’, in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS’20), Vilamoura, Portugal, (2012).

[31] Tian Xu, Ziniu Li, and Yang Yu, ‘Error bounds of imitating policies and
environments for reinforcement learning’, IEEE Transactions on Pattern
Analysis and Machine Intelligence, (2021).

[32] Yang Yu, ‘Towards sample efficient reinforcement learning’, in Proceed-
ings of the 27th International Joint Conference on Artificial Intelligence
(IJCAI’18), Stockholm, Sweden, (2018).

[33] Haichao Zhang, Wei Xu, and Haonan Yu, ‘Generative planning for
temporally coordinated exploration in reinforcement learning’, in 10th
International Conference on Learning Representations (ICLR’22), Vir-
tual Conference, (2022).

[34] Zheng-Mao Zhu, Xiong-Hui Chen, Hong-Long Tian, Kun Zhang, and
Yang Yu, ‘Offline reinforcement learning with causal structured world
models’, CoRR, abs/2206.01474, (2022).

H. Lin et al. / Model-Based Reinforcement Learning with Multi-Step Plan Value Estimation1488

https://openreview.net

	Introduction
	Related Work
	Preliminaries
	Method
	Derivation of Planning Policy Iteration
	Planning Policy
	Planning Policy Evaluation
	Planning Policy Improvement
	Planning Policy Iteration

	Model-based Planning Policy Learning with Multi-step Plan Value Estimation
	Model Learning
	Multi-step Plan Value Estimation
	Model-based Planning Policy Improvement

	Experiments
	Comparison in RL Benchmarks
	On Policy Gradients
	On Plan Length

	Conclusion
	Acknowledgments

