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Abstract. Belief change studies how an agent modifies her beliefs
on receiving new information. However, so far most research on be-
lief change works on beliefs represented in propositional logic. There
have been many works on integrating belief revision with reasoning
about actions, and some works extending belief change from propo-
sitional logic to epistemic logics. In this paper, we study revision
on beliefs of a third person represented with the multi-agent KD45
logic. Our formal technique is analogous to that of distance-based
belief revision in propositional logic: to revise a KB by a formula,
select from models of the formula those that are closest to models of
the KB. To this end, a challenge is that in modal logics, a formula
may have infinitely many Kripke models. To tackle this, we propose
a variant of Moss’ canonical formulas called alternating canonical
formulas, treat them as models for formulas, and define a notion of
distance between them, based on the Hausdorff distance between two
sets. We show that our revision satisfies all of the AGM postulates.
To give syntactic characterizations of our revision, we make use of a
normal form for KD45n called alternating cover disjunctive formulas
(ACDFs). We give syntactic characterizations firstly on fragments of
ACDFs called proper ACDFs and alternating cover conjunctive for-
mulas (ACCFs), and finally on the whole ACDFs.

1 Introduction

Belief change studies how an agent modifies her beliefs on receiv-
ing new information. So far research on belief change works on
beliefs represented in propositional logic. Two main types of be-
lief change are revision and update: revision concerns belief change
about static environments due to partial and possibly incorrect infor-
mation, whereas update concerns belief change about dynamic envi-
ronments due to the performance of actions. Various guidelines for
belief change have been proposed, e.g., the AGM postulates for belief
revision [1]. Both revision and update are guided by the principle of
minimal change, where the notion of closeness between models can
be based on set inclusion or cardinality. To formalize the distinction
between revision and update, Katsuno and Mendelzon [17] presented
model-theoretic definitions of them. Del Val [9] gave syntactic char-
acterizations for a number of belief change operators, including the
cardinality based revision of Dalal [8].
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The issue of belief change becomes more perplexing in the pres-
ence of multiple agents. In such settings, in addition to first-order
beliefs, i.e., beliefs about the world, there are also higher-order be-
liefs, i.e., beliefs about agents’ beliefs. Beliefs change as a result of
the performance of ontic, sensing, and communication actions.

Many works have been done on integrating belief change with rea-
soning about actions in dynamic epistemic logics (DELs) [23] or the
situation calculus [20]. DELs focus on reasoning about epistemic ac-
tions in the multi-agent case. Following Aucher [2] and Van Benthem
[22], Baltag and Smets [5] presented a general framework for inte-
grating belief revision into DELs. In line with the AGM approach
of giving priority to new information, they proposed the action pri-
ority update operation: when updating a plausibility model by an
action plausibility model, give priority to the action plausibility or-
der. In the single-agent case, Shapiro et al. [21] and Delgrande and
Levesque [10] integrated belief revision into the situation calculus,
by augmenting it with a notion of plausibility over situations. In the
multi-agent case, by integrating action priority update from DELs
into the situation calculus, Fang and Liu [12] gave a general frame-
work for reasoning about actions and belief change.

There have also been some works extending belief change from
propositional logic to epistemic logics. Multi-agent KD45 modal
logic is a logic suitable for describing multi-agent beliefs [11].
Herzig et al. [15] studied the update and revision of KD45n Kripke
models of two agents. Aucher [3] proposed a notion of distances be-
tween KD45n models, and gave a semantic study of multi-agent be-
lief revision incurred by private announcements. Caridroit et al. [6]
studied private expansion and revision of KD45n models; then they
[7] investigated several measures of distances between KD45n mod-
els, and used them to define the revision of a finite set of KD45n
models by a formula. Miller and Muise [18] studied belief update for
knowledge bases consisting of belief literals. Huang et al. [16] pro-
posed a general multi-agent epistemic planner based on higher-order
belief change. The idea is that the progression of knowledge bases
w.r.t. actions is achieved through belief revision or update on KD45n
formulas. They made use of a normal form for KD45n called alter-
nating cover disjunctive formulas (ACDFs). They proposed syntactic
higher-order belief change operators for ACDFs. However, they were
not able to give semantic characterizations for their syntactic opera-
tors. Recently, Wan et al. [24] gave semantic characterizations for
Huang et al. ’s syntactic operators for proper ACDFs, a fragment of

ECAI 2023
K. Gal et al. (Eds.)
© 2023 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA230425

1463

https://orcid.org/0000-0002-1523-2627
https://orcid.org/0000-0003-2039-7626


ACDFs disallowing negative or disjunctive beliefs.
In this paper, we study revision on beliefs of a third person rep-

resented with KD45n. To illustrate, consider the following example
where Bi means agent i believes:

Example 1 There are two persons a and b and two apples. Let p
stand for a has an apple and q for b has an apple. At the beginning,
a has an apple, and both a and b believe that. Also, a believes that b
believes it, and b believes that a believes it. This can be written in:

φ = p ∧Bap ∧Bbp ∧BaBbp ∧BbBap.

Then a ate her apple, and b got an apple. This can be expressed by:

μ = ¬p ∧ q ∧Ba¬p ∧Bbq.

How should φ be revised by μ? A plausible result is:

¬p ∧ q ∧Ba¬p ∧BaBbp ∧Bb(p ∧ q) ∧BbBap.

Our research questions are: how to give a model-theoretic defini-
tion of the revision of a KD45n formula by another one, and how
to compute the result of revision. The long-term intended applica-
tion of our work is multi-agent epistemic planning. Our work dif-
fers from existing works on integrating belief change into reasoning
about actions in that actions take important roles there, while we are
concerned with revising a KD45n formula by another one. Our work
differs from existing works on extending belief change from propo-
sitional logic to epistemic logics in that we are interested in first a
semantic approach to the revision of arbitrary belief formulas and
then syntactic characterizations.

Our formal technique is analogous to that of distance-based belief
revision in propositional logic: to revise a KB by a formula, select
from models of the formula those that are closest to models of the
KB. To use this technique, a challenge is that in modal logics, a for-
mula may have infinitely many Kripke models, and it is difficult to
define clean notions of distances between Kripke models, as shown
by [3, 7]. A first rescue we can think of is Moss’ canonical formu-
las (CFs) [19]: a CF captures a Kripke model up to a given depth.
Moss showed that an arbitrary modal formula is equivalent to a dis-
junction of a finite set of CFs. However, CFs satisfiable in KD45n
contain redundant information, which complicates the definition of
distances between them. To tackle this, we propose the notion of al-
ternating canonical formulas (ACFs), and show that there is a bijec-
tion between ACFs and CFs satisfiable in KD45n. We treat ACFs as
models for formulas, and define a notion of distances between ACFs,
based on the Hausdorff distance between two sets. We show that our
revision operator satisfies all of the AGM postulates. To give syntac-
tic characterizations, we propose a new fragment of ACDFs without
disjunctions called alternating cover conjunctive formulas (ACCFs),
which subsumes ACFs and can be treated as the analogy of satisfi-
able terms in propositional logic. We give syntactic characterizations
for our revision operator firstly on proper ACDFs and ACCFs, and fi-
nally on the whole ACDFs. Our syntactic characterization for ACDFs
takes the same form as that for Dalal’s propositional revision.

Table 1 gives the list of acronyms we use in this paper:

2 Preliminaries

In this section, we introduce KD45n modal logic, canonical formu-
las, ACDFs, and Dalal’s propositional revision.

Table 1. Acronyms and their definitions
CDF cover disjunctive formula Def. 9
ACDF alternating cover disjunctive formula Def. 11
CF canonical formula Def. 6
ACF alternating canonical formula Def. 15
ACCF alternating cover conjunctive formula Def. 17

2.1 KD45n modal logic

Let A be a finite set of agents and P be a finite set of atoms. A
literal is an atom p or its negation ¬p. A (propositional) term is a
conjunction of literals, a minterm is a term where each atom appears
exactly once.

Definition 1 The multi-agent modal language LB is defined by
φ ::= p | ¬φ | (φ ∧ φ) | Baφ, with a ∈ A, p ∈ P .

As usual, “∨” and “→” are treated as abbreviations. Intuitively,
Baφ means agent a believes φ. We use B̂aφ to denote ¬Ba¬φ,
� and ⊥ to denote true and false respectively.

∧
Φ (resp.

∨
Φ) is

the conjunction (resp. disjunction) of the members in Φ. The modal
depth of a formula φ, denoted by md(φ), is the depth of nesting of
modal operators in φ. For a ∈ A, we use L−a

B to denote the set of
formulas not using Ba as an outmost modal operator.

Definition 2 A frame is a pair (W,R), where W is a non-empty set
of possible worlds, and for all a ∈ A, Ra is a binary relation on W .
In KD45n modal logic, Ri should be:

• serial, i.e., for all w ∈ W , there is w′ ∈ W s.t. wRaw
′;

• Euclidean, i.e., if wRaw1 and wRaw2 then w1Raw2;
• transitive, i.e., if wRaw1 and w1Raw2 then wRaw2.

Definition 3 A Kripke model is a tuple M = (W,R, V ) where
(W,R) is a frame and V is a valuation map that maps each w ∈ W
to a subset of P . A pointed Kripke model is a pair (M,w), in which
M is a Kripke model and w is a world of M , called the actual world.

Definition 4 Let M = (W,R, V ). Let s = (M,w) be a pointed
Kripke model, then for formulas in LB :

• M,w |= p iff p ∈ V (w);
• M,w |= ¬φ iff M,w �|= φ;
• M,w |= φ ∧ ψ iff M,w |= φ and M,w |= ψ;
• M,w |= Baφ iff for all v such that wRav, M, v |= φ.

We say φ is satisfiable if there is a KD45n Kripke model (M,w)
s.t. M,w |= φ; φ entails ψ, written φ |= ψ, if for any KD45n Kripke
model (M,w) s.t. M,w |= φ, M,w |= ψ; φ is equivalent to ψ,
written φ ⇔ ψ, if φ |= ψ and ψ |= φ.

2.2 Canonical formulas

In this subsection, we introduce canonical formulas (CFs) proposed
by Moss [19], explain why CFs satisfiable in KD45n can be treated
as models for formulas, and introduce a property showing that satis-
fiable CFs contain redundant information.

We first introduce the cover modality. Intuitively, ∇aΦ means that
each world considered possible by agent a satisfies an element of Φ,
and each element of Φ is satisfied by some world considered possible
by agent a. We use “ .

=” to mean “is defined as”.

Definition 5 (Cover modality) Let a ∈ A, and let Φ a finite set of
formulas. ∇aΦ

.
= Ba(

∨
Φ) ∧∧

φ∈Φ B̂aφ.
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Note that in KD45, Baφ |= B̂aφ, so Baφ ⇔ ∇a{φ}.

Definition 6 ([19] Canonical formulas) The set Ek of depth-k
canonical formulas (CFs) can be inductively defined as:

• E0 = {∧p∈S p ∧ ∧
p∈P\S ¬p | S ⊆ P}, i.e., E0 is the set of

minterms;
• Ek+1 = {τ0 ∧∧

a∈A ∇aΦa | τ0 ∈ E0 and Φa ⊆ Ek}.

Let τ = τ0 ∧ ∧
a∈A ∇aΦa. We denote τ0 by w(τ), and call it

the world of τ ; we denote Φa by Ra(τ), and call it the set of the
a-children of τ .

Example 2 Let A = {a, b}, and P = {p, q}. We use truth assign-
ments to represent minterms. Let τa = 00 ∧ ∇a{00 ∧ ∇a{00} ∧
∇b{01}} ∧ ∇b{01 ∧ ∇a{01} ∧ ∇b{01}}, and let τb = 11 ∧
∇a{10 ∧ ∇a{10} ∧ ∇b{00}} ∧ ∇b{11 ∧ ∇a{10} ∧ ∇b{11}}.
Then τ = 00∧∇a{τa} ∧∇b{τb} is a CF and can be represented as
the tree in Figure 1, where we mark alternating paths, i.e., paths on
which any adjacent agents are different, with dashed arrows.

Figure 1. An example of CFs

We remark that the number and size of canonical formulas are
non-elementary in the number of atoms [19].

Note that some CFs, e.g., p ∧ ∇a{}, are unsatisfiable in KD45n.
Clearly, if a CF is satisfiable, then for each ∇aΦ subformula, Φ �= ∅.

The following two propositions show that if md(φ) ≤ k, we can
treat depth-k satisfiable CFs as the models for φ since any such CF
entails either φ or its negation and φ is equivalent to the disjunction of
such CFs entailing φ. A nice property is that there are finitely many
such models.

Proposition 1 [19] Let τ be a depth-k satisfiable CF, and md(φ) ≤
k. Then either τ |= φ or τ |= ¬φ.

Proposition 2 [19] Let k ≥ md(φ). Let Φ be the set of depth-k
satisfiable CFs τ s.t. τ |= φ. Then φ ⇔ ∨

Φ.

However, satisfiable CFs contain redundant information because
of transitivity of accessibility relations in KD45n. For example, in
τa of Example 2, the 00 in ∇a{00} can be copied from the 00 in
∇a{00 ∧ . . .}. Below we introduce the identical children property
of satisfiable CFs: for any agent a and any a-child τa of a satisfiable
CF τ , the a-children of τa can be copied from τ ’s a-children. For
example, in Figure 1, as shown by the dashed boxes, the a-children
of τa can be copied from τ ’s a-children.

We need some definitions first. Fang et al. [13] introduced the pro-
jection operations on CFs. When a CF τ is represented as a tree, the
operation τ↓ prunes the leaves of this tree, and τ↓l prunes the bottom
l levels of the tree.

Definition 7 Let k > 0. For τ ∈ Ek, τ↓ = w(τ), if k = 1, other-
wise, τ↓ = w(τ) ∧∧

a∈A ∇aRa(τ)
↓. Here Φ↓ is {φ↓ | φ ∈ Φ}.

Definition 8 Let τ ∈ Ek and 0 < l ≤ k. Then τ↓l = τ↓, if l = 1,
otherwise, τ↓l = (τ↓l−1)↓.

Proposition 3 [13] Let τ be satisfiable CF with depth ≥ 2. Then,
for all a ∈ A and τa ∈ Ra(τ), Ra(τa) = Ra(τ)

↓.

Note that [13] shows the proposition for K45.

2.3 ACDFs and proper ACDFs

Hales et al. [14] introduced the notion of alternating cover disjunc-
tive formulas (ACDFs), a special form of cover disjunctive formulas,
and showed that in KD45n, every formula in LB can be transformed
into an equivalent ACDF.

Definition 9 (CDF) The set of cover disjunctive formulas (CDFs) is
inductively defined as follows:

• A propositional term is a CDF;
• If φ0 is a disjunction of propositional terms, and for each a ∈ B ⊆

A, Φa is a finite set of CDFs, then φ0 ∧ ∧
a∈B ∇aΦa is a CDF,

called a CDF term;
• The disjunction of a finite set of CDF terms is a CDF.

Definition 10 (Alternating formulas) We say that a formula is
alternating if it has the property that modal operators of an agent
do not directly occur inside those of the same agent.

Definition 11 (ACDF) We call an alternating CDF an alternating
cover disjunctive formula (ACDF).

For example, ∇a{�,∇ap} is a CDF but not an ACDF, while
∇b{�,∇ap} is an ACDF.

Below is a characterization of satisfiability of ACDFs, which will
be used to show each ACCF is satisfiable.

Proposition 4 [24] An ACDF term δ = φ0 ∧∧
a∈B∇aΦa is satis-

fiable iff the following hold:

1. φ0 is propositionally satisfiable;
2. for each a ∈ B, Φa is not empty;
3. for each a ∈ B, for each φ ∈ Φa, φ is satisfiable.

Wan et al. [24] proposed a fragment of ACDFs called proper
ACDFs. Intuitively, proper ACDFs only allow negation and disjunc-
tion for propositional formulas, i.e., they disallow negative or dis-
junctive beliefs.

Definition 12 (Proper ACDF) An ACDF φ is proper if in any
∇aΦa subformula, Φa must be a singleton, and in φ disjunctions
can only be used for propositional formulas.

For example, ∇a{¬p ∨ q}, ∇a{∇b{p}} are both proper ACDFs,
but ∇a{¬p ∨∇b{p}} is not.

Below we introduce their result that any proper ACDF is equiva-
lent to a conjunction of beliefs of propositional formulas along paths.
This result will be used in the syntactic characterization of our revi-
sion for proper ACDFs.

Let p be a path of agents a1, a2, . . . , an. They use Bpφ to abbre-
viate for Ba1Ba2 ...Banφ. In case p is the empty path, Bpφ simply
represents φ. They call p an alternating path if any adjacent agents
on the path are different. They showed:

Proposition 5 [24] Any proper ACDF can be equivalently trans-
formed to a formula of the form

∧
p∈P Bpφp, where P is a set of

alternating paths, and each φp is propositional.
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2.4 Dalal’s propositional revision

Katsuno and Mendelzon [17] presented a model-theoretic definition
of revision: φ ◦ μ selects from the models of μ those that are closest
to models of φ. Take the notion of closeness based on cardinality,
i.e., a model I is closer to a model M than a model J if H(I,M) ≤
H(J,M), where H(I,M) is the Hamming distance between I and
M . Then we get Dalal’s revision operator ◦d [8].

Now we introduce del Val’s syntactic characterization of Dalal’s
revision, using somewhat different notation from there. We assume
that φ and μ are both in DNF (disjunctive normal form); we use
φ with subscripts to denote the disjuncts of φ, and similarly for μ.
For two propositional terms t1 and t2, Dist(t1, t2) is the number of
atoms that appears positively in one term but negatively in another.
Let MinDist(φ, μ) = min{Dist(φi, μj) | φi ∈ φ, μj ∈ μ}.

Theorem 1 (Theorem 4 in [9])

φ ◦d μ ⇔
∨

〈φi,μj〉 s.t. Dist(φi,μj)=MinDist(φ,μ)

φi ◦d μj ,

where φi ◦d μj is obtained from φi by removing those literals whose
complement occurs in μj and then union with μj .

The above theorem says that the revision of DNF formulas can
be reduced to the revision of terms, which we use a simple exam-
ple to illustrate. Let φ = p ∧ q and μ = ¬p ∧ r. Then models of
φ are {p, q, r} and {p, q,¬r}, and models of μ are {¬p, q, r} and
{¬p,¬q, r}. So the minimum distance of {¬p, q, r} to models of φ
is 1, and that for {¬p,¬q, r} is 2. Thus φ ◦d μ has a single model
{¬p, q, r}. Hence φ ◦d μ ⇔ ¬p ∧ q ∧ r. This result can be simply
obtained with the method given in Theorem 1.

3 ACFs, ACCFs and their distances

In this section, we define two new fragments of ACDFs. One is al-
ternating canonical formulas (ACFs). The other is alternating cover
conjunctive formulas (ACCFs), and ACFs are special ACCFs. We
define a notion of distance between ACCFs, and show that the min-
imal distance between models of two ACCFs is simply equal to the
distance between the two ACCFs.

3.1 ACFs

In this subsection, we introduce ACFs, and show that we can treat
ACFs as models for formulas. Finally, we introduce the concept of
expansions of ACFs, which will be used to show that the result of our
model-theoretic definition of revision is independent of the depth of
models we use as long as it is sufficiently big.

To adapt distance-based belief revision from propositional logic
to epistemic logics, it is important to determine what are the models
for formulas and define distances between them. Though satisfiable
CFs can be treated as models for formulas, as pointed out in the last
section, they contain redundant information which complicates the
definition of the distance. To resolve the issue, we define alternating
canonical formulas (ACFs) based on CFs. An ACF can be treated as
a maximal alternating subformula of a CF. An ACF can be obtained
from a CF as follows: For each ∇aΦ subformula, and for each φ ∈
Φ, remove its ∇aΦ

′ conjunct.
Below we give a formal definition of ACFs by defining a mapping

m from satisfiable CFs. Then we will show that m is a bijection
between satisfiable CFs and ACFs when |A| > 1. We begin with a
mapping ma for a ∈ A:

Definition 13 For a ∈ A, a satisfiable CF τ , ma(τ) is defined as
follows: 1. If τ ∈ E0, ma(τ) = τ ;
2. If τ = τ0 ∧ ∧

i∈A ∇iΦi ∈ Ek+1, ma(τ) = τ0 ∧∧
i∈A,i �=a ∇imi(Φi), where mi(Φi) = {mi(φ) | φ ∈ Φi}.

Definition 14 For a satisfiable CF τ , m(τ) is defined as follows:
1. If τ ∈ E0, m(τ) = τ ; 2. If τ = τ0 ∧ ∧

i∈A ∇iΦi ∈ Ek+1,
m(τ) = τ0 ∧∧

i∈A ∇imi(Φi).

Definition 15 (ACF) An alternating canonical formula (ACF) is
m(τ) for some satisfiable CF τ .

Example 3 Recall τ in Example 2. Let δ = m(τ), then δ = 00 ∧
∇a{00 ∧ ∇b{01 ∧ ∇a{01}}} ∧ ∇b{11 ∧ ∇a{10 ∧ ∇b{00}}}, as
shown in Figure 2.

Figure 2. An example of ACFs

Note that when |A| = 1, for any satisfiable CF τ , the modal depth
of m(τ) is 0 or 1. For example, let A = {a}, τ = ¬p ∧ ∇a{p ∧
∇a{p ∧∇a{p}}}, then τ is satisfiable and m(τ) = ¬p ∧∇a{p}.

Proposition 6 For any satisfiable CF τ , τ |= m(τ).

Proof: It is easy to prove for any a ∈ A and satisfiable CF τ , τ |=
ma(τ), by induction on τ . Then the property holds.

Proposition 7 If |A| > 1, then for each ACF δ, there is a unique
satisfiable CF τ s.t. τ |= δ and m(τ) = δ. If |A| = 1, then for each
ACF δ s.t. md(δ) = 1 and each k ≥ 1, there is a unique depth-k
satisfiable CF τ s.t. τ |= δ and m(τ) = δ.

Proof: The idea is to expand δ into τ by using the identical-children
property of satisfiable CFs (Proposition 3), in a bottom-up approach,
starting from the innermost subformulas. We will build a unique
depth-k satisfiable CF, where k is given when |A| = 1, and k =
md(δ) when |A| > 1.

When k ≤ 1, an ACF is also a CF, so nothing needs to be done.
Now let k > 1. Suppose that δ = δ0 ∧ ∧

a∈A ∇aΦa. We will con-
struct τ = δ0 ∧∧

a∈A ∇aΨa so that m(τ) = δ.
We begin with a notation: a set of CFs with a superscript s means

the CFs have depth s. So Ψa can be rewritten as Ψk−1
a . Also re-

call τ↓l denotes the lth projection of τ . Now suppose Ψk−1
a =

{∇aΨ1∧φ1, ...,∇aΨn∧φn}. By Proposition 3, Ψ1 = ... = Ψn =
(Ψk−1

a )↓ = {∇aΨ
↓
1 ∧ φ↓

1, ...,∇aΨ
↓
n ∧ φ↓

n}. We denote this set by
Ψk−2

a and get Ψk−1
a = {∇aΨ

k−2
a ∧ φi | i = 1, ..., n}. When we

continue to do this, we will have:

• Ψk−1
a = {∇aΨ

k−2
a ∧ φi | i = 1, ..., n}

• Ψk−2
a = (Ψk−1

a )↓ = {∇aΨ
k−3
a ∧ φ↓

i | i = 1, ..., n}
• ...
• Ψ1

a = (Ψk−1
a )↓k−2 = {∇aΨ

0
a ∧ φ↓k−2

i | i = 1, ..., n}
Now we can get Ψ0

a = (Ψk−1
a )↓k−1={w(φi) | i = 1, ..., n}, which

is given by δ. Note that φi = φi0 ∧∧
b∈(A−{a}) ∇bΨ

′
ib, where each

Ψ′
ib is a set of CFs of depth k − 2. By induction, each Ψ′

ib can be
rebuilt from Rb(δi) for δi ∈ Ra(δ). So we get Ψ0

a, then Ψ1
a,Ψ

2
a, ...,

and at last Ψk−1
a . Thus, we can rebuild a CF from an ACF.
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Theorem 2 If |A| > 1, then m is a bijection between satisfiable
CFs and ACFs, and m(τ) ⇔ τ . If |A| = 1, then m is a surjection
from satisfiable CFs to ACFs, and m(τ) ⇔ τ .

Proof: Let τ1, τ2 be two satisfiable CFs s.t. m(τ1) = m(τ2). By
Prop. 6, τ1 |= m(τ1) and τ2 |= m(τ2). By Prop. 7, when |A| >
1, τ1 = τ2, thus m is an injection. By Prop. 7, m is onto. Since
τ |= m(τ) and there is a unique depth-md(τ) satisfiable CF τ ′ s.t.
τ ′ |= m(τ), by Prop. 2, m(τ) ⇔ τ .

We have explained in Section 2.2 that if md(φ) ≤ k, depth-k
satisfiable CFs can be treated as models for φ. By Theorem 2, we
can also use depth-k ACFs as models for φ.

Notation 1 We use Sk to denote the set of depth-k ACFs. Let δ ∈
Sk, and md(φ) ≤ k. If δ |= φ, we call δ a depth-k model of φ. We
let Sk(φ) = {δ ∈ Sk | δ |= φ}.

Then φ ⇔ ∨
Sk(φ). To see this, let Φ be the set of depth-k CFs

τ s.t. τ |= φ. By Proposition 2, φ ⇔ ∨
Φ. Then by Theorem 2,

φ ⇔ ∨
Φ ⇔ ∨

Sk(φ).
Now we introduce a method which will often be used in the proofs

of this paper. Suppose an a-child δa of an ACF satisfies φ ∈ L−a
B ,

i.e., φ does not use Ba as an outmost modal operator. Since δa is not
an ACF, how do we get an ACF satisfying φ?

Let δ = δ0 ∧∧
a∈A ∇aΦa ∈ Sk, δa ∈ Φa, φ ∈ L−a

B , md(φ) ≤
k − 1, and δa |= φ. δa is not an ACF. However, we can make δ∗a ∈
Sk−1(φ) from δa. Let δ′a ∈ Sk−1. We let δ∗a = δa ∧∇aRa(δ

′
a), i.e.,

we conjoin the ∇a part of δ′a to δa. Then δ∗a ∈ Sk−1 and δ∗a |= φ
since φ ∈ L−a

B .
Below we give an algorithm to check if an ACF entails an alter-

nating formula. There’s a similar property of CFs and the idea of our
proof is similar to that one, except we deal with alternating paths.

Proposition 8 Let δ ∈ Sk, φ an alternating formula, and md(φ) ≤
k. Then we can check if δ |= φ recursively:

• δ |= p iff p appears positively in w(δ);
• δ |= ¬φ iff δ �|= φ; δ |= φ ∧ ψ iff δ |= φ and δ |= ψ;
• δ |= Baφ iff for all δ′ ∈ Ra(δ), δ′ |= φ.

Proof: Firstly we show: like Proposition 1 in Section 2.2, let δ ∈ Sk

and md(φ) ≤ k, then either δ |= φ or δ |= ¬φ. Secondly we make
use of this property to prove this proposition.

Step 1: Let δ ∈ Sk and md(φ) ≤ k. By Prop. 7, there is a unique
depth-k satisfiable CF τ s.t. τ |= δ. By Prop. 2, δ ⇔ τ . By Prop. 1,
either τ |= φ or τ |= ¬φ. Hence either δ |= φ or δ |= ¬φ.

Step 2: The cases of atom and conjunction are trivial. The case of
negation follows from Step 1. We now prove the case of knowledge.
⇐: Suppose for all δ′ ∈ Ra(δ), δ

′ |= φ. Then
∨

Ra(δ) |= φ, so
δ |= ∇aRa(δ) |= Ba

∨
Ra(δ) |= Baφ. ⇒: Suppose δ |= Baφ.

Assume there is δ′ ∈ Ra(δ) s.t. δ′ �|= φ. Note that Baφ is alternating,
thus φ ∈ L−a

B . By using the method introduced before Proposition
8, we expand δ′ to get an ACF δ′′ s.t. δ′ |= φ iff δ′′ |= φ. So δ′′ �|= φ.
By Step 1, δ′′ |= ¬φ, so δ′ |= ¬φ. Then δ |= ∇aRa(δ) |= B̂a¬φ,
contradicting δ |= Baφ. Thus for all δ′ ∈ Ra(δ), δ′ |= φ.

In the above, we have explained we use depth-k ACFs as models
for φ as long as md(φ) ≤ k. In this paper, we will give a model-
theoretic definition of the revision of φ by μ, and we will show that
the result is independent of the depth k of models we use as long
as k ≥ max{md(φ),md(μ)}. To this end, we need the notion that
an ACF is the expansion of another one. Expansion is defined via
projection, which can be similarly defined for ACFs as for CFs.

Definition 16 Let δ and δ′ be ACFs. If δ′↓l = δ for some l > 0, we
call δ′ an expansion of δ.

Proposition 9 Let δ ∈ Sk, and k′ > k. Let Δ be the set of all
depth-k′ expansions of δ. Then δ ⇔ ∨

Δ.

Proof: Let δ′ ∈ Sk′ . Clearly, δ′ |= δ iff δ′ is an expansion of δ. Thus
Δ = {δ′ ∈ Sk′ | δ′ |= δ} = Sk′(δ). So δ ⇔ ∨

Sk′(δ) ⇔ ∨
Δ.

Proposition 10 Let md(φ) = k, and δ′ an ACF of depth ≥ k. Then
δ′ |= φ iff there is δ ∈ Sk s.t. δ |= φ and δ′ is an expansion of δ.

Proof: We have φ ⇔ ∨
Sk(φ). Since δ′ is an ACF with depth ≥ k,

for each δ ∈ Sk(φ), either δ′ |= δ or δ′ |= ¬δ. Thus δ′ |= φ iff
δ′ |= ∨

Sk(φ) iff there is δ ∈ Sk(φ) s.t. δ′ |= δ iff there is δ ∈ Sk

s.t. δ |= φ and δ′ is an expansion of δ.

3.2 ACCFs and their distances

In this subsection, we propose a new fragment of ACDF – ACCF,
and define distances between two ACCFs. Since ACFs are special
ACCFs, the notion can be applied to ACFs, and we show that it has
the basic properties of distance.

Definition 17 (ACCF) An alternating cover conjunctive formula
(ACCF) is an ACDF without using disjunctions, even in the propo-
sitional parts of the formula, s.t. for any CDF term subformula
φ0 ∧ ∧

a∈B ∇aΦa, B ⊆ A, φ0 is a satisfiable term, and each Φa

is not empty.

For example, ∇a{p, q∧∇b{p∧q}} is an ACCF. By Prop. 4, each
ACCF is satisfiable. An ACCF can be viewed as the analogy of a
satisfiable term in propositional logic.

Note that ACFs are special ACCFs: First, an ACF does not use dis-
junctions. Second, for any CDF term subformula φ0 ∧∧

a∈B ∇aΦa

of an ACF, φ0 is a minterm and is thus satisfiable, Φa is obtained
from the corresponding part of a CF satisfiable in KD45, and is thus
non-empty.

Figure 3 shows relationships between fragments we introduce in
this paper, where arrows denote subset inclusions.

Figure 3. Relationships between fragments

To define distances between two ACCFs, we make use of the
Hausdorff distance between two sets.

Definition 18 (Hausdorff distance) Let Φ and Φ′ be two sets. Let
d(φ, φ′) be the distance between φ ∈ Φ and φ′ ∈ Φ′. Then the
Hausdorff distance between Φ and Φ′ based on d is defined as:

d(φ,Φ) = min{d(φ, φ′)|φ′ ∈ Φ};
Hd(Φ,Φ

′) = max({d(φ,Φ′)|φ ∈ Φ} ∪ {d(φ′,Φ)|φ′ ∈ Φ′}).
For convenience, we use d(Φ,Φ′) to denote Hd(Φ,Φ

′).

Figure 4 (a) shows the intuition behind the above definition. There
are two curves c1 and c2. The length of l1 is the distance between w1

and c2, and the length of l2 is the distance between w2 and c1. The
Hausdorff distance between c1 and c2 is the maximum of the length
of all such lines, which is equal to the length of l1.
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Definition 19 (Distances between ACCFs) The distance between
two ACCFs is inductively defined as follows:

1. If δ and δ′ are propositional terms, then dist(δ, δ′) is the num-
ber of atoms that appears positively in one term but negatively in
another term.

2. If δ = δ0 ∧∧
a∈B ∇aΦa, δ′ = δ′0 ∧

∧
a∈B′ ∇aΦ

′
a, then

dist(δ, δ′) = dist(δ0, δ
′
0) +

∑

a∈B∩B′
dist(Φa,Φ

′
a).

Figure 4 (b) shows the intuition behind the above definition. There
are two ACCFs δ1 and δ2. The distance between δ1 and δ2 is the
sum of the distance between w1 and w2 and the Hausdorff distance
between Φa and Φ′

a, Φb and Φ′
b, and Φc and Φ′

c.

Figure 4. Intuitions of distances

Since ACFs are special ACCFs, Definition 19 applies to ACFs.
Note that in Definition 19, we do not require two ACCFs have the
same modal depth. Actually, the distance between ACCFs is a pseu-
dometric, which has the same properties as a metric except allows
the distance between two different points to be zero. However, in the
following result, we require two ACFs have the same modal depth.

Proposition 11 The distance between two ACFs with the same
modal depth k has the following basic properties:

1. Nonnegativity: dist(δ, δ′) ≥ 0;
2. Indistinguishability: dist(δ, δ′) = 0 iff δ = δ′;
3. Symmetry: dist(δ, δ′) = dist(δ′, δ);
4. Subadditivity: dist(δ, δ′′) ≤ dist(δ, δ′) + dist(δ′, δ′′).

3.3 Mindist between formulas

To adapt distance-based belief revision, when revising a formula φ by
a formula μ, we select from models of μ those that are closest to mod-
els of φ. In this subsection, we first define the minimal distance be-
tween models of two formulas, i.e., the mindist between them. Then
we show the mindist between two ACCFs is simply equal to their
distance. Note that mindist is obtained by calculating the distances
of all pairs of models of the formulas, but dist can be calculated di-
rectly from the formulas. Hence we give a syntactic characterization
of the semantic concept of mindist. This result will be used in the
syntactic characterizations of our revision for ACCFs and ACDFs.

Definition 20 Let φ and φ′ be two satisfiable formulas, and k ≥
max(md(φ),md(φ′)). We define mindistk(φ, φ

′) as

min{dist(δ, δ′) | δ ∈ Sk(φ), δ
′ ∈ Sk(φ

′)}.

Below we prove that mindistk(φ, φ
′) is independent of the k

we use as long as k ≥ max{md(φ),md(φ′)}, hence we can
omit the subscript, and consider Sk(φ) and Sk(φ

′) where k =
max{md(φ),md(φ′)} in case we do not specify the value of k. Be-
fore giving Theorem 3, we introduce two propositions used in its

proof: the first says the distance between any two depth-k′ expan-
sions of δ1 and δ2 is at least dist(δ1, δ2); the second says for any
depth-k′ expansion of δ1, there is a depth-k′ expansion of δ2 s.t. their
distance is equal to dist(δ1, δ2).

Proposition 12 Let k ≤ k′, δ1, δ2 ∈ Sk, δ′1, δ
′
2 ∈ Sk′ , δ′i is an

expansion of δi, i = 1, 2. Then dist(δ′1, δ
′
2) ≥ dist(δ1, δ2).

Proof: We prove by induction on k. Base: k = 0, obviously
holds. If k > 0, dist(w(δ′1), w(δ′2)) = dist(w(δ1), w(δ2)).
Now we prove that for each a ∈ A, dist(Ra(δ

′
1), Ra(δ

′
2)) ≥

dist(Ra(δ1), Ra(δ2)). For each ϕ′
1 ∈ Ra(δ

′
1) and ϕ′

2 ∈ Ra(δ
′
2),

let δ∗
′

1 be an ACF rebuilt from ϕ′
1, by adding the outmost ∇a sub-

formula. Note that ϕ′
1, ϕ

′
2 does not use ∇a as an outmost opera-

tor, so it is obvious that we can construct δ∗
′

2 = ϕ′
2 ∧ ∇aRa(δ

∗′
1 ).

Now δ∗
′

1 , δ∗
′

2 are in Sk′−1, and dist(δ∗
′

1 , δ∗
′

2 ) = dist(ϕ′
1, ϕ

′
2). Sim-

ilarly, for each ϕ1 ∈ Ra(δ1) and ϕ2 ∈ Ra(δ2), we can find
δ∗1 , δ

∗
2 in Sk−1, that dist(δ∗1 , δ∗2) = dist(ϕ1, ϕ2). We rebuild ϕ1, ϕ2

with (δ∗
′

1 )↓k
′−k so that δ∗

′
i will be an expansion of δ∗i , i = 1, 2.

By induction, dist(δ∗
′

1 , δ∗
′

2 ) ≥ dist(δ∗1 , δ
∗
2), so dist(ϕ′

1, ϕ
′
2) ≥

dist(ϕ1, ϕ2) for all ϕ′
i ∈ Ra(δ

′
i) and ϕi ∈ Ra(δi), i = 1, 2. So

dist(Ra(δ
′
1), Ra(δ

′
2)) ≥ dist(Ra(δ1), Ra(δ2)).

Proposition 13 Let k ≤ k′, δ1, δ2 ∈ Sk. Then for any δ′1 ∈ Sk′ s.t.
δ′1 is an expansion of δ1, there exists δ′2 ∈ Sk′ s.t. δ′2 is an expansion
of δ2, and dist(δ′1, δ

′
2) = dist(δ1, δ2).

Proof: For each alternating path p of length k, for each leaf f1 of
δ1 and each leaf f2 of δ2 reachable from the root by path p, let δ′2
expand f2 in the same way as δ′1 expands f1, i.e., the subtree of δ′2
rooted at f2 is the same as that of δ′1 rooted at f1 except for f1 and
f2. We show dist(δ′1, δ

′
2)=dist(δ1, δ2) by induction on k.

Theorem 3 Let k, k′ ≥ max(md(φ),md(φ′)). Then
mindistk(φ, φ

′) = mindistk′(φ, φ′).

Proof: We first prove mindistk(φ, φ
′) ≤ mindistk′(φ, φ′). By

Prop. 10, any depth-k′ model δ′1 (resp. δ′2) of φ (resp. φ′) is an ex-
pansion of some depth-k model δ1 (resp. δ2) of φ (resp. φ′). By Prop.
12, dist(δ′1, δ′2) ≥ dist(δ1, δ2). We now prove mindistk(φ, φ

′) ≥
mindistk′(φ, φ′). Suppose mindistk(φ, φ

′) = dist(δ1, δ2). By
Prop. 13, there are δ′1, δ′2 ∈ Sk′ s.t. δ′i is an expansion of δi, i = 1, 2,
and dist(δ′1, δ

′
2) = dist(δ1, δ2).

The following result shows the mindist between two ACCFs is
simply equal to their distance.

Theorem 4 Let φ and φ′ be two ACCFs. Then dist(φ, φ′) =
mindist(φ, φ′).

Proof: Let k = md(φ), k′ = md(φ′). Suppose k ≤ k′. We prove
by induction on k. Base: k = 0. The proof is easy. Induction: k > 0.
Let φ = φ0 ∧∧

a∈B ∇aΦa, φ′ = φ′
0 ∧

∧
a∈B′ ∇aΦ

′
a. We first prove

mindist(φ, φ′) ≤ dist(φ, φ′). Let δ = δ0∧∧a∈A ∇aΨa ∈ Sk′(φ)
and δ′ = δ′0 ∧ ∧

a∈A ∇aΨ
′
a ∈ Sk′(φ′). Let δ∗0 ∈ S0(φ0) and

δ∗0
′ ∈ S0(φ

′
0) s.t. dist(δ∗0 , δ∗0

′) = dist(φ0, φ
′
0). We let δ∗ be the

same as δ except w(δ∗) = δ∗0 and for a ∈ B ∩ B′, Ra(δ
∗) = Ψ∗

a

which we define in the following. Let δ∗′ be the same as δ′ except
w(δ∗′) = δ∗0

′, for a �∈ B ∪ B′, Ra(δ
∗′) = Ψa, and for a ∈ B ∩ B′,

Ra(δ
∗′) = Ψ∗

a
′ which we define now. Let a ∈ B∩B′. For each φa ∈

Φa, let φ′
a ∈ Φ′

a s.t. dist(φa, φ
′
a) = dist(φa,Φ

′
a). By induction,

mindist(φa, φ
′
a) = dist(φa, φ

′
a). Thus there exist δa ∈ Sk′−1(φa)
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and δ′a ∈ Sk′−1(φ
′
a) s.t. dist(δa, δ′a) = dist(φa, φ

′
a). Remove the

∇a parts from δa and δ′a, add the results to Ψ∗
a and Ψ∗

a
′, respec-

tively. Do the above similarly for Φ′
a. Then δ∗ ∈ Sk′(φ), δ∗′ ∈

Sk′(φ′), and for a ∈ B ∩B′, dist(Ψ∗
a,Ψ

∗
a
′) = dist(Φa,Φ

′
a), hence

dist(δ∗, δ∗′) = dist(φ, φ′). Thus mindist(φ, φ′) ≤ dist(φ, φ′).
We now prove mindist(φ, φ′) ≥ dist(φ, φ′). Let δ = δ0 ∧∧
a∈A ∇aΨa ∈ Sk′(φ) and δ′ = δ′0 ∧ ∧

a∈A ∇aΨ
′
a ∈

Sk′(φ′). We show that dist(δ, δ′) ≥ dist(φ, φ′). Obviously,
dist(δ0, δ

′
0) ≥ dist(φ0, φ

′
0). So it suffices to show that for each

a ∈ B ∩ B′, dist(Ψa,Ψ
′
a) ≥ dist(Φa,Φ

′
a). Note dist(Ψa,Ψ

′
a) =

max({dist(ψa,Ψ
′
a)|ψa ∈ Ψa} ∪ {dist(ψ′

a,Ψa)|ψ′
a ∈ Ψ′

a}). To
prove max(S1) ≥ max(S2), we prove that for each s2 ∈ S2

there is s1 ∈ S1 s.t. s2 ≤ s1. For each φa ∈ Φa, there is ψa ∈
Ψ′

a s.t. ψa |= ψ′
a. We show that dist(ψa,Ψ

′
a) ≥ dist(φa,Φ

′
a).

Note dist(ψa,Ψ
′
a) = min({dist(ψa, ψ

′
a)|ψ′

a ∈ Ψ′
a}). To prove

min(S1) ≥ min(S2), we prove that for each s1 ∈ S1 there is
s2 ∈ S2 s.t. s1 ≥ s2. For any ψ′

a ∈ Ψ′
a there is φ′

a ∈ Φ′
a s.t.

ψ′
a |= φ′

a. By induction, dist(φa, φ
′
a) = mindist(φa, φ

′
a). Let

δa ∈ Sk′−1(φa). We add the ∇a part of δa into ψa (resp. ψ′
a) and

get ψ∗
a (resp. ψ∗

a
′). Then ψ∗

a ∈ Sk′−1(φa) and ψ∗
a
′ ∈ Sk′−1(φ

′
a)

and dist(ψa, ψ
′
a) = dist(ψ∗

a, ψ
∗
a
′) ≥ mindist(φa, φ

′
a) =

dist(φa, φ
′
a). So dist(ψa,Ψ

′
a) ≥ dist(φa,Φ

′
a). Similarly, for each

φ′
a ∈ Φ′

a, there is ψ′
a ∈ Ψ′

a s.t. dist(ψ′
a,Ψa) ≥ dist(φ′

a,Φa). Thus
dist(Ψa,Ψ

′
a) ≥ dist(Φa,Φ

′
a).

We now show how to compute the mindist between formulas of
special form from the mindist between the subformulas. This result
will be used in the syntactic characterizations of our revision for for-
mulas of special form (Prop. 17 and 18).

Proposition 14 Let B ⊆ A. Let φ =
∧

a∈B Baφa and
φ′ =

∧
a∈B Baφ

′
a be satisfiable alternating formulas. Then

mindist(φ, φ′) =
∑

a∈B mindist(φa, φ
′
a).

Proof: We first show LHS ≤ RHS. For a ∈ B, let δa ∈ Sk−1(φa)
and δ′a ∈ Sk−1(φ

′
a) s.t. dist(δa, δ′a) = mindist(φa, φ

′
a). We re-

move the ∇a part from δa (resp. δ′a) and get δ−a (resp. δ−
′

a ). Let δ∗ ∈
Sk(φ). Let δ (resp. δ′) be the same as δ∗ except that for each a ∈ B,
Ra(δ) = {δ−a } (resp. {δ−′

a }). Then δ ∈ Sk(φ) and δ′ ∈ Sk(φ
′)

s.t. dist(δ, δ′) =
∑

a∈B dist(δ−a , δ−a
′
) =

∑
a∈B dist(δa, δ

′
a) =∑

a∈B mindist(φa, φ
′
a).

We now show LHS ≥ RHS. Let δ = δ0 ∧ ∧
a∈A ∇aΨa ∈

Sk(φ) and δ′ = δ′0 ∧ ∧
a∈A ∇aΨ

′
a ∈ Sk(φ

′). Then dist(δ, δ′) ≥∑
a∈B dist(Ψa,Ψ

′
a). Also, for each ψa ∈ Ψa, ψa |= φa, and for

each ψ′
a ∈ Ψ′

a, ψ′
a |= φ′

a. Thus dist(Ψa,Ψ
′
a) ≥ mindist(φa, φ

′
a).

So dist(δ, δ′) ≥ ∑
a∈B mindist(φa, φ

′
a). Thus LHS ≥ RHS.

4 A model-theoretic definition

In this section, we adapt distance-based belief revision from propo-
sitional logic to KD45n, using ACFs as models. Then we show our
revision satisfies all of the AGM postulates, and give syntactic char-
acterizations for formulas of special form.

Like propositional belief revision, φ◦μ selects from the models of
μ those that are closest to models of φ. However, we have to specify
the depth k of models we use.

Definition 21 Let φ and φ′ be two satisfiable formulas, and k ≥
max(md(φ),md(φ′)). We define Sk(φ◦k μ) = {δ ∈ Sk(μ) | there
is δ′ ∈ Sk(φ) s.t. dist(δ, δ′) = mindist(φ, μ)}.

We first show that φ ◦k μ is independent of k:

Theorem 5 Let k′ ≥ k ≥ max{md(φ),md(μ)}. Then φ ◦k μ ⇔
φ ◦k′ μ.

Proof: We first show for each δk′ ∈ Sk′(φ ◦k′ μ), there is δk ∈
Sk(φ ◦k μ) s.t. δk′ |= δk. Let δk′ ∈ Sk′(φ ◦k′ μ), δ′k′ ∈
Sk′(φ) s.t. dist(δk′ , δ′k′) = mindist(φ, μ). By Prop. 10, there ex-
ist δk, δ′k ∈ Sk, where δk′ is an expansion of δk and δ′k′ is an ex-
pansion of δ′k. Also, δk |= μ and δ′k |= φ. Hence dist(δk, δ

′
k) ≥

dist(δk′ , δ′k′) = mindist(φ, μ). By Prop. 12, dist(δk, δ
′
k) ≤

dist(δk′ , δ′k′) = mindist(φ, μ). So dist(δk, δ
′
k) = mindist(φ, μ).

Thus δk ∈ Sk(φ◦k μ). By Prop. 9, δk′ |= δk. We now show for each
δk ∈ Sk(φ ◦k μ), there is Δk′ ⊆ Sk′(φ ◦k′ μ) s.t. δk |= ∨

Δk′ . Let
δk ∈ Sk(φ ◦k μ), δ′k ∈ Sk(φ) s.t. dist(δk, δ′k) = mindist(φ, μ).
Let δk′ ∈ Sk′ be any expansion of δk. By Prop. 13, there is δ′k′ ∈ Sk′

s.t. δ′k′ is an expansion of δ′k and dist(δk′ , δ′k′) = dist(δk, δ
′
k) =

mindist(φ, μ). By Prop. 10, δk′ |= μ and δ′k′ |= φ. So δk′ ∈
Sk′(φ ◦k′ μ). Let Δk′ ⊆ Sk′ be the set of expansions of δk. By
Prop. 9, δk ⇔ ∨

Δk′ .

Based on the above theorem, we can omit the subscript, and have

Definition 22 φ ◦ μ denotes φ ◦k μ where k = max{md(φ),
md(μ)}.

The following proposition shows that our revision operator coin-
cides with Dalal’s in the propositional case.

Proposition 15 If φ and μ are propositional, φ ◦ μ ⇔ φ ◦d μ.

Proof: If φ and μ are propositional, then models for them are propo-
sitional models, and the distance notion is the Hamming distance
between propositional models.

Then we have the result that our revision satisfies all the AGM
postulates (R1-6) [17].

Proposition 16 Let φ, μ, ψ, φi, μi ∈ LB . We have

(R1) φ ◦ μ |= μ;
(R2) If φ ∧ μ is satisfiable, then φ ◦ μ ⇔ φ ∧ μ;
(R3) If μ is satisfiable, then φ ◦ μ is satisfiable;
(R4) If φ1 ⇔ φ2 and μ1 ⇔ μ2, then φ1 ◦ μ1 ⇔ φ2 ◦ μ2;
(R5) (φ ◦ μ) ∧ ψ |= φ ◦ (μ ∧ ψ);
(R6) If (φ ◦ μ) ∧ ψ is satisfiable, then φ ◦ (μ ∧ ψ) |= (φ ◦ μ) ∧ ψ.

Proof: (R1) Obviously, Sk(φ ◦ μ) ⊆ Sk(μ).
(R2) If φ∧μ is satisfiable, then Sk(φ)∩Sk(μ) is not empty. Hence

Sk(φ ◦ μ) = Sk(φ) ∩ Sk(μ).
(R3) If μ is satisfiable, then Sk(μ) is not empty, hence Sk(φ ◦ μ)

is not empty.
(R4) Let k = max{md(φ1),md(φ2),md(μ1),md(μ2)}. Then

Sk(φ1) = Sk(φ2) and Sk(μ1) = Sk(μ2). Hence Sk(φ1 ◦ μ1) =
Sk(φ2 ◦ μ2).

(R5) Let δ ∈ Sk((φ ◦ μ) ∧ ψ). Then δ ∈ Sk(μ ∧ ψ), and
there exists δ′ ∈ Sk(φ) s.t. dist(δ, δ′) = mindist(φ, μ). So
dist(δ, δ′) = mindist(φ, μ) ≤ mindist(φ, μ ∧ ψ) ≤ dist(δ, δ′),
so mindist(φ, μ) = mindist(φ, μ ∧ ψ) = dist(δ, δ′). So δ ∈
Sk(φ ◦ (μ ∧ ψ)).

(R6) By the proof of (R5), if δ ∈ Sk((φ ◦ μ) ∧ ψ) �= ∅, then
mindist(φ, μ) = mindist(φ, μ ∧ ψ). Let δ ∈ Sk(φ ◦ (μ ∧ ψ)).
Then there is δ′ ∈ Sk(φ) s.t. dist(δ, δ′) = mindist(φ, μ ∧ ψ) =
mindist(φ, μ). So δ ∈ Sk(φ ◦ μ), hence δ ∈ Sk((φ ◦ μ) ∧ ψ).

The following result shows that Baφa ◦ Baμa ⇔ Ba(φa ◦ μa)
under certain conditions. Its proof uses Proposition 14.

A. Liang and Y. Liu / A Model-Theoretic Approach to Belief Revision in Multi-Agent Belief Logic 1469



Proposition 17 Let Baφa and Baμa be satisfiable alternating for-
mulas. Then Baφa ◦Baμa ⇔ Ba(φa ◦ μa).

Proof: ⇒: Let δ = δ0 ∧ ∧
a∈A ∇aΨa ∈ Sk(Baμa) and

δ′ = δ′0 ∧ ∧
a∈A ∇aΨ

′
a ∈ Sk(Baφa) s.t. dist(δ, δ′) =

mindist(Baφa, Baμa) = mindist(φa, μa), by Proposition 14.
Then dist(Ψa,Ψ

′
a) = mindist(φa, μa). Thus for each ψa ∈

Ψa, there exists ψ′
a ∈ Ψ′

a s.t. dist(ψa, ψ
′
a) = dist(ψa,Ψ

′
a) ≤

mindist(φa, μa). We show ψa |= φa ◦ μa, hence δ ∈ Sk(Ba(φa ◦
μa)). Let δa ∈ Sk−1(ψa). Then δa = ψa ∧ ∇aΦa for some
Φa. Let δ′a = ψ′

a ∧ Φa. Then δa ∈ Sk−1(μa) and δ′a ∈
Sk−1(φa). So dist(ψa, ψ

′
a) = dist(δa, δ

′
a) ≥ mindist(φa, μa).

Thus dist(δa, δ′a) = mindist(φa, μa). So δa ∈ Sk−1(φa ◦ μa).
⇐: Let δ = δ0 ∧ ∧

a∈A ∇aΨa ∈ Sk(Ba(φa ◦ μa)). Then
for each ψa ∈ Ψa, ψa |= φa ◦ μa. Let δa ∈ Sk−1(ψa). Then
δa = ψa ∧ ∇aΦa for some Φa, and δa ∈ Sk−1(φa ◦ μa). Then
there is δ′a ∈ Sk−1(φa) s.t. dist(δa, δ

′
a) = mindist(φa, μa).

Since both φa, μa ∈ L−a
B , the ∇a parts of δa and δ′a must be the

same. So ψa |= μa, hence δ ∈ Sk(Baμa). Let Ψ′
a be the set

of formulas obtained from removing the ∇a part from some δ′a.
Let δ′ be the same as δ except that Ra(δ

′) = Ψ′
a. Then δ′ ∈

Sk(Baφa), and dist(δ, δ′) = dist(Ψa,Ψ
′
a) = mindist(φa, μa) =

mindist(Baφa, Baμa). Thus δ ∈ Sk(Baφa ◦Baμa).

Then we show that under certain conditions, revision of conjunc-
tions reduces to conjunctions of revisions.

Proposition 18 Let B ⊆ A. Let φ =
∧

a∈B Baφa and μ =∧
a∈B Baμa be satisfiable alternating formulas. Then φ ◦ μ ⇔∧
a∈B Baφa ◦Baμa.

Proof: We only prove the case that B = {a, b}. The general case can
be similarly proved.

⇒: Let δ = δ0 ∧ ∧
a∈A ∇aΦa ∈ Sk(Baμa ∧ Bbμb) and

δ′ = δ′0 ∧ ∧
a∈A ∇aΦ

′
a ∈ Sk(Baφa ∧ Bbφb) s.t. dist(δ, δ′) =

mindist(φ, μ) = mindist(φa, μa)+mindist(φb, μb), by Prop.
14. We must have dist(δ, δ′) = dist(Φa,Φ

′
a) + dist(Φb,Φ

′
b).

Thus dist(Φa,Φ
′
a) + dist(Φb,Φ

′
b) = mindist(φa, μa) +

mindist(φb, μb). Since dist(Φa,Φ
′
a) ≥ mindist(φa, μa) and

dist(Φb,Φ
′
b) ≥ mindist(φb, μb), we have dist(Φa,Φ

′
a) =

mindist(φa, μa) and dist(Φb,Φ
′
b) = mindist(φb, μb). We now

show δ ∈ Sk(Baφa ◦ Baμa). Similarly, δ ∈ Sk(Bbφb ◦ Bbμb).
Obviously, δ ∈ Sk(Baμa). Let δ′′ be the same as δ′ except that
Rb(δ

′′) = Φb. Then δ′′ ∈ Sk(Baφa). We have dist(δ, δ′′) =
dist(Φa,Φ

′
a) = mindist(φa, μa) = mindist(Baφa, Baμa).

Thus δ ∈ Sk(Baφa ◦Baμa).
⇐: Let δ ∈ Sk(Baμa∧Bbμb), δ1 ∈ Sk(Baφa), δ2 ∈ Sk(Bbφb),

dist(δ, δ1) = mindist(Baφa, Baμa) = mindist(φa, μa),
dist(δ, δ2) = mindist(Bbφb, Bbμb) = mindist(φb, μb). Let δ′ be
the same as δ except Ra(δ

′) = Ra(δ1) and Rb(δ
′) = Rb(δ2). Then

δ′ ∈ Sk(Baφa ∧ Bbφb), and dist(δ, δ′) = dist(Ra(δ), Ra(δ1)) +
dist(Rb(δ), Rb(δ2)) = mindist(φa, μa) + mindist(φb, μb) =
mindist(Baφa ∧Bbφb, Baμa ∧Bbμb). Thus δ ∈ Sk(φ ◦ μ).

Finally, we give a syntactic characterization of our belief revision
operator on proper ACDFs (see Def. 12 and Prop. 5). By Propositions
15, 17 and 18, we get the following result, showing that for proper
ACDFs, higher-order belief revision nicely reduces to propositional
belief revision along each path.

Theorem 6 Let φ =
∧

p∈P Bpφp and μ =
∧

p∈P ′ Bpμp be proper
ACDFs. Then

φ ◦ μ ⇔
∧

p∈P−P ′
Bpφp ∧

∧

p∈P ′−P

Bpμp ∧
∧

p∈P∩P ′
Bp[φp ◦d μp]

where ◦d is Dalal’s propositional revise operator.

By this theorem, the plausible result we give for Example 1 is
indeed the result of our revision operator.

Finally, we comment that our work takes a perfect external point
of view, i.e., considers revision of beliefs of a third person. Our work
can handle both a private revision, and a semi-private revision. For
example, suppose agent a senses that φ is true, agent b is aware of the
sensing action, but not the result, and agent c is oblivious. Then the
new information will be represented by Baφ ∧ Bb(Baφ ∨ Ba¬φ).
However, we cannot yet handle a public revision, for which we need
common belief.

5 Syntactic characterizations

In this section, we give syntactic characterizations of our revision
operator. Recall that in KD45n, each formula is equivalent to an
ACDF. We begin with a syntactic characterization for ACCFs, based
on which we get one for ACDFs.

As for ACCFs, we first define the notions of partitions and prime
partitions, then characterize revision based on prime partitions, and
finally show how to compute prime partitions.

Definition 23 A partition of an ACCF φ is a set Φ of ACCFs s.t.
φ ⇔ ∨

Φ.

Note that we do not require formulas in Φ to be exclusive. For
example, {q ∧ p, q ∧ ¬p} is a partition of q.

As shown by Theorem 4, for two ACCFs φ and φ′, dist(φ, φ′) =
mindist(φ, φ′). This result is used in the proofs of this section. It is
easy to prove the following:

Proposition 19 Let φ and μ be two ACCFs, Ψ a partition of μ.
Let ψ ∈ Ψ. If dist(φ, ψ) > dist(φ, μ), then φ ◦ μ |= ¬ψ; If
dist(φ, ψ) = dist(φ, μ) and ψ is an ACF, then ψ |= φ ◦ μ.

Proof: By Theorem 4, if dist(φ, ψ) > dist(φ, μ), there exist
δ ∈ Sk(φ) and δ′ ∈ Sk(μ) s.t. dist(δ, δ′) = dist(φ, μ) =
mindist(φ, μ), and for all δ′′ ∈ Sk(ψ), dist(δ, δ′′) ≥
mindist(φ, ψ) = dist(φ, ψ) > dist(φ, μ). So δ′′ will not be
included in Sk(φ ◦ μ). If dist(φ, ψ) = dist(φ, μ) and ψ is an
ACF, then there is δ ∈ Sk(φ) s.t. dist(δ, ψ) = dist(φ, μ) =
mindist(φ, μ), so ψ |= φ ◦ μ.

This motivates us to define the notion of a prime partition.

Definition 24 Let φ and μ be two ACCFs, Ψ a partition of μ. We say
Ψ is a prime partition of μ w.r.t. φ if for all ψ ∈ Ψ, if dist(φ, ψ) =
dist(φ, μ), then ψ is an ACF.

As an easy corollary of Prop. 19, we get

Theorem 7 Let φ and μ be two ACCFs. If Ψ is a prime partition of
μ w.r.t. φ then

φ ◦ μ ⇔
∨

{ψ ∈ Ψ | dist(φ, ψ) = dist(φ, μ)}
⇔ μ ∧

∧
{¬ψ | ψ ∈ Ψ, dist(φ, ψ) > dist(φ, μ)}.

Obviously, Sk(μ) is always a prime partition of μ. However, each
member of Sk(μ) is an ACF. In the following, we show how to find
more compact prime partitions.

The following proposition shows how to get a partition of an
ACCF recursively:
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Algorithm 1: primepart(φ,μ,d)
Input: Two ACCFs φ, μ, and d ≥ 0
Output: A prime partition of μ w.r.t. φ

1 Get a partition Ψ of μ by applying Prop. 20
2 S := ∅
3 foreach μ∗ ∈ Ψ do

4 if μ∗ is not an ACF and dist(φ, μ∗) = d then

5 Φ :=primepart(φ,μ∗,d); S := S ∪ Φ
6 else

7 S := S ∪ {μ∗}
8 return S

Proposition 20 Let φ be an ACCF. We consider three cases:

1. φ is propositional: φ can be partitioned according to the truth
values of atoms not appearing in φ.

2. φ is φ1 ∧ φ2: Let Ψ1 be a partition of φ1. Then {ψ1 ∧ φ2 | ψ1 ∈
Ψ1} is a partition of φ.

3. φ is ∇a({φa} ∪ S): Let Ψa be a partition of φa. Then {∇a(S
′ ∪

S) | S′ ⊆ Ψa and S′ �= ∅} is a partition of φ.

Proof: We prove the third case when |Ψa| = 2. Let φa = φ1 ∨ φ2.
suppose δ |= ∇a({φa}∪S). There are 3 cases: δ |= B̂aφ1∧¬B̂aφ2,
then δ |= ∇a({φ1}∪S); δ |= B̂aφ2∧¬B̂aφ1, then δ |= ∇a({φ2}∪
S); δ |= B̂aφ1 ∧ B̂aφ2, then δ |= ∇a({φ1, φ2} ∪ S).

Algorithm 1 gives a nondeterministic recursive algorithm to
compute a prime partition. When computing φ ◦ μ, we call
primepart(φ, μ, dist(φ, μ)).

In the worst case, the algorithm will output a set of ACFs. Since
the size and number of CFs are non-elementary, the algorithm has a
worst-case non-elementary complexity.

Example 4 Let φ = p ∧ ∇a{p, q}, and μ = ∇a{p}. Then
dist(φ, μ) = 0. Figure 5 shows the process of computing a prime
partition of μ w.r.t. φ. Each node μ∗ is also marked with dist(φ, μ∗),
μ11 = p∧∇a{p∧q}, μ12 = p∧∇a{p∧¬q}, and μ13 = p∧∇a{p∧
q, p∧¬q}. The prime partition is the set of the leaves of the tree. So
φ ◦ μ ⇔ q ∧ μ11 ∨ ¬q ∧ μ11 ∨ q ∧ μ13 ∨ ¬q ∧ μ13 ⇔ μ11 ∨ μ13.
Also, φ ◦ μ ⇔ μ ∧ ¬μ2 ∧ ¬μ12.

Figure 5. An example of computing a prime partition

We now move to ACDFs.

Proposition 21 Each ACDF φ is equivalent to a disjunction of AC-
CFs.

Proof: We prove by induction on φ. The cases of propositional terms
and disjunctions are easy. Now let φ = φ0 ∧ ∧

a∈B ∇aΦa. By in-
duction, φ0 and each member of Φa is equivalent to a disjunction of
ACCFs. By repeatedly applying Prop. 20, φ is equivalent to a dis-
junction of ACCFs.

Theorem 8 Let φ =
∨

Φ, μ =
∨

Φ′ be two ACDFs, where Φ and
Φ′ are nonempty sets of ACCFs. Then

mindist(φ, μ) = min{dist(φi, μj) | φi ∈ Φ, μj ∈ Φ′},

φ ◦ μ ⇔
∨

〈φi,μj〉 s.t. dist(φi,μj)=mindist(φ,μ)

φi ◦ μj .

Proof: We know Sk(φ ◦ μ) = {δ ∈ Sk(μ) | there is δ′ ∈ Sk(φ) s.t.
dist(δ, δ′) = mindist(φ, μ)}. So it is equal to the union of {δ ∈
Sk(μj) | there is δ′ ∈ Sk(φi) s.t. dist(δ, δ′) = mindist(φi, μj)},
i.e., Sk(φi ◦ μj), where the union is taking over all 〈φi, μj〉 s.t.
dist(φi, μj) = mindist(φ, μ).

So the above syntactic characterization takes the same form as that
for Dalal’s revision in Theorem 1. Since in KD45n, each formula is
equivalent to an ACDF, the above theorem gives a syntactic charac-
terization of our revision for the whole language.

6 Related work and conclusions

Now we would like to compare our work with those of Aucher [3]
and Caridroit et al. [7]. First of all, all three works give distance-
based model-theoretic definitions of multi-agent belief revision. Sec-
ond, [7] and ours take a perfect external point of view, i.e., consider
revision of beliefs of a third person, while [3] assumes an internal
point of view, i.e., consider revision of beliefs of one of the agents.
Third, [3] and [7] use minimal Kripke models under bisimulation
in their model-theoretic definitions, while we use ACFs as models
of formulas. In addition, we give syntactic characterizations of our
revision, while [3] and [7] do not. Finally, their definitions of dis-
tances between Kripke models are based on weakenings of standard
bisimulation or based on tuples or aggregations of distances between
sets of valuations for different depths in the two models, while our
definition of distances between ACFs is an inductive one where the
distance between ACFs of depth k + 1 is defined using the distance
between ACFs of depth k.

Another related work is [4] where Aucher explored the progres-
sion of a KB φ w.r.t. an action represented by a formula φ′. He repre-
sented both φ and φ′ as disjunctions of CFs (canonical formulas), and
defined the progression of φ w.r.t. φ′ as the disjunction of progression
of a CF δ of φ w.r.t. a CF δ′ of φ′ applicable in δ, which is defined
by induction on the depth of δ and δ′. Our work goes beyond [4] in
there ways. First, we propose alternating CFs. Second, our definition
of revision has to consider the issue of minimal change. Finally, our
syntactic characterizations give more compact representation of the
revision results than just taking the disjunction of the minimal ACFs.

To conclude, in this paper, we gave a model-theoretic definition
of belief revision in KD45n and its syntactic characterizations. To
give a model-theoretic definition, we propose alternating canonical
formulas (ACFs) and treat them as models for formulas. To give a
syntactic characterization for ACDFs, we propose a new fragment of
ACDFs called ACCFs which subsumes ACFs. We define distances
between ACCFs based on the notion of Hausdorff distance between
two sets. To give a syntactic characterization for ACCFs, we propose
the concept of prime partitions. Finally, we show that each ACDF is
equivalent to a disjunction of ACCFs, and give a syntactic character-
ization for ACDFs, in the same form as that for Dalal’s propositional
revision. In the future, we would like to extend the work of this paper
to incorporate common belief and address belief update in KD45n.
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