ECAI 2023
K. Gal et al. (Eds.)
© 2023 The Authors.

1439

This article is published online with Open Access by 10S Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).

doi:10.3233/FAIA230422

DeepDiscord: Dual Contrastive Coding for Transferable
Time Series Anomaly Detection

Xin-Yi Li , Pei-Nan Zhong®, Di Chen?, Zhen-Dong Zhang® and Yu-Bin Yang #*

aState Key Laboratory for Novel Software Technology, Nanjing University
bGeneral Development Dept, Huawei Technologies Co. Ltd.

Abstract. Time series anomaly detection has attracted extensive
research attention owing to its real-world applications. Existing deep
learning based anomaly detectors usually require a separate train-
ing phase for each dataset. However, the long training time restricts
their practicality in the industry use. To address this limitation, we
propose a novel deep learning based discord search method named
DeepDiscord, which is a multi-scale anomaly detector capable of di-
rectly examining unseen datasets after pre-training. To the best of
our knowledge, our study is the first to introduce contrastive learn-
ing in the discord search, in order to provide a flexible and effec-
tive similarity measure for various kinds of data. We innovatively
divide the data into two categories according to their roles in dis-
cord search, and combine dual learning with contrastive learning,
which improves the efficiency and efficacy of discord search. Fur-
thermore, a novel pretext task is proposed based on our dual con-
trastive learning setting. We evaluate DeepDiscord comprehensively
on five anomaly detection benchmarks. Experimental results show
that DeepDiscord achieves the state-of-the-art results on the four out
of five benchmarks.

1 Introduction

Time series anomaly detection (TSAD), as a major branch of data
science, has gathered extensive research interest [6, 7]. With the aim
to spot the regions deviating significantly from the normal data, it has
been widely applied for monitoring various systems, such as indus-
trial equipment and cloud services [29, 22], etc. In many practical
cases, due to the scale and complexity of these systems, there are
usually massive metrics to analyze in order to avoid serious failures
[4, 29]. For a typical example, cloud platform monitoring is often re-
quired to detect millions of metrics of different nature (e.g. CPU us-
age, latency, error rate) [33]. Undetected anomalies could seriously
affect service availability and reliability, and even result in huge fi-
nancial losses. Therefore, designing a quick and accurate anomaly
detection system is essential in industry.

In recent years, deep learning based TSAD works have demon-
strated superior performance [33, 41, 3]. However, their effective-
ness commonly depends on the data-specific parameters. For each
dataset, model parameters are learned independently and hyperpa-
rameters are chosen carefully. Hence, the numbers of required mod-
els and metrics are of the same magnitude. With millions of metrics
to be monitored in industrial systems, the costs to involve experts
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to tune the systems are extremely expensive and hence unpractical.
Furthermore, for applications in dynamic environments, the perfor-
mance of existing methods may degrade along time because of the
concept drift. And to prevent deterioration, timely model updates
are necessary, which will inevitably result in more maintenance bur-
dens. Therefore, anomaly detectors with cross-data transfer ability
are strongly demanded in practical use and become an important re-
search topic in the scientific community.

To address this problem, we investigate TSAD from time series
discords [18] perspective. Time series discords are subsequences
of longer time series that maximally different from all other sub-
sequences in the same time series. Accordingly, discords indicate
the outlier windows, and discord search is naturally unsupervised
window-level anomaly detection. As demonstrated in [18], the most
appealing aspect of discord search is that, without a separate training
phase for each dataset, anomalies can be discovered by merely ex-
amining the test dataset. Secondly, it only require a single intuitive
parameter, the length of the subsequence. With these two features,
cross-data detection is an intrinsic capability of time series discords.

Current discord search in the literature, the similarity between sub-
sequences is measured via normalized Euclidean distance [18, 42,
28]. However, this distance measure may fail to identify trend out-
liers [20].

In addition, it is especially vulnerable to data noise, which is com-
mon in industrial applications. Therefore, the distance function in
discord search should be replaced with a measure that can identify
outliers presenting a variety of patterns and is applicable to time se-
ries with diverse features.

In this paper, we propose DeepDiscord, a novel Deep learning
based Discord search approach using dual contrastive coding for
transferable TSAD. To the best of our knowledge, it is the first study
that introduces contrastive learning to enhance the efficacy and ef-
ficiency of time series discord search. Compared to previous dis-
cord studies, DeepDiscord leads to three major advances. First, it
employs constrastive learning to provide a flexible distance measure
adaptive to various kinds of time series; Second, a dual-encoder net-
work architecture is designed to enable comparison between subse-
quences of different lengths, which improves the flexibility and effi-
ciency of discord search; Third, based on our dual learning setting, a
novel self-supervised task called Sub-window Matching Task is pro-
posed to learn multi-scale representations. Consequently, DeepDis-
cord achieves superlative performance than its traditional counter-
part while retaining the attractive cross-data transferability of dis-
cords search.
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Although a series of works on time series contrastive representa-
tion methods were proposed and showed success in various down-
stream tasks [43, 36], we believe taking the characteristics of discord
search into consideration during the pre-training phase is beneficial
for the detection performance. Therefore, we propose our dual con-
trastive learning approach, in order to train two encoders that yield
representations of different semantics. As we shall show, the dis-
parate semantics play a key role in anomaly detection and outperform
other downstream agnostic pre-training strategies.

To validate the effectiveness of our method, we first pre-trained
our model on a time series archive with rich patterns, then directly
transfer and evaluate our model on five time series anomaly detection
benchmarks. Comprehensive experimental results show that our pre-
trained model achieves competitive performance against state-of-the-
art TSAD methods without retraining.

The main contributions of our work are listed as follows:

e We present a novel time series anomaly detection approach based
on discord search, which is able to directly transfer to unseen data
once finish pre-training.

e To ensure the efficiency and precision of discord search, we divide
the time windows into two categories and adopt dual-encoder ar-
chitecture to learn representations with different semantics.

e We propose a novel pre-text task called Sub-window Matching
Task to perform multi-scale contrastive learning. To the best of
our knowledge, we are the first to introduce contrastive learning
to time series discord problem.

e We directly evaluate our pre-trained model on five TSAD bench-
marks and achieve competitive performance against state-of-the-
art traditional and deep TSAD methods.

2 Related Work
2.1 Time Series Unsupervised Anomaly Detection

Unsupervised TSAD methods are strongly preferred in the literature
since time series are rarely or sparsely labeled in practice. Existing
studies can roughly be divided into categories depending on detecting
mechanisms such as one-class classification, autoregression, recon-
struction, and discord search.

One-class classification methods assume that the majority of the
data is normal. Classic methods rely on the kernel trick [24, 35], and
deep classifiers replace the kernel-induced feature space by learned
feature space [30, 32]; Autoregression-based methods identify the
outliers by measuring the error between predicted and actual data
[16, 34]; Reconstruction-based models detect the anomalies by re-
construction error, which mainly consists of methods based on Vari-
ational AutoEncoder [33, 22] and Generative Adversarial Network
[23, 21]; Discord search methods measure the similarity between
subsequences and regard discords as outliers. MatrixProfile [42]
computes minimum Euclidian distances between each subsequence
and the others. MERLIN [28] further removes the only required pa-
rameter (subsequence length) by finding discords of all lengths.

In addition to the above approaches that follow the popular
paradigms, Anomaly Transformer [41] proposes a novel association-
based criterion. Besides, there are cold-start methods, such as LOF
[9], Twitter-AD [37], Luminol [8] and SR [29]. However, most of the
deep learning based methods need to model the given data. Hence
we adopt discord search, which requires far less dependency towards
data-specific training.

2.2 Time Series Representation Learning

Although self-supervised representation learning has achieved sig-
nificant progress in computer vision and natural language processing
[13, 12], it has been far less studied in the time series domain. As for
generative training objectives, auto-encoder based methods such as
TimeNet [26] minimizes the input reconstruction error, and forecast-
ing methods such as [44] predicts the future values. However, gen-
erating complex time series can be very challenging. Consequently,
contrastive learning has been widely studied. T-Loss [15] uses ran-
dom sub-series from the original time series as positive samples,
which is consistent with ours but we adopt dual-encoder architecture
for discord search problem. TNC [36] leverages the local smoothness
of a signal to define neighbors. TS-TCC [14] forces the consistency
between the two augmentations of the input data. TS2Vec [43] hierar-
chically discriminates positive and negative samples at instance-wise
and temporal dimensions.

In addition to the above universal representation works, there are
studies that learn representations for specific downstream tasks. For
example, CoST [38] learns disentangled trends and seasonal repre-
sentations for forecasting tasks, and 7'S — C'P? [11] exploits the
local correlation hypothesis for change point detection. In this pa-
per, we propose a novel time series representation learning method
towards anomaly detection.

3 Method

The overview of DeepDiscord is shown in Figure 1, which consists of
two phases. At dual contrastive learning phase, query and reference
encoders are jointly trained by predicting the matching pairs from a
set of query-reference examples. At discord search phase, anomaly
scores are calculated as the similarity between the embeddings of
query and reference.

3.1 Preliminaries and Motivations

A N-dimensional time series of length 7" can be denoted as

X = [z1,22,...,TN], z: € RT )]

As conventional approaches, it could be split into a series of windows
with length 7 and stride 1 using the sliding window strategy,

W = [wi,...,wr—ry1], Wherewy = [T¢, ..., Terr—1]  (2)

Time series anomaly is a data point or segment that significantly
differs from other observations. Since labeled anomalies are usually
contiguous segments that can be transformed into window level la-
bels, the goal of TSAD can be formulated as predicting the anomaly
label for each window w;.

Although the proposed framework supports both univariate and
multivariate time series training, in this work, we focus on pre-
training model for univariate time series. Since it can be applied on
multivariate time series dataset with different dimensions, by pro-
cessing each component {mf}tzl,,,,,T as independent series and then
ensembling the results.

Let X, denotes a univariate time series of length 7}, which needs
to be detected. And another series X, of length 7;. is also given as
normal historical values of X,. These two series are referred to as
query and reference respectively. Let Q and R denote the sliding
window sequences corresponding to X, and X, respectively.

Q = [qi]tzl,,,,,T —TgH10 qt = [m,’f, cee JZHFJ 3

q
R = [Tt]tzl,..‘,T,‘—r,qu? e = [Tg, . T, 1] 4)
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Figure 1: The proposed architecture of our approach. DeepDiscord adopt dual-encoder architecture to learn representations of query and
reference respectively. (a) Overview of the dual contrastive learning phase. The training objective is to identify the query-reference pair that
sampled from the same time series instance from pairs that sampled from different ones. (b) Overview of the discord search phase. We search
the discord according to the similarity between the representations of query and reference.

It should be noticed that the window lengths 7,4, 7;- are not required
to be the same, and generally, the reference window is longer than
the query window, i.e. 7, > 7,.

The key challenge of discord search is defining a appropriate sim-
ilarity measure between windows. Traditional discord methods ex-
ploit Euclidean metric, which is too restrictive and sensitive to data
noise. Therefore, we propose to measure the similarity defined on
the learned space. By carefully designing a pretext task, our learned
representations could capture the key features and discard noises.

3.2 Dual Contrastive Learning

Intuitively, contrastive representation learning can be considered as
learning by comparing. The representations of similar samples will
be mapped close together, while those of dissimilar samples will be
pulled away in the embedding space. Therefore, a pretext task should
be designed to define the distributions for positive samples P(x" |
x) and negative samples P(x~ | x) with respect to a given input .

3.2.1 Sub-window Matching Task

A novel pretext task named Sub-window Matching Task is discussed
in this part. Similar to other self-supervised tasks, the notion of sim-
ilarity is defined according to the pre-training data via the designed
sampling process.
Given a pre-training dataset consisting of time series of different
lengths
D={X1,Xo,...}.

The inputs of self-supervised training are constructed by the follow-
ing three steps.
Firstly, a time series X ~ Pp(+) is randomly drawn from D. Then
a subsequence r; of length 7, is randomly sampled from X, which
could be viewed as an analogy to the historical window at detection.
After N times of sampling, i.e. 7 ~ P(r), a batch of references is
collected
R = {7" 1y

Secondly, a subsequence g; of length 7, < 7 is randomly sampled
from each reference 75, i.e. ¢; ~ P(q|r;), which is regarded as the
query window.

Thirdly, a random window shift is applied to the query window
q: in order to encourage the model to focus on the pattern modeling
and learn translation-invariant representations. After sampling and
shifting, the batch of query windows corresponding to R is collected

Q:{ql,...

TN}

QN }-

It should be noticed that in order to support multi-scale detection,
the query window length 7, is set randomly from a range of lengths
smaller than 7, for each batch iteration.

Obviously, with respect to r;, the subsequence ¢; C 7; could be
regarded as the normal pattern, while queries ¢; ¢ r; sampled from
other series should be considered as the anomalous data. Formally,
the positive query-reference pairs are sampled from the joint distri-
bution (g;,7:) ~ P(q,7) = P(q | r)P(r), and the negative pairs
are sampled from the product of marginals (g;,7;) ~ P(q)P(r).
More detailed discussion can be found in [31].

3.2.2 Dual-encoder architecture

Traditional discord search methods require the similarity to be de-
fined on time windows of equal length. For discords exhibiting ab-
normal patterns at different length resolutions, this restriction in-
evitably requires a full scan of all possible lengths to discover them,
which will result in significant increase of computation time.

To improve the efficiency of search, we propose to learn represen-
tations with different semantics for query and reference windows.
Therefore, we perform our contrastive coding in a dual learning set-
ting to extract features of different granularities. Specifically, learned
reference representations are prompted to characterize the large-scale
“slow features” of normal behaviors spanning multiple query win-
dow lengths, while query representations are encouraged to describe
their own detailed features. Taking account of the semantic dispar-
ity, the dual-encoder architecture is adopted to encode the query and
reference windows separately.

Formally, two encoders gg and hy are employed to extract the
features of query and reference window respectively, where 6 and
¢ are their corresponding parameters. The latent representations are
encoded as

z=go(q), w=he(r).

The similarity between a query-reference pair (g, ) can be calcu-
lated via the cosine similarity of their embedding z, w:

sim(g,4) (¢,7) = cos (90(q), hs (7)) ®)

This dual-encoder architecture is of great benefit for efficient dis-
cord search. For a given query-reference window pair (g, ), with
Tq < Tr, the similarity via embedding only takes O(1) to calculate.
However, traditional approaches require O(7,) to compute the sim-
ilarity by scanning all sliding windows in r with length 7,. Futher-
more, enlarging the reference window length 7,. can reduce the num-
ber of encoded windows, thereby expediting the encoding for the en-
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tire reference series and the discord search. Additionally, for multi-
scale detection, all query windows with length scale 7, smaller than
T can be compared with r via their embeddings, without updating
reference representations.

3.2.3 Learning objective

The basic idea of contrastive learning is to learn a embedding that
the similarity function (5) will achieve high values for positive query-
reference pairs (g;, ;) and low values for negative pairs (g;, 7;), with
1 # j. Similar to recent setups for contrastive learning, the training
processing is driven by minimizing the InfoNCE loss [11].

Let f(s,4) denote the exponential of the similarity function (5)

feo,6)(a,7) = exp [cos (go(q), ho(r))] (6)

For a query batch O and a reference batch R sampled as discussed
above, by treating a given reference r; € R as an anchor, the query
batch Q contains one positive sample and N — 1 negative samples.
Accordingly, the InfoNCE loss can be written into the form:

fo.0)(d' ")
geco fw.e (@)

1
,Cr = _N]E(Q’R) Z log Z (7)
r*eR
Symmetrically, by treating a given query as the anchor and enumer-
ating over R, the InfoNCE loss takes the form

1 f(e ¢>)(qi7ri)
Ly=——-Eq, log : —— (8)
! N (@R) 72 zr.ieR f(g,é)(ql771])
ateQ
Finally, the training objective is defined as
L=L~+ L, (©)]

3.3 Discord Search
3.3.1 Anomaly Score and Probability Estimation

Once the model has been trained, the similarity (5) will achieve high
values for positive pairs and low values for negative pairs. It will
be shown in this part that this similarity gives a reasonable anomaly
score definition and the meaning of its values can be explained from
the probability perspective.

Let the latent random variable C' denotes whether a pair (g, ) was
drawn from the joint (C' = 1), or the product of marginals (C' = 0),

P(q,r | C=1)=P(q,r), P(q,r|C=0)=P(q)P(r) (10)

The distribution P(g, ) is defined in the sampling process described
in section 3.2.1.

Recall that for a pair (¢, ) drawn from the joint distribution, the
query window ¢ is considered as a normal pattern with respect to
the reference window 7, since q is sampled from the subsequence 7.
Therefore, the posterior P(C' = 1 | ¢,r) gives the probability of
q being normal for reference r. According to Bayes’ theorem, this
posterior can be expressed as

P(C=1]|q,r)
_ P(g,r | C=1)P(C=1)
“Plar[C=0)P(C=0)+ Plg,r [C = )P(C =1)

_ P(g,r | C=1)P(C =1) (1)
~ P(q,r)P(C =1)+ P(q)P(r)P(C =0)
1

P(g)P(r) P(C=0)

I+ P(q,r) P(C=1)

Since the optimal value for f(g 4) is proportional to % [11], the
posterior can be simplified into

1
L+ B exp(—simp,g)(g,7))

P(C=1]gq,r) (12)
where § is a constant. It is obvious that when the similarity value of
a query-reference pair (g, r) increases, there is more chance that g is
a normal window, and vice versa.

Let X denotes a time series which we want to detect, and asso-
ciated with X, there is a vector set Rx containing historical time
windows of length 7,.. Samples € Rx are regarded as normal pat-
terns happened before. For a subsequence ¢° = X[t : t + 7] of
length 7, < 7, beginning at position ¢, its anomaly score is defined
as

Sa (qt; Rx) =1— max sim(g,@(qt,r). (13)
rERX

It should be noticed that the computation of max,cry can be ac-
celerated by leveraging the off-the-shelf methods for approximate
nearest neighbor search [17].

We use a sliding window sequence Qx to extract all possible sub-
sequences of length 7, from X. If ¢* has the largest anomaly score
among Qx, it is said to be the discord. If ¢* has the K" largest
anomaly score, it is the K" discord. The ranking of discords gives
the severity of an anomaly.

3.3.2  Multi-scale Detection

Recall that our method is compatible with multi-scale detection to
discover outliers exhibiting at different length resolutions. For a ref-
erence window set Rx with fixed window size 7., we could use
query windows beginning at the same position ¢ and with monotoni-
cally increasing lengths to calculate the anomaly scores
{0}y as Taty <Tar,, <7 forallm  (14)

where M is the number of length scales required to analyze.

After enumerating all scores S, (gh; Rx) at different scales, the
multi-scale score is calculated by averaging

M

Sa(t) = = D Salgm; Rx) (15)

As we shall show, the multi-scale score S, could obtain more robust
and better predictive performance than could be obtained from any
S, of the constituent scores alone.

3.4 Encoder Architecture

Since the learning framework of DeepDiscord is agnostic to the net-
work architecture, the encoder could be any parametric model that
meets the two requirements, which are vital to the multi-scale de-
tection: 1. it allows sequence modeling with variable lengths 7, i.e.
f X[t :t+7] = Z[t: t+ 7]; 2. it satisfies the causal con-
strain. Sequence modeling allows the encoder to take query windows
of different lengths as its inputs. Causal modeling helps the encoder
to obtain multi-scale representations starting at the same position at
one time.

In this work, query encoder gy and reference encoder hy are de-
signed to share a same network architecture satisfying the two re-
quirements discussed above, which is illustrated in Figure 2. Firstly,
we leverage a linear network to map the input time series value into a
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Figure 2: The encoder architecture for DeepDiscord. A linear layer is
employed to project the input into vector space. We use two stacks
of TCN residual blocks followed by a causal maxpooling layer to
encode temporal features. The final linear layer is appended as a pro-
jection head.

dense vector. Next, two stacks of residual TCN [5] blocks are adopted
to extract temporal features in a sequential manner. Each TCN block
consists of two layers dilated causal convolution and non-linearity.
Directly after the convolution layers, a masked maxpooling is applied
without future input dependencies. Finally, a linear layer is added as
the projection head.

Owing to the causal nature of the encoder, an element in the output
sequence at timestep ¢ cannot depend on any elements in the input
sequence at the future timesteps ¢’ > t. Let X[t : ¢ 4+ 7] denotes
an input sequence of length 7 beginning at ¢. For any smaller length
7' < T, the element Z.. . _; in the output sequence Z could be
taken as the embedding of the window X[t : ¢ + 7']|. Therefore,
the embeddings of all the smaller scales {X[t : t + 7']} ,_, _are
directly obtained from the output sequence Z[¢ : ¢ 4+ 7] only ’thr’ough
a single neural network calculation. Consequently, the multi-scale
detection processing is effectively accelerated.

4 Experiments

In this section, we extensively evaluate DeepDiscord on five
commonly-used TSAD benchmarks.

4.1 Datasets and Evaluation Metrics

The five datasets that we use to evaluate the anomaly detection per-
formance of DeepDiscord are listed as following: 1. UCR [39] is a
univariate dataset consists of 250 sub-datasets with a single anomaly.
2. PSM [1] (Pooled Server Metrics) is collected from multiple appli-
cation server nodes at eBay with 26 dimensions. 3. ASD [22] (Ap-
plication Server Dataset) is collected from an Internet company and
contains the metrics of 12 servers, where each server corresponds to
45 days of data with 19 metrics. 4. SWaT [27] (Secure Water Treat-
ment) is obtained from 51 sensors of a water treatment testbed over

11 days and 36 attacks were launched in the last 4 days. 5. WADI [2]
(Water Distribution) is a multivariate dataset collected from a wa-
ter distribution testbed, where 14 days were collected under normal
status and 2 days with attack scenarios.

According to the characteristics of the datasets, we adopt two sets
of evaluation measures. Since time series in UCR only contains one
anomaly, detectors are required to return the top-k discords. Top-k
accuracy computes whether the labeled segment is contained in the
top-k discords, which is a fair evaluation for UCR, as it is indepen-
dent of threshold selection methods. In this paper, we use top-1, top-
2, and top-3 accuracy for comprehensive evaluation. For the rest four
real-world datasets that do not have any assumption on the number
of anomalies, we adopt the point-adjust approach [40] that has been
widely used in TSAD [22, 41]. With this strategy, we can eliminate
the influence introduced by the labeling noises for the metrics [25].
Following previous works, we use precision, recall and F1-score to
evaluate the performance.

4.2 Baselines

Our proposed model DeepDiscord is compared with the following
two groups of anomaly detection algorithms. The first group consists
of three state-of-the-art anomaly detection methods. USAD [3] uses
an adversarially trained autoencoder to model the inter-metric depen-
dency; InterFusion [22] simultaneously models the inter-metric and
temporal dependency for multivariate time series; Anomaly Trans-
former [41] identifies anomalies by distinguishing abnormal asso-
ciation discrepancy. In order to achieve fair comparisons, the second
group consists of univariate cold-start or zero-shot anomaly detectors
that do not require extra training and disregard inter-metric depen-
dency. LOF [9] calculates the local density; Twitter-AD [37] adopts
statistical methods; Luminol [8] utilizes the frequency of similar time
series chunks; SR [29] based on Spectral Residual and Convolutional
Neural Network; MatrixProfile [42] and MERLIN [28] are represen-
tative discord detection methods. As for TS2Vec [43], we use its
transferred version, which is a universal time series representation
model pre-trained on the FordA dataset in the UCR archive.

4.3 Implementation Details

At the pre-training phase, our model is trained on the training data
of UCR Time Series Anomaly and Classification Archive [39, 10],
which provide many time series instances of different nature for our
encoders to learn pattern modeling. As for multi-scale learning, the
reference window size is fixed to 512 and the query window size is
sampled from the range [20, 256]. Our reference and query encoder
share the same model structure, where the kernel sizes of TCN blocks
are 16 and the dimensions of the hidden states and final representa-
tions are 64. We use the ADAM [19] optimizer with an initial learn-
ing rate of 1073, All the training experiments are performed with a
single NVIDIA V100 GPU.

At the detection phase, we also set the reference window size as
512 and enumerate the query window size from 64 to 512 with in-
terval 16. After obtaining the anomaly scores, we first find the peaks
over the threshold and then label the timestamps within the peaks’
widths as anomalies. The threshold is searched by moving the ini-
tial threshold from top to down until the next move will cause the
number of the detected consecutive abnormal segments exceeding a
predefined value. Both the moving step and the maximal amount of
the anomaly segments are slightly varied from different datasets.
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Table 1: Performance of DeepDiscord on five datasets. We use top-k (kK = 1, 2, 3) accuracy (Acc@1, Acc@2, Acc@3) (as %) to evaluate the
results on UCR, and report precision (Prec), recall (Rec) and F1 score results (as %) on the rest four datasets.

Dataset | UCR | PSM | ASD | SWaT | WADI

Metrics | Acc@l Acc@2 Acc@3 | Prec Rec  F1 | Prec Rec F1 | Prec Rec F1 | Prec Rec F1
USAD 17.60 2520 30.40 | 63.32 68.82 6596 | 45.63 49.25 4737|5748 7281 64.24|48.61 36.45 41.66
InterFusion 11.20 16.40 22.80 | 97.62 91.81 94.62 | 79.16 93.06 85.54 | 86.08 87.21 86.64 | 96.80 41.40 58.00
Anomaly Transformer | 10.00 17.60 22.00 | 97.28 97.46 97.37 | 66.75 61.87 64.22 |93.74 9292 93.33 | 62.89 3144 4192
LOF 14.80 18.40 20.40 | 98.18 92.27 95.13 | 51.38 72.15 60.02 | 96.12 85.70 90.61 | 62.86 88.28 73.43
Twitter-AD 6.80 9.60 1040 |98.06 96.13 97.09 | 59.37 71.11 64.71 | 78.72 83.72 81.14 | 40.90 3691 38.80
Luminol 14.80 20.00 23.20 | 79.96 95.50 87.04 | 31.86 29.97 30.89 | 71.27 74.96 73.07 | 15.00 54.10 23.49
SR 28.00 32.80 35.20|97.67 93.30 95.44|68.62 9473 79.59|59.51 99.76 74.55|30.05 97.85 4598
MatrixProfile 5240 60.00 63.20 | 99.10 78.71 87.74|65.02 61.41 63.16 |96.54 84.52 90.13 | 49.17 93.16 64.37
MERLIN 28.80 34.80 36.80 | 91.92 96.20 94.01 | 56.04 72.49 63.21 | 9497 78.17 85.75|29.79 87.69 44.47
TS2Vec 18.80 20.80 21.20 | 98.63 9391 96.21 | 81.40 91.42 86.12 | 71.20 99.26 82.92 | 36.84 96.33 53.29
DeepDiscord (ours) | 70.80 78.00 80.80 | 98.24 9531 96.76 | 87.79 94.55 90.83 | 94.25 97.35 95.78 | 84.04 90.85 87.31

Table 2: Ablation results (Top-3 Accuracy for UCR, F1 Score for
PSM, ASD, SWaT, and WADI) of DeepDiscord.

UCR PSM ASD SWaT WADI Avg.
DeepDiscord 80.80 96.76 90.83 9578 87.31 90.29
w/o Dual Learning 75.60 91.34 8395 9265 80.22 84.75
w/o Multi-scale Contrast  65.20 91.72 90.67 83.02 87.19 83.56
Augmentations
Shift
Original 76.00 89.26 8833 90.99 80.19 84.95
Jitter 74.80 9334 88.11 9354 89.28 87.81
Shift and Jitter 78.00 9227 8552 9645 8235 8691
Original or Shift 76.00 91.72 8339 89.82 8193 84.57
Original or Jitter 72.00 92.09 8098 89.82 8243 83.46
Shift or Jitter 76.80 91.25 88.88 90.78 88.93 87.32
Training Objective
L=Lr~+Lg
— Ly 77.60 9279 89.71 9399 90.29 88.87
— Ly 7720 92.80 89.27 94.69 8543 87.87

4.4 Main Results

We extensively evaluate our method on five datasets with ten compet-
itive baselines. Table 1 illustrates that DeepDiscord achieves state-
of-the-art on four out of five benchmarks without training on their
training datasets, demonstrating the transferibility and efficacy of our
method. The explanation for our slightly lower F1 score on PSM
is that the truth abnormal proportion of PSM is 27%, which is no-
tably larger than other datasets. Therefore, the methods report more
anomalies are likely to obtain better results.

UCR is a very challenging dataset that covers various real-world
scenarios. As shown in Table 1, existing methods perform extremely
poorly on UCR and DeepDiscord outperforms all baselines by a sub-
stantial margin. Specifically, compared to previous state-of-the-art
aprroach MatrixProfile, DeepDiscord gives 17.6% improvement on
top-3 accuracy. Furthermore, DeepDiscord shows its robustness by
obtaining stable and strong results on the rest four datasets compared
to other works. This superior performance suggests the DeepDis-
cord’s capability of detecting different types of anomalies on data
with various patterns.

4.5 Ablation Studies

We conduct ablation studies on the five benchmarks using several
variants of DeepDiscord to further demonstrate the effectiveness of
the designs for the learning and detection mentioned in Section 3.

For simplicity, we only report the Top-3 Accuracy for UCR and the
F1 Score for the rest four datasets.

4.5.1 Contrastive Learning Ablations

The ablation results towards the contrastive learning components are
illustrated in Table 2.

Firstly, we investigate our proposed pre-text task, where w/o Dual
Learning encodes the query and reference windows with the same
encoder, w/o Multi-scale Contrast fixes the query window length to
64 during training. Results demonstrate the superiority of our Sub-
window Matching Task, as metrics decrease by at least 5% on three
datasets when the key components of the task are ablated.

Secondly, we study the augmentation strategies. Recall that Deep-
Discord performs window shift to enhance the encoders’ pattern
modeling capability. To explore the impacts of the data augmenta-
tion, we first remove window shift (Original), and then attempt Jit-
ter that introduces random noises. Additionally, we investigate the
performance when applying multiple augmentations individually and
jointly. Concretely, Shift and Jitter refers to the sequential applica-
tion of shift and jitter to each query, whereas Shift or Jitter refers
to the random application of shift or jitter. Notice that scores drop
significantly when the original queries are used for contrasting. Fur-
thermore, overall performance decreases when shift is replaced with
other augmentation policies. We assume that this is because in some
cases jitter could impact the original pattern of the query and thus the
encoder is encouraged to ignore these changes, which is unfavorable
for anomaly detection.

Lastly, we investigate the training objective. Our proposed loss
function (9) consists of £, (7) and L4 (8). Table 2 shows that results
degrade marginally when we optimize them independently, which
suggests that our defined loss is superior.

4.5.2 Multi-scale Detection Ablations

We have ablated multi-scale contrast in Section 4.5.1 to verify its
necessarity for learning robust representations. To further suggest the
importance of multi-scale detection, we explore the performance of
DeepDiscord under the single-scale detection setting. Figure 3 de-
picts the results under different detection scales, ranging from 64
to 512 window sizes. We could observe that the multi-scale setting
surpasses all single-scale settings for UCR, ASD, and SWaT, which
indicates that the optimal detection scale differs for each time se-
ries. Despite the fact that a few single-scale settings outperform the
multi-scale setting on PSM and WADI, it is infeasible to set a optimal
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Figure 3: Performance comparison of multi-scale and single-scale detection across different window sizes on five benchmarks.
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Figure 4: Examples of two types of anomalies. We plot the series values and anomaly scores (first column), display the query embeddings’
heatmaps (second column), and display the reference and query embeddings’ t-SNE visualizations (third column).

scale in advance during practice. In summary, the results presented in
Figure 3 illustrate that the multi-scale score (15) could obtain more
robust performance than any single-scale alone.

4.6 Model Analysis

To illustrate the mechanism of our detection algorithm intuitively,
we visualize the anomaly scores and the representations in Figure 4.
We use two examples from UCR to demonstrate that DeepDiscord is
able to identify both point- and pattern-wise outliers.

As for the point-wise case, the anomaly scores calculated under
scale 64 clearly reveal the ground-truth anomaly, whereas the scores
under scale 256 cannot indicate any anomalies. This is because the
query encoder tends to prioritize the pattern-wise feature and ignore
the fine-grained information when encoding long windows. Con-
sequently, short queries are better suited for detecting point-wise
anomalies. In contrast, the scores under scale 256 are much more
distinguishable for identifying the pattern-wise anomaly. These two
examples show that multi-scale detection is crucial for DeepDiscord
to cover various kinds of anomalies.

We also visualize the representations under the suitable scales for
the two samples. The heatmaps in the second column show that query

representations clearly distinguish the abnormal windows from the
normal ones. Moreover, normal queries are closer to the references
compared to the anomalous ones, as depicted by the t-SNE visualiza-
tions in the third column. Thus, our learnt feature space is a qualified
metric for anomaly detection.

5 Conclusion

This paper studies the unsupervised time series anomaly detection
problem. Unlike existing deep learning-based methods, we investi-
gate the problem from the time series discords perspective. To over-
come the limitations of the distance functions adopted by the clas-
sic time series discord method, we propose DeepDiscord, which in-
troduces dual contrastive learning to the time series discord prob-
lem. Different from previous time series representation learning
methods, we perform contrastive learning in a dual learning set-
ting to ensure the model efficiency and effectiveness under multi-
scale detection. Based on our dual learning setting, we further pro-
pose a novel self-supervised task called Sub-window Matching Task
to learn multi-scale representations. Extensive experimental results
show that DeepDiscord achieves competitive results on five time se-
ries anomaly detection benchmarks.
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