
Unsupervised Graph Structure-Assisted
Personalized Federated Learning

Xiaoying Lia,b, Xiaojun Chenb;*, Bisheng Tanga,b, Shaopu Wanga,b, Yuexin Xuana,b and Zhendong Zhaoa,b

aSchool of Cyber Security, University of Chinese Academy of Sciences, Beijing, China
bInstitute of Information Engineering, Chinese Academy of Sciences, Beijing, China

Abstract. Non-IID data presents a significant challenge for feder-
ated learning(FL), and personalized FL is a natural solution to ad-
dress this challenge. Recently, Graph Neural Network (GNN) has
recently emerged to model the complex client relationship using a
client graph to refine personalized models. However, this approach
depends on an existing client relation graph on the server, making
it impractical unless this prerequisite is satisfied. Furthermore, noisy
and missing connections in the original graph structures can degrade
personalization performance. In this work, we propose an unsuper-
vised structure learning approach to improve personalized FL, where
the server learns a dynamic client graph through self-supervision and
generates structure-based client representations. These representa-
tions are then broadcasted to users, regulating local training using
the learned knowledge as an inductive bias. Empirical studies on
benchmark datasets demonstrate the significant effectiveness of our
approach and the high quality of the client graphs. The code is avail-
able at https://github.com/lazyJane/FedSKA.

0.1 Introduction

Federated learning (FL) [25] is a rapidly growing collaborative ma-
chine learning framework that enables a group of clients to jointly
train models without sharing their local data. Classical FL (Fe-
dAvg) [41] trains a unique global model for all clients that aims to
fit all data from different clients [29, 34, 26, 42]. However, such a
global model will always perform poorly due to the statistical het-
erogeneity observed across different clients [34, 25, 44]. Consider
the scenario for mobile device keyboards, certain emojis are used by
one demographic but not others. Therefore, it becomes essential to
provide client-specific personalized models in FL.

A variety of efforts have been made to personalized FL [6, 21].
One focuses on conducting an additional fine-tuning step after a well-
trained global model [49, 39, 1, 9, 40]. However, in highly heteroge-
neous scenarios, the relevant global model may not exist, and these
approaches may result in each client only learning locally. Clustered
FL [44, 51, 3, 15, 39] groups clients into several discrete clusters and
trains a model for each cluster, where data distribution of clients in
one cluster is the same or similar. The Clustered FL assumption is
quite restrictive since no knowledge transfer is feasible across clus-
ters. In the scenario where each client has its own unique optimal
local model, the number of clusters is equal to the number of clients,
rendering FL infeasible. More recently, personalized FL methods

∗ Corresponding Author. Emails:{lixiaoying, chenxiaojun, tangbisheng,
wangshaopu, xuanyuexin, zhaozhendong }@iie.ac.cn.

[33, 45, 10] are proposed to directly learn many individual personal-
ized models using the global model as the component of knowledge
sharing. However, they may not fully exploit the potential pairwise
collaborations among clients, as their diversity can provide informa-
tive differences in their local data.

Graph learning has emerged as an effective solution to capture re-
lationships among clients, as the connecting edges between clients
can depict their correlations [37, 14]. Existing relevant methods
mainly focus on network topology applications, such as traffic pre-
diction using sensor networks, and therefore rely on pre-existing
client graph. Provided with the client graph as prior knowledge, local
models can be improved by capturing inherent information over the
topology of FL clients. FedU [11] incorporates a Laplacian regular-
ization term into the objective function to encourage the client mod-
els with connected edges to be similar. BiG-Fed [52] utilizes con-
trastive learning to model the relationship between clients for link
prediction on the given client graph. SFL [6] learns a graph-based
model for each client by aggregating all models of its neighbors, and
then brings the local models closer to the graph-based model.

Existing Client Graph

Server

local models
Clients

Aggregation
of neighbor models

fixed
(1)

(a) FL with given graph.

Server

local representations

Clients

Graph Convolution
Aggregation
of neighbor

representations

Learned Client Graph

dynamic

(b) Our FL with learned graph

Figure 1. Concept maps of (a) FL with a given graph and (b) our proposed
FL with unsupervised learned graph

However, the prerequisite of the exsiting client graph can leave

ECAI 2023
K. Gal et al. (Eds.)

© 2023 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA230421

1430

such an approach infeasible for many applications, where a carefully
engineered client graph may not always be available on the server.
Moreover, the predefined client graph is static, which cannot capture
dynamic changes in client relationships that may occur during the
FL training process. Even with a known graph, personalization per-
formance may be degraded due to noisy and missing connections in
the original graph structures. Moreover, by only consider parameters-
level aggregating of neighboring clients, rich and complex informa-
tion carried in the original data may not be fully utilized.

In this paper, we propose FedSKA, a personalized FL method that
leverages dynamic structured knowledge. FedSKA utilizes a struc-
ture learner to generate a dynamic client graph during FL train-
ing through self-supervision based on homophily of the graph. The
learned weighted adjacency matrix is then fed into a Graph Neu-
ral Network (GNN) model to produce representations with structural
knowledge, which is optimized by borrowing gradient information
from clients, thereby leveraging the inductive bias from local tasks.
These structure-based features are then broadcasted to clients, en-
abling them to train their models on the learned graph structure that
embodies knowledge from neighboring clients.

Our main contributions are as follows :

1. Problem. We propose to regulate local model updating by impos-
ing structure relational inductive biases, without relying on any
external prior knowledge about clients, which leads to better per-
sonalized performance under non-i.i.d. data distributions. To our
best knowledge, we are the first attempt to explore client struc-
ture through unsupervision under FL, which is more practical to
address more challenging FL scenarios.

2. Algorithm: We propose the dynamic Structural Knowledge As-
sisted framework FedSKA, which learns a client graph by finding
the optimal structure that facilitates to predict the client represen-
tations. FedSKA performs an alternating and periodical process
to implement structure knowledge transfer between clients and
server, incorporating benefits from both FedAvg and Split Learn-
ing.

3. Evaluations. We perform extensive experiments to corroborate
the effectiveness and analyze the properties of FedSKA through
comparisons with state-of-the-art methods on four benchmark
datasets.

1 Related Work

1.1 Federated Learning for Non-IID Data

The vanilla FL algorithm FedAvg [41] trains a unique model to fit
data across various clients. However, it suffers from the non-i.i.d.
decentralized data, leading to statistical challenges such as model
weights divergence [54], data distribution biases [20], and a drifted
global model that is slow to converge even unguaranteed convergence
[34]. To tackle this challenge, Li et al. [34] proposed FedProx, which
adds a proximal term to the local objective function to reduce the gap
between local and global models. SCAFFOLD [26] introduces con-
trol variates to correct the client drift in its local updates. While the
above work focus on building a robust global model across non-i.i.d.
data, they do not directly address local model performance relevant
to individual clients.

1.2 Personalized Federated Learning

Given the challenges described above, some other approaches adopt
the strategy of training multiple models or personalizing components

to address multiple target distributions.
Cluster-level PFL Clustered FL assumes that the clients can be

partitioned into different clusters, representing different distribu-
tions. CFL [44] recursively separate clients with incongruent opti-
mization directions by the cosine similarity of the parameter updates,
while FedSEM [51] uses l2 distance. Briggs et al. [3] propose an
agglomerative hierarchical clustering method named FL+HC, which
relies on iterative calculating the pairwise distance between all clus-
ters. IFCA [15, 39] divides the clients into clusters with a center
model that can minimize their loss values.

Client-level PFL typically assumes that each client’s data dis-
tribution is unique, which necessitates the training of a personal-
ized model on each client’s device. A natural approach is learn-
ing a global model and fine-tuning parameters on each client’s lo-
cal dataset [49, 39, 1, 9, 40]. Per-FedAvg [12] and a class of al-
gorithms referred to as meta-learning [24, 5, 27] considered fine-
tune as a regularization term on the learning objective function of the
global model. Ditto [33] proposed a bilevel optimization framework
for PFL, which incorporates a regularization term to constrain the
distance between the local and global model. Interpolation of global
and local model [39, 19, 31] build personalized models for clients by
combining the global model and the local model. These approaches
primarily focus on the interaction between the local and global mod-
els, thereby failing to discover differences among the diverse infor-
mation across clients.

Graph-assisted PFL Graph structure has recently emerged as an
effective approach to model the relationships among the clients. [37,
14]. FedU [11] reformulates a multi-task federated learning using
Laplacian regularization. BiG-Fed [52] designs a bilevel optimiza-
tion framework and leverages the connectivity of edges as a guiding
information in the outer level task by mapping into the structural
similarity of neighboring node models. SFL [6] learns graph-based
personalized models and then brings the local models closer to the
graph-based model. The quality of the client graph and the effective
incorporation of structural information for each client are two critical
factors in Graph-assisted FL. Our proposed method addresses both of
these issues to improve performance.

1.3 Graph Neural Networks

Graph Neural Networks (GNNs) have demonstrated superior perfor-
mance in various learning tasks involving graph-structured data, such
as graph embedding [18] and node classification [28]. GNNs capture
the relationships between nodes in a graph using k-hop aggregation,
and a weighted hop in GCN can capture more complex relationships
in the graph [7]. GCN, proposed by Kipf and Welling [28], performs
convolutional operations on graph-structured data. In our method,
GCN is used to fuse neighbor clients’ information.

1.4 Graph Structure Learning

Graph Structure Learning (GSL) improves the robustness of GNN
models by jointly learning an optimized graph structure and cor-
responding representations [55, 56]. Some methods attempts to
reweight the existing edges of the given graph using attention mecha-
nism or feature similarity [46, 22]. Other methods reconstruct struc-
tures with node-wise similarity computed by metric learning func-
tions like cosine similarity [8] and dot production [53]. Then the
adjacency matrix with learnable parameters via jointly optimized
along with GNN under the supervision task such as node classifica-
tion [8]. SLAPS [13] identified a supervision starvation problem that

X. Li et al. / Unsupervised Graph Structure-Assisted Personalized Federated Learning 1431

emerges for graph structure learning and perform GSL through un-
supervision. SUBLIME [38] guides structure optimization by max-
imizing the agreement between the learned structure and a crafted
self-enhanced learning target with contrastive learning.

2 Preliminary and Notation

In this paper, we consider a general supervised learning task in the
entire dataset D under federated setting. Given K clients in an FL
system, the k th client has its own dataset Dk :=

{(
Xi

k, y
i
k

)}Nk

i=1
,

where Xi
k is the i th training sample, yi

k is the corresponding ground
truth of Xi

k. Nk is the sample number in dataset Dk and the total
number of data N =

∑K
k=1 Nk. In general, the goal of vanilla FL

system is to solve the following objective function:

min
w

F (f1(w), ..., fK(w)) (1)

where fk(w) := EXk∼Dk [lk (w;Xk)], is the k th client’s local ob-
jective function that measures the local empirical risk over Dk. F (·)
is a function that aggregates the local objectives from each client.
For example, in FedAvg [41], F (·) is typically set to be a weighted
average of local losses, i.e.,

∑K
k=1 pkfk(w), where pk = Nk

N
and∑

k pk = 1. However, The heterogeneity of D can often prevent
convergence to a stable global solution for Eq. (1). To address this
issue, it is common to learn client-specific models {wk}k∈[K] for
personalization.

The formulation of a personalized FL system typically involves a
bi-level optimization problem as follows:

minw1,...,wk hi (wk;w
∗) := fi (wk) + λR (wk, w

∗)
s.t. w∗ ∈ argminw F (f1(w), . . . , fN (w))

(2)

where each client has a personalized model wk, and w∗ is the op-
timal global model that minimizes the loss in Eq. (1). The regular-
ization term R controls the local model updates. Ditto [33] propose
an l2 term 1

2
|wk − w∗|2 to constrain the local updating to be close

to the global model. As a typical method of graph-assisted FL, SFL
first learns a graph-based aggregation model u and then introduces
an l2 term 1

2
|wk − u|2 to constrain the local updates to be close to

the graph-based model. Our approach differs from theirs in that we
utilize feature representations to convey structural information for
sufficient representation learning capabilities.

3 Proposed method: FedSKA

In this section, we elaborate our proposed approach with a summary
shown in Algorithm 1. An overview of its learning procedure in il-
lustrated in Figure 2.

3.1 Formulation

Before making the problem statement of FedSKA, we first introduce
the basic definition of the client graph in FL. Consider a connected
graph G = (V, E ,Hc) = (S,Hc), where V is the set of K = |V|
nodes, each node represents a client, E is the set of m = |E| edges
representing connections between clients. S ∈ [0, 1]K×K is the
weighted adjacency matrix. Hc = {hc

k}Kk=1 is the node feature ma-
trix, where each row hc

k denotes the feature representation of client
k produced by the local feature extractor fe

k with parameters we
k on

the local data Xk as follows: hc
k = fe

k(w
e
k;Xk).

The design of FedSKA is motivated by the lack and poor quality
of the original static graph that may not capture dynamically chang-
ing relationships between clients during training. Hence, our goal
is to capture the latent structure among clients and use it to gener-
ate robust representations of neighboring clients to improve the per-
sonalized accuracy performance. Our Structure Knowledge-Assisted
personalized FL Framework considers bi-level tasks.

Server :S = GS(H
c), Hg ← GNNE(S,Hc)

Client : min
w1,...,wk

fk(wk) := LC(wk) + LS(H
c,Hg)

(3)

where the server’s GNN task involves two key components: a struc-
ture learner GS responsible for constructing the client graph S, and
a GNN encoder GNNE tasked with updating the hidden features
Hc to more intricate structure-based features Hg . The clients are
involved in a local task that aims to minimize the local empirical risk
LC(wk) while leveraging the structure-based features Hg obtained
from the client graph S learned by the server. We show later that the
learned structure-based features can introduce inductive bias to local
users, reinforcing their model learning with a better generalization
performance. In the following sections, we will provide a detailed
description of each module of our approach.

3.2 Client Structure Learner

The structure learner GS is a function GS : RK×d → R
K×K with

parameters θGS which takes the client features Hc ∈ R
K×d as input

and generates a adjacency matrix S̃ ∈ R
K×K as output, d is the

dimension of client features. The process of client graph structure
learning follows the general graph structure learning paradigm: 1)
generator, 2) adjacency processor, and 3) learning objectives. Below
we provide details for each module.

3.2.1 Metric-based Generator

To find optimal structures for various information across clients, we
design a metric learning based generator GS , which first acquires
node embeddings from the input data using a multi-layer percep-
tron (MLP), and then model structure with pair-wise similarity of
the node embeddings. Specially, S̃ is generated by

S̃ = GS(H
c
e) = σ(GMLP (H

c)GMLP (H
c)T) (4)

where GMLP is a multi-layer perceptron (MLP) with the learnable
parameters θGMLP to generate the embedding representations Hc

e,
which considers the correlation and combination of features, gener-
ating more informative embeddings for downstream similarity metric
learning. σ(·) is a non-linear activation and defined as ReLU func-
tion, which make sure all elements to be positive.

3.2.2 Post-processor

The output S̃ of the generator may be dense, non-symmetric and non-
normalized, which violates the properties of real-world graphs. Thus,
we apply the post-processor T (·) to refine the sketched adjacency
matrix S̃ into a sparse, symmetric, and normalized adjacency ma-
trix S. This is achieved through three post-processing steps applied
sequentially: sparsification, symmetrization, and normalization.

Sparsification: The dense sketched adjacency matrix S̃ often
contains noise (i.e. unimportant edges) and increases the computa-
tional burden, especially when the FL system has a large number of

X. Li et al. / Unsupervised Graph Structure-Assisted Personalized Federated Learning1432

Feature Extractor
/Encoder k

1. Local Training

Local
Features

2. Periodic Transfer

5. Transfer back

Classifier
/Decoder l

Classifier
/Decoder K

… … …

Feature Extractor
/Encoder l

Feature Extractor
/Encoder m

Classifier
/Decoder k

Client-side

Learned Client Graph

Server-side

GNN Encoder

4. Structure features generation 3. client graph Learning

Structure
Learner

Add Noise

GNN
Encoder

Denoised Features

Local Features

Noisy
Features

k

o

n

p

m

l

k

o

n

p

m

q

Structure
Features

Figure 2. Framework of FedSKA

Algorithm 1 FedSKA. Ec is the number of local epochs, ES is the number of structure learning rounds, Eg is the number of GNNE learning
rounds, T is the number of communication rounds; η is the learning rate. hc

k is the local features of client k, hg
k is the structure-based features

generated by server for client k.
1: ServerExecute()

2: for each round t = 0, ..., T do

3: //(1)Optional FedAvg of local models.

4: for each client k ∈ V in parallel do

5: hc
k ← ClientUpdate(k,hg

k)
6: end for

7: wt =
∑ Nk

N
wk

8: for each client k ∈ V in parallel do

9: Send wt to reinitialize client wk

10: end for

11: Hc
k[idx] ← hc

k

12: //(2)Unsupervised Client Structure Learning.

13: for server round from 1 to ES do

14: S̃ ← Metric-based Generator GMLP (Hc)
15: S ← Post-processor T (S̃)
16: end for

17: //(3)Alternate optimization of GNNE

18: for each round from 1 to Eg do

19: {hg
k|i ∈ V} ← GNNE({hc

k|i ∈ V}; θGNNE)
20: for each client k ∈ V in parallel do

21: �h
g
k
lk ← lk ·Backward(k,hg

k)

22: �θGNNE
lk ← hg

k ·Backward(�Hg lk)
23: end for

24: �θGNNE
l ← ∑

k∈V �θGNNE
lk

25: θGNNE ← θGNNE − η�θGNNE
l

26: end for

27: //(4)Update structure-based features

28: Hg ← GNNE(S,Hc)
29: for each client k ∈ V in parallel do

30: send hg
k to client k

31: end for

32: end for

33: ClientUpdate(k,hg
k):

34: //(1)Local Training

35: for each local epoch from 1 to Ec do

36: for batch b ∈ {Xk, Yk,h
g
k} do

37: Update wk as in Eq. (9)
38: end for

39: //(2)Extract Local features

40: for idx, batch xk, yk ∈ {Xk, Yk} do

41: hc
k = fe

k (we
k;x

c
k)

42: end for

43: return hc
k to server

44: end for

45: ClientBackward(k,hg
k):

46: ŷk ← fs
k(w

l
k,h

g
k)

47: lk ← lk(ŷk, yk)
48: return �h

g
k
lk to server

clients [50]. So we consider only the "K-nearest neighbor" for each
client to produce a sparse matrix. Specifically, we keep the edges
with top-k connection values and mask off the rest (set to 0). The
sparsification (·) is expressed as:

S̃ij = Tsp

(
S̃ij

)
=

⎧⎨
⎩
S̃ij , S̃ij ∈ top−k

(
S̃i

)
0, S̃ij /∈ top−k

(
S̃i

) (5)

Symmetrization and Normalization. The process can be

achieved as follows:

S = Tnorm

(
Tsym (S̃)

)

= Tnorm

(
1

2
(S̃ + S̃)�

)

=
1

2
D̃

− 1
2

(
S̃ + S̃

�)
D̃

− 1
2

(6)

where Tsym makes the adjacency matrix symmetric, which takes the
average of the similarities to ensure that the strength of the connec-

X. Li et al. / Unsupervised Graph Structure-Assisted Personalized Federated Learning 1433

tion between vi and vj is the same in both directions. In general, if
client A is more important to client B, then client B is also more im-
portant to client A. Therefore, to reflect such an undirected graph,
the adjacency matrix needs to be symmetrized. Finally, to normalize
the symmetric adjacency matrix S̃, we compute its degree matrix D̃

and then multiply D̃
− 1

2 from the left and right to S̃ to ensure that
the sum of rows and the sum of columns are equal to 1.

3.2.3 Optimization by Self-supervision

Since the server has no access to client data, there is an absence of
prior knowledge about the clients. Therefore, we optimize the pa-
rameterized adjacency matrix S through unsupervised learning. In-
spired by contrastive learning [48], we design a supervision signal
from data itself via augmented representations. Specifically, we cre-
ate augmented features by adding noise to the original client fea-
tures. Then, we feed the learned adjacency matrix S and the aug-
mented features into a Graph Neural Network (GNN) to generate
denoising features. Finally, we maximize the similarity between the
denoising features and the original features. Our self-supervised task
encourages the model to learn a graph structure suitable for predict-
ing the node features, satisfying the homophily of the graph [28].
GNND : RK×d × R

K×K → R
K×d is a GNN with learnable pa-

rameters θGNND , which takes noisy version H̃ of client features as
inputs and produces denoised features H with the same dimension
as output. During training, we minimize:

LD = L

(
Hpos,GNND

(
H̃,S; θGNND

)
pos

)

where pos represents the indices corresponding to the elements of
H to which we have added noise, and Hpos represents the values
at these indices. S is the generated adjacency matrix learned by GS

and L is the mean-squared error loss. pos consists of r percent of the
indices of H selected uniformly at random in each epoch. Adding
noise can be performed by either replacing the values at pos with 0
or by adding independent Gaussian noises to each of the features.

3.3 Structure-based Representations Learning

After obtaining the learned client graph, we use a GNN to update the
client feature representations to fuse information about the neigh-
boring clients. Specifically, we employ Eq. (7) to update the client
feature embeddings:

{hg
k}Kk=1 ← GNNE(S, {hc

k}Kk=1; θGNNE) (7)

where θGNNE are the trainable model parameters. By iteratively up-
date the feature embeddings, GNNE captures the complex informa-
tion of the client representations over the topology.

To optimize θGNNE , we adopt gradient information borrowed
from the clients using Split Learning (SL) [17, 47]. First, the server
obtains the updated hidden feature Hg through GNNE and sends the
k-th row feature hg

k to the corresponding client k. Then, the client k
feeds hg

k to its local classifier fs
k to compute the loss with respect to

hg
k. Next, the client computes the gradient �hg lk using local gradi-

ent back propagation as in Eq. (8a), and sends it back to the server.
The server receives the gradients {�hg lk}Kk=1 from all clients and
computes each gradient of lk with respect to GNNE , denoted as
�θGNNE

lk, using Eq. (8b). Finally, the server aggregates all gradi-
ents {�θGNNE

lk}Kk=1 and obtains the result gradient using Eq. (8c).

The parameters θGNNE are updated using gradient descent as in Eq.
(8d), where η is the learning rate.

Client k :�h
g
k
lk ← lk.Backward(k,hg

k) (8a)

Server :�θGNNE
lk ← hg

k.Backward(�h
g
k
lk) (8b)

�θGNNE
l ←

∑
k∈V

�θGNNE
lk (8c)

θGNNE ← θGNNE − η�θGNNE
l (8d)

To alleviate the high communication cost for exchanging informa-
tion, we use alternate optimization algorithm [2] for periodic infor-
mation exchange as in Figure2.

By this approach, FedSKA takes into account the task-specific in-
ductive bias of local data during the learning process, thereby im-
proving the GNNE parameters and making them more suitable for
downstream local tasks. At the end of learning process, the learned
feature hg

k is sent to the corresponding client. As a result, the objec-
tive of a local model k is altered to maximize the similarity between
local features hc

k and structure-based features hg
k:

min fk(wk) :=LC(wk) + LS(h
c
k,h

g
k) (9)

where LC(wk) is the empirical risk of client k, and LS(h
c
k,h

g
k) is

the similarity-based loss that brings the local features closer to the
received structure-based features, as in Eq. (10):

LS(h
c
k,h

g
k) =

1

Nk

Nk∑
i=1

1− cos(hi
c,k, h

i
g,k) (10)

It is worth noting that the structure-based features hg
k combine a

client’s local features with those of neighbors through weighted sums
based on the edge weights of the client graph. The highest weight is
assigned to the self for its highest self-similarity. This ensures the
incorporation of useful neighbor information without neglecting lo-
cal information, resulting in stable personalized model performance
improvement. Moreover, compared to traditional FL, FedSKA en-
hances collaboration among neighboring clients through structure
learning optimization. This involves updating variables S to find the
most similar clients and wk for local model updates from local data,
resulting in mutually reinforcing convergence. Convergence analysis
will be addressed in our future work.

4 Experiments

4.1 Datasets and models

We evaluated our method on four federated benchmark datasets span-
ning a wide range of machine learning tasks: MNIST [32] for hand-
written character recognition, CIFAR10 [30] for image classification,
Shakespeare [4, 41] for language modeling, and METR-LA [36] for
traffic forecasting. Client-side models used include: a 1-hidden layer
MCLR model with 64 units for MNIST, MobileNet-v2 [43] with a
last hidden size of 1280 for CIFAR10, a stacked RNN with an em-
bedding layer and a 1-layer LSTM [16] with hidden size 256 and a
linear layer for Shakespeare, and a 2-layer GRU model with hidden
size 64 for METR-LA. On the server side, we employed an MLP
with the same hidden size as the local feature and ReLU activation
for the structure learner, and a 1-layer Graph Network as the GNN
Encoder. All datasets were randomly split into 80% training and 20%
test sets for each task.

X. Li et al. / Unsupervised Graph Structure-Assisted Personalized Federated Learning1434

Table 1. Personalized Performance comparisons on different settings

Dataset Setting Separate FedAvg FedProx Ditto IFCA FedU SFL Ours

MNIST

shards=2
Mean 98.34±0.01 90.02±0.00 90.01±0.02 98.34±0.01 97.32±0.02 98.28±0.00 97.17±0.01 98.65±0.01
Best 100.00±0.00 98.00±0.00 97.82±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00

Worst 94.65±0.31 81.08±0.00 81.08±0.00 94.65 ±0.31 92.65±0.00 94.74±0.31 91.78±0.00 93.19±0.31

shards=5
Mean 93.87±0.00 90.20±0.02 90.06±0.01 93.91±0.00 93.38±0.01 94.56±0.00 93.11±0.01 94.37±0.00
Best 99.54±0.00 96.77±0.00 96.77±0.00 98.14 ±0.00 99.14 ±0.00 99.54±0.00 99.23±0.00 99.84±0.00

Worst 87.60±0.38 83.69±0.00 83.69±0.00 87.14±0.00 87.57±0.00 88.4±0.00 87.08±0.00 88.92±0.00

shards=10
Mean 90.17±0.01 90.53±0.01 90.42±0.01 90.17±0.01 91.73±0.00 92.18±0.02 91.48±0.01 92.42±0.00

Best 96.77±0.00 96.46±0.00 96.31±0.00 96.77±0.00 98.15±0.00 96.77±0.00 97.75±0.00 98.59±0.00

Worst 84.12±0.00 84.31±0.00 84.15±0.00 84.12±0.00 86.62±0.00 87.38±0.00 85.69±0.00 87.72±0.00

CIFAR10

shards=2
Mean 82.66±0.05 69.91±0.11 58.84±0.26 88.34±0.01 93.54±0.09 84.96±0.09 93.99±0.07 94.87±0.02

Best 100.00±0.00 96.70±0.33 94.53±0.00 96.70±0.33 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00

Worst 51.63±0.62 28.57±1.58 2.50±0.00 68.93±1.00 80.77±0.41 57.27±1.22 79.50±0.67 78.54±0.93

shards=5
Mean 41.1±0.12 71.85±0.03 62.83±0.26 41.36±0.23 85.21±0.10 40.55±2.48 87.85±0.06 91.27±0.16

Best 79.53±0.00 84.77±0.53 80.40±0.63 81.75±0.00 95.97±0.00 79.36±0.98 96.87±0.34 98.04±0.51

Worst 21.34±0.41 55.63±0.34 44.97±0.86 22.02±0.00 70.39±0.53 21.58±0.86 75.46±0.63 80.21±0.66

shards=10
Mean 37.47±0.06 75.45±0.04 73.41±0.02 30.69±0.11 81.32±0.12 47.33±0.09 85.44±0.07 90.1±0.06

Best 87.93±1.02 87.93±1.02 86.64±0.34 60.64±0.63 93.53±0.68 60.03±0.42 94.37±0.42 98.04±0.00

Worst 18.75±0.34 64.88±0.34 61.90±0.68 17.49±0.63 66.47±0.63 29.69±0.68 77.49±0.42 82.88±0.51

Shakespeare
Mean 32.01±0.04 31.18±0.01 21.71±0.06 29.46±0.00 27.87±0.02 30.01±0.03 30.18±0.07 30.41±0.22
Best 29.22±0.04 33.56±0.02 25.13±0.85 22.82±0.00 30.86±0.02 26.76±0.02 32.02±0.22 34.19±0.62

Worst 22.83±0.01 27.12±0.01 20.45±0.17 15.04±0.02 25.12±0.21 18.39±0.07 27.10±0.15 31.51±0.14

Client heteroeneity Setting. Shakespeare dataset is naturally non-
i.i.d distributed where each client represents a character. For MNIST
and CIFAR-10, we artificially partitioned the raw dataset using a pa-
rameter q (shards) to control the level of heterogeneity, following the
approach of [41]. We sorted the entire dataset according to the la-
bel and divided it into K × q shards of equal size, with each client
assigned q shards. The level of non-i.i.d. data issues depends on the
size of the shards, with smaller shards indicating higher data hetero-
geneity. METR-LA [36] is a traffic dataset that has a graph topology
connecting sensors on roads. Each sensor on the road can be con-
sidered a client in the FL system, contributing data collected from
real-world sources with a non-i.i.d. distribution.

4.2 Baseline and experiment settings

We compared our algorithms with one global model trained with Fe-

dAvg [41] and FedProx [35] . Personalized FL Ditto [33] sets up a
separate personalization model and make it close to the global model.
IFCA [15, 39] groups similar clients in to the same cluster and per-
forms FedAvg in each cluser independently. FedU [11] aggregates
neighbor models for each client. SFL [6] learns graph-based person-
alized models with an optional l2 distance-based graph construction
method.

Without any additional statement, all reported results are based
on the same training configuration. We employ SGD with the same
learning rate 0.01 as the optimizer for all training operations, use a
batch size of 32. For the training process, we choose the number of
local epochs Ec = 1, the number of structure learning rounds ES = 10
and the number of GNNE learning rounds Eg = 10 for all datasets.
The number of total communication T is rounded to 200. The feature
mask ratio r = 0.01.

4.3 Performance Comparison analysis

Table 1 reports the average, the best 5% and the worst 5% perfor-
mance of personalized models of our method and other baselines on
MNIST, CIFAR10 and Shakespeare, respectively. Table 2 reports the
average MAE, MAPE, and RMSE across all clients for predicting
60 minutes (12-time steps) ahead on the METR-LA dataset. And we
have the following findings from the results.

• Overall Performance.

– Performance on MCLR and CNN. FedSKA significantly im-
proves test accuracy on image datasets, achieving approxi-
mately 8% improvement on MNIST and 27% improvement on
CIFAR10. This demonstrates its effectiveness, particularly for
complex local classification tasks. In comparison, FedProx and
Ditto rely on average models’ and local models’ performance,
respectively, since their simple regularization approaches may
not adequately address underlying heterogeneity, leading to un-
stable performance. IFCA alleviates heterogeneity to a certain
extent, but its effectiveness is limited by the absence of knowl-
edge interaction between clusters. FedU benefits from a given
client graph on MNIST but can easily fail under complex tasks
like CIFAR10, where a more sophisticated client structure is re-
quired. As one of the most competitive baselines, SFL improves
personalized performance compared to FedU by constructing
a client graph based on l2 distance between local model pa-
rameters. However, its gain is less significant compared to Fed-
SKA. We attribute the superior performance of FedSKA to the
learned robust latent structure knowledge by self-supervision,
which effectively enhances personalized models.

– Performance on RNN. FedSKA outperforms other baselines on
RNN, as shown in the last part of Table 1 and Table 2. For
RNN with a large number of parameters and complex network
structure, FedAvg achieves stable average performance by ag-
gregating all clients’ information. However, the best 5% and
worst 5% personalized performances show that there is signif-
icant variance between client models, which violates fairness
in FL. In contrast, FedSKA maintains relatively stable perfor-
mance for all client models by finding optimal neighbors and
appropriate edge weights for information transmission.

• Impacts of data heterogeneity. FedSKA is robust against differ-
ent levels of user heterogeneity and consistently performs well.
As the number of shards becomes smaller (higher heterogeneity),
traditional FL algorithms like FedAvg and FedProx lose effective-
ness and may perform worse than Separate training due to severe
heterogeneity affecting the global model performance. However,
FedSKA remains effective and accurately captures client struc-
tural relationships, accommodating clients with varying levels of

X. Li et al. / Unsupervised Graph Structure-Assisted Personalized Federated Learning 1435

Table 2. Performance of traffic forecasting in FL

METR-LA MAE MAPE RMSE

Separate 0.3680 0.4492 4.2644
FedAvg 0.3497 0.9352 3.5631
FedProx 0.3539 0.4043 3.6229

Ditto 0.3669 0.3952 4.3251
IFCA 0.3498 0.4300 3.5270

FedU 0.3659 0.4440 4.1447
SFL 0.3656 0.4001 3.6406

FedSKA 0.3465 0.3853 3.5348

closeness.
• Learning efficiency. As depicted in Figure 3, FedSKA exhibits

the most rapid learning curves, reaching optimal performance
quickly. Although FedSFL demonstrates higher learning effi-
ciency than other baselines, it is susceptible to overfitting since the
fixed graph structure leads a client to always exchange information
with its fixed and limited neighbor nodes, which is also observed
with IFCA. In contrast, by dynamically adapting the learned stru-
ture knowledge to clients, FedSKA can customize the training pro-
cess for each client and achieve better overall performance.

(a) MNIST-shards10 (b) CIFAR10-shards10

Figure 3. Visualization of Convergence

4.4 Ablation Study

In this section, we analyze the effectiveness of the learned structure.
For comparison, we created simple initial graphs for image datasets
by connecting two clients with the same label. We then compared
our method using the pre-defined graph and the learned graph by the
client structure learner. Results in Table 3 show that the learned client
structure is crucial for exploring latent relationships between clients,
which are otherwise inaccessible with the given graph.

Table 3. Personalized performance of ablation experiments

Average Test Acc MNIST CIFAR10

FedSKA (given graph) 93.90 89.60
FedSKA (learned graph) 94.60 91.47

4.5 Number of neighbors k

We investigate the sensitivity of the number of neighbors k in kNN
for sparsification. We search the range 5, 10, ..., 80 for MNIST and
CIFAR10. Figure 4 demonstrates that FedSKA is robust under differ-
ent values of k. The optimal selection for each dataset is k = 70 for
MNIST and k = 20 for CIFAR10. This is because the local data for
MNIST is relatively simple, necessitating a larger number of neigh-
bors to provide sufficient information, whereas CIFAR10 requires

identifying accurate neighbor aggregation for achieving optimal per-
formance.

Figure 4. Average personalized test accuracy w.r.t. number of neighbors.

4.6 Visualization of learned client structure

Figure 5 visualize the learned graph with k = 30 on MNIST for
shards2 and shards10. It can be observed that when the heterogene-
ity is high (shards=2), the similarity between clients is small, result-
ing in lower connection weights learned for the graph edges. Fig-
ure 6 visualizes the comparison between the pre-defined relation
graph and the learned graph by FedSKA on METR-LA. The learned
graph on METR-LA finds more hidden connection edges, includ-
ing the long-dependence on non-connected roads. This visualization
demonstrates that FedSKA not only learns knowledge from simple
pre-defined graphs but also discovers complex hidden relationships
among clients.

(a) Learned Graph for shards2 (b) Learned Graph for shards10

Figure 5. The visualization of the learned client graph S for MNIST vs.
different heterogeneity.

(a) Original Graph (b) Learned Graph by FedSKA

Figure 6. The visualization of the learned client graph S for METR-LA.

5 Conclusion

In this work, we propose a novel approach to improve personal-
ized performance using unsupervised graph structure learning. We
accomplish this through a bi-level task in FL, where on the server
side, a dynamic client graph is learned through self-supervision and
representation is generated by a GN that leverages local downstream
task. On the client side, the local objective is designed to be close to
the learned representation which incorporates the learned structure.
We conduct experiments to evaluate the effectiveness of the proposed
method. In the future, we will focus on client subgraph sampling
training in FL for scenarios where only a small fraction of clients
participate. Additionally, we plan to apply graph-assisted FL to ad-
dress more practical challenges in a real FL system, such as FL with
noisy labels [23].

X. Li et al. / Unsupervised Graph Structure-Assisted Personalized Federated Learning1436

Acknowledgements

This work is supported by the Strategic Priority Research Program
of Chinese Academy of Sciences, Grant No. XDC02030400.

References

[1] Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando
Pereira, and Jennifer Wortman Vaughan, ‘A theory of learning from
different domains’, Machine learning, 79(1), 151–175, (2010).

[2] James C Bezdek and Richard J Hathaway, ‘Some notes on alternating
optimization’, in AFSS international conference on fuzzy systems, pp.
288–300. Springer, (2002).

[3] Christopher Briggs, Zhong Fan, and Peter Andras, ‘Federated learning
with hierarchical clustering of local updates to improve training on non-
iid data’, in 2020 International Joint Conference on Neural Networks
(IJCNN), pp. 1–9. IEEE, (2020).

[4] Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li,
Jakub Konečnỳ, H Brendan McMahan, Virginia Smith, and Ameet
Talwalkar, ‘Leaf: A benchmark for federated settings’, arXiv preprint
arXiv:1812.01097, (2018).

[5] Fei Chen, Mi Luo, Zhenhua Dong, Zhenguo Li, and Xiuqiang He, ‘Fed-
erated meta-learning with fast convergence and efficient communica-
tion’, arXiv preprint arXiv:1802.07876, (2018).

[6] Fengwen Chen, Guodong Long, Zonghan Wu, Tianyi Zhou, and Jing
Jiang, ‘Personalized federated learning with graph’, arXiv preprint
arXiv:2203.00829, (2022).

[7] Fengwen Chen, Shirui Pan, Jing Jiang, Huan Huo, and Guodong Long,
‘Dagcn: dual attention graph convolutional networks’, in 2019 Interna-
tional Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE,
(2019).

[8] Yu Chen, Lingfei Wu, and Mohammed Zaki, ‘Iterative deep graph
learning for graph neural networks: Better and robust node embed-
dings’, Advances in neural information processing systems, 33, 19314–
19326, (2020).

[9] Corinna Cortes and Mehryar Mohri, ‘Domain adaptation and sample
bias correction theory and algorithm for regression’, Theoretical Com-
puter Science, 519, 103–126, (2014).

[10] Yuyang Deng, Mohammad Mahdi Kamani, and Mehrdad Mah-
davi, ‘Adaptive personalized federated learning’, arXiv preprint
arXiv:2003.13461, (2020).

[11] Canh T Dinh, Tung T Vu, Nguyen H Tran, Minh N Dao, and Hongyu
Zhang, ‘Fedu: A unified framework for federated multi-task learning
with laplacian regularization’, arXiv preprint arXiv:2102.07148, 400,
(2021).

[12] Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar, ‘Personalized
federated learning with theoretical guarantees: A model-agnostic meta-
learning approach’, Advances in Neural Information Processing Sys-
tems, 33, 3557–3568, (2020).

[13] Bahare Fatemi, Layla El Asri, and Seyed Mehran Kazemi, ‘Slaps: Self-
supervision improves structure learning for graph neural networks’, Ad-
vances in Neural Information Processing Systems, 34, 22667–22681,
(2021).

[14] Xingbo Fu, Binchi Zhang, Yushun Dong, Chen Chen, and Jundong Li,
‘Federated graph machine learning: A survey of concepts, techniques,
and applications’, ACM SIGKDD Explorations Newsletter, 24(2), 32–
47, (2022).

[15] Avishek Ghosh, Jichan Chung, Dong Yin, and Kannan Ramchandran,
‘An efficient framework for clustered federated learning’, Advances in
Neural Information Processing Systems, 33, 19586–19597, (2020).

[16] Alex Graves and Alex Graves, ‘Long short-term memory’, Supervised
sequence labelling with recurrent neural networks, 37–45, (2012).

[17] Otkrist Gupta and Ramesh Raskar, ‘Distributed learning of deep neu-
ral network over multiple agents’, Journal of Network and Computer
Applications, 116, 1–8, (2018).

[18] Will Hamilton, Zhitao Ying, and Jure Leskovec, ‘Inductive representa-
tion learning on large graphs’, Advances in neural information process-
ing systems, 30, (2017).

[19] Filip Hanzely and Peter Richtárik, ‘Federated learning of a mixture of
global and local models’, arXiv preprint arXiv:2002.05516, (2020).

[20] Kevin Hsieh, Amar Phanishayee, Onur Mutlu, and Phillip Gibbons,
‘The non-iid data quagmire of decentralized machine learning’, in In-
ternational Conference on Machine Learning, pp. 4387–4398. PMLR,
(2020).

[21] Yutao Huang, Lingyang Chu, Zirui Zhou, Lanjun Wang, Jiangchuan
Liu, Jian Pei, and Yong Zhang, ‘Personalized cross-silo federated learn-
ing on non-iid data.’, in AAAI, pp. 7865–7873, (2021).

[22] Bo Jiang, Ziyan Zhang, Doudou Lin, Jin Tang, and Bin Luo, ‘Semi-
supervised learning with graph learning-convolutional networks’, in
Proceedings of the IEEE/CVF conference on computer vision and pat-
tern recognition, pp. 11313–11320, (2019).

[23] Xuefeng Jiang, Sheng Sun, Yuwei Wang, and Min Liu, ‘Towards feder-
ated learning against noisy labels via local self-regularization’, in Pro-
ceedings of the 31st ACM International Conference on Information &
Knowledge Management, pp. 862–873, (2022).

[24] Yihan Jiang, Jakub Konečnỳ, Keith Rush, and Sreeram Kannan, ‘Im-
proving federated learning personalization via model agnostic meta
learning’, arXiv preprint arXiv:1909.12488, (2019).

[25] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bel-
let, Mehdi Bennis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary
Charles, Graham Cormode, Rachel Cummings, et al., ‘Advances and
open problems in federated learning’, Foundations and Trends® in Ma-
chine Learning, 14(1–2), 1–210, (2021).

[26] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank
Reddi, Sebastian Stich, and Ananda Theertha Suresh, ‘Scaffold:
Stochastic controlled averaging for federated learning’, in International
Conference on Machine Learning, pp. 5132–5143. PMLR, (2020).

[27] Mikhail Khodak, Maria-Florina F Balcan, and Ameet S Talwalkar,
‘Adaptive gradient-based meta-learning methods’, Advances in Neural
Information Processing Systems, 32, (2019).

[28] Thomas N Kipf and Max Welling, ‘Semi-supervised classification
with graph convolutional networks’, arXiv preprint arXiv:1609.02907,
(2016).

[29] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik,
Ananda Theertha Suresh, and Dave Bacon, ‘Federated learning:
Strategies for improving communication efficiency’, arXiv preprint
arXiv:1610.05492, (2016).

[30] A Krizhevsky, ‘Learning multiple layers of features from tiny images’,
Master’s thesis, University of Tront, (2009).

[31] Viraj Kulkarni, Milind Kulkarni, and Aniruddha Pant, ‘Survey of per-
sonalization techniques for federated learning’, in 2020 Fourth World
Conference on Smart Trends in Systems, Security and Sustainability
(WorldS4), pp. 794–797. IEEE, (2020).

[32] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner,
‘Gradient-based learning applied to document recognition’, Proceed-
ings of the IEEE, 86(11), 2278–2324, (1998).

[33] Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith, ‘Ditto:
Fair and robust federated learning through personalization’, in Inter-
national Conference on Machine Learning, pp. 6357–6368. PMLR,
(2021).

[34] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith, ‘Fed-
erated learning: Challenges, methods, and future directions’, IEEE Sig-
nal Processing Magazine, 37(3), 50–60, (2020).

[35] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Tal-
walkar, and Virginia Smith, ‘Federated optimization in heterogeneous
networks’, Proceedings of Machine Learning and Systems, 2, 429–450,
(2020).

[36] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu, ‘Diffusion convolu-
tional recurrent neural network: Data-driven traffic forecasting’, arXiv
preprint arXiv:1707.01926, (2017).

[37] Rui Liu and Han Yu, ‘Federated graph neural networks: Overview, tech-
niques and challenges’, arXiv preprint arXiv:2202.07256, (2022).

[38] Yixin Liu, Yu Zheng, Daokun Zhang, Hongxu Chen, Hao Peng, and
Shirui Pan, ‘Towards unsupervised deep graph structure learning’, in
Proceedings of the ACM Web Conference 2022, pp. 1392–1403, (2022).

[39] Yishay Mansour, Mehryar Mohri, Jae Ro, and Ananda Theertha Suresh,
‘Three approaches for personalization with applications to federated
learning’, arXiv preprint arXiv:2002.10619, (2020).

[40] Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh, ‘Do-
main adaptation: Learning bounds and algorithms’, arXiv preprint
arXiv:0902.3430, (2009).

[41] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas, ‘Communication-efficient learning of deep net-
works from decentralized data’, in Artificial intelligence and statistics,
pp. 1273–1282. PMLR, (2017).

[42] Mehryar Mohri, Gary Sivek, and Ananda Theertha Suresh, ‘Agnostic
federated learning’, in International Conference on Machine Learning,
pp. 4615–4625. PMLR, (2019).

X. Li et al. / Unsupervised Graph Structure-Assisted Personalized Federated Learning 1437

[43] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov,
and Liang-Chieh Chen, ‘Mobilenetv2: Inverted residuals and linear bot-
tlenecks’, in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 4510–4520, (2018).

[44] Felix Sattler, Klaus-Robert Müller, and Wojciech Samek, ‘Clustered
federated learning: Model-agnostic distributed multitask optimization
under privacy constraints’, IEEE transactions on neural networks and
learning systems, 32(8), 3710–3722, (2020).

[45] Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S Tal-
walkar, ‘Federated multi-task learning’, Advances in neural informa-
tion processing systems, 30, (2017).

[46] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana
Romero, Pietro Lio, and Yoshua Bengio, ‘Graph attention networks’,
arXiv preprint arXiv:1710.10903, (2017).

[47] Praneeth Vepakomma, Otkrist Gupta, Tristan Swedish, and Ramesh
Raskar, ‘Split learning for health: Distributed deep learning without
sharing raw patient data’, arXiv preprint arXiv:1812.00564, (2018).

[48] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine
Manzagol, ‘Extracting and composing robust features with denoising
autoencoders’, in Proceedings of the 25th international conference on
Machine learning, pp. 1096–1103, (2008).

[49] Kangkang Wang, Rajiv Mathews, Chloé Kiddon, Hubert Eichner,
Françoise Beaufays, and Daniel Ramage, ‘Federated evaluation of on-
device personalization’, arXiv preprint arXiv:1910.10252, (2019).

[50] Ruijia Wang, Shuai Mou, Xiao Wang, Wanpeng Xiao, Qi Ju, Chuan
Shi, and Xing Xie, ‘Graph structure estimation neural networks’, in
Proceedings of the Web Conference 2021, pp. 342–353, (2021).

[51] Ming Xie, Guodong Long, Tao Shen, Tianyi Zhou, Xianzhi Wang,
Jing Jiang, and Chengqi Zhang, ‘Multi-center federated learning’, arXiv
preprint arXiv:2108.08647, (2021).

[52] Pengwei Xing, Songtao Lu, Lingfei Wu, and Han Yu, ‘Big-fed: Bilevel
optimization enhanced graph-aided federated learning’, IEEE Transac-
tions on Big Data, (2022).

[53] Donghan Yu, Ruohong Zhang, Zhengbao Jiang, Yuexin Wu, and Yim-
ing Yang, ‘Graph-revised convolutional network’, in Machine Learning
and Knowledge Discovery in Databases: European Conference, ECML
PKDD 2020, Ghent, Belgium, September 14–18, 2020, Proceedings,
Part III, pp. 378–393. Springer, (2021).

[54] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and
Vikas Chandra, ‘Federated learning with non-iid data’, arXiv preprint
arXiv:1806.00582, (2018).

[55] Yanqiao Zhu, Weizhi Xu, Jinghao Zhang, Yuanqi Du, Jieyu Zhang,
Qiang Liu, Carl Yang, and Shu Wu, ‘A survey on graph structure learn-
ing: Progress and opportunities’, arXiv e-prints, arXiv–2103, (2021).

[56] Yanqiao Zhu, Weizhi Xu, Jinghao Zhang, Qiang Liu, Shu Wu, and
Liang Wang, ‘Deep graph structure learning for robust representations:
A survey’, arXiv preprint arXiv:2103.03036, 14, (2021).

X. Li et al. / Unsupervised Graph Structure-Assisted Personalized Federated Learning1438

