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Abstract. Model-based reinforcement learning (RL) has demon-
strated remarkable successes on a range of continuous control tasks
due to its high sample efficiency. To save the computation cost of
conducting planning online, recent practices tend to distill optimized
action sequences into an RL policy during the training phase. Al-
though the distillation can incorporate both the foresight of plan-
ning and the exploration ability of RL policies, the theoretical un-
derstanding of these methods is yet unclear. In this paper, we extend
the policy improvement of Soft Actor-Critic (SAC) by developing
an approach to distill from model-based planning to the policy. We
then demonstrate that such an approach of policy improvement has
a theoretical guarantee of monotonic improvement and convergence
to the maximum value defined in SAC. We discuss effective design
choices and implement our theory as a practical algorithm—Model-
based Planning Distilled to Policy (MPDP)—that updates the policy
jointly over multiple future time steps. Extensive experiments show
that MPDP achieves better sample efficiency and asymptotic perfor-
mance than both model-free and model-based planning algorithms
on six continuous control benchmark tasks in MuJoCo.

1 Introduction

Model-based Reinforcement Learning (RL) has achieved great suc-
cess on continuous control tasks [14, 9, 2, 13, 28]. Model-based RL
algorithms learn the true dynamics by fitting a model (usually a neu-
ral network) to the repeated interactions with the environment and
use the model to generate imaginary data or perform online plan-
ning, which provides better sample efficiency than model-free RL
[18, 21, 7, 10]. For example, the recent works MBPO [11] and SLBO
[17] achieve comparable asymptotic performance to state-of-the-art
model-free algorithms with fewer interactions.

A typical kind of model-based RL algorithm performs online plan-
ning to optimize the future action sequence over a long time horizon,
i.e., model-based planning [14, 3, 25, 20]. However, model-based
planning has two weaknesses. First, it can hardly be applied in real-
time, because it needs to solve an optimization problem on each time
step and cannot remember the solution for reuse in the future sim-
ilar states [25]. Second, it only optimizes the maximum of the re-
ward sum over the future states, rather than the trade-off between
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exploration and exploitation, which limits the ability to discover di-
verse states and better policies [14]. To reduce the time consump-
tion during the application and incorporate the foresight of planning
and the exploration ability of RL, some recent works distill the re-
sult of model-based planning into an RL policy [14, 25]. Specifi-
cally, POPLIN uses the cross entropy method (CEM) [1] to optimize
the action planning and uses behavior cloning to distill the planning
result into the policy network. However, some essential theoretical
properties of such kind of distillation are not well-understood, i.e.,
(1) whether the distilled policy achieves a higher value than the old
policy; (2) whether the distilled policy has a guarantee of conver-
gence to the optimal policy; (3) whether the distilled policy incorpo-
rates the foresight of planning and achieves a higher value than the
original model-free policy update.

In this paper, we theoretically analyze the problems mentioned
above. We choose Soft Actor-Critic (SAC) [8] as the RL component
of our analysis due to its state-of-the-art performance in both model-
free and model-based paradigms. Originally, the policy improvement
of SAC is a one-step optimization. We first define a planning prob-
lem by extending the one-step optimization of SAC under the model-
based paradigm to a multi-step optimization problem of action plan-
ning. For each state st, the optimal planning solution returns a policy
πH
st defined on a horizon of states st:t+H−1 starting from st. Then,

we propose a simple approach to distill the solution of the above
multi-step optimization to the policy, which is an extended form of
the policy improvement of SAC. This approach reserves the returned
policy πH

st(·|st) for the first state st and discards the returned policy
πH
st(·|st+1:H−1) for the future states.
Afterwards, we derive the theoretical result that the extended pol-

icy improvement is promising to achieve a higher return and lead
the policy to converge to the optimal policy. Thus the extension in-
corporates the farsight planning and has the potential to improve re-
markably upon original one-step policy improvement. Furthermore,
to develop a practical algorithm, we discuss the solver of the de-
fined multi-step optimization and design regularization to reduce the
model error. Based on the above theory and discussion, we propose a
new model-based RL algorithm, Model-based Planning Distilled to
Policy (MPDP). Compared to POPLIN, which uses behavior cloning
for distillation and realizes the stochastic exploration via the CEM
sampling, MPDP utilizes a distillation approach with theoretically
guaranteed improvement and inherits the stochastic exploration of
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Table 1: Key features of different model-free and model-based algorithms.

Algorithms Ensemble Dynamics Multiple Horizon Regularization Planning Theorem

SAC[8] � � � �

MBPO[11] � � � �

POPLIN[25] � � � �

M2AC[19] � � � �

MPDP(our work) � � � �

SAC, thus has a naturally strong ability to explore better policies.
For illustrating the effectiveness of MPDP, a thorough component
comparison of relevant algorithms is given in Table 1.

Summary of Contributions: (1) We propose a model-based ex-
tended policy improvement method, which utilizes model-based
planning to distill RL policy and model regularization to reduce the
impact of model errors. (2) We demonstrate that our method has a
theoretical guarantee of monotonic improvement and convergence.
And we theoretically analyze how the planning horizon affects policy
improvement. (3) Experimental results empirically show that MPDP
achieves better sample efficiency and asymptotic performance than
state-of-the-art model-free and model-based planning algorithms on
the MuJoCo [23] benchmark.

2 Related Work

Model-based Reinforcement Learning. Model-based reinforce-
ment learning methods show a promising prospect for real-world
decision-making problems due to sample efficiency. However, learn-
ing an accurate model is challenging, especially in complex environ-
ments. Many papers [3, 13, 11, 26] commonly use ensemble proba-
bilistic networks to construct uncertainty-aware environment models.

The previously proposed model-based methods [6, 2, 12, 24] al-
low the model rollout to a fixed depth, and value estimations are split
into a model-based reward and a model-free value. To guarantee the
monotonic improvement, the recent work [17] builds a lower bound
of the expected reward and then maximizes the lower bound jointly
over the policy and the model. Furthermore, model-based policy op-
timization [11, 27] utilizes short model-generated rollouts to do pol-
icy improvement and evaluation, and also provides a guarantee of
monotonic improvement at each step.

Current model-based RL mainly focuses on better model usage.
For example, M2AC [19] implements a masking mechanism based
on the model’s uncertainty to decide whether its prediction should be
used or not. Another line of works [14, 9] aim to exploit the differen-
tiability of the learned model in model-based RL. Model-augmented
actor-critic [4] uses the path-wise derivative of the learned model and
policy across future time steps. Our work estimates value function by
utilizing the model error as regularization.

Model-based Planning. Many recent papers on deep model-based
RL [3, 5, 22] optimize the future action trajectories over a given
horizon starting from the current state, which is usually referred as
model-based planning. Model predictive control [22] is a common
control approach for model-based planning. It frequently solves the
action planning over a limited horizon and conducts the first action
on the environment. Random Shooting optimizes the action sequence
among the randomly generated candidates to maximize the expected
reward under the learned dynamic model, and PETS [3] uses the
cross entropy method [1] to improve the efficiency of the random
search. However, shooting methods usually rely on the local search

in the action space and are not effective on high-dimension envi-
ronments. To solve this problem, the latest work [20] utilizes the
collocation-based planning in a learned latent space. In contrast, we
extend the policy improvement step of SAC to distill from model-
based planning to the policy, which reduces the cost in the deploy-
ment phase.

In addition, some recent works distill the result from model-based
policy planning into an RL policy. POPLIN [25] formulates action
planning at each time step as an optimization problem w.r.t. the pa-
rameters of the policy network, and uses behavior cloning to distill
the resulted action into the policy network. GPS [15, 14] uses KL
divergence to minimize the distance between the policy and the plan-
ning result. However, the essential theoretical properties of such dis-
tillation are not well-understood. Instead, we propose an algorithm to
improve the policy with the solution of model-based planning over
multiple time steps, and give the theoretical guarantee of its improve-
ment and convergence.

Actor-Critic Methods. Actor-critic algorithms are typically de-
rived from policy iteration, which alternates between policy evalu-
ation and policy improvement. Deep deterministic policy gradient
[16] is a common model-free actor-critic method, however, the critic
is usually overestimated to predict Q value, which leads to the worse
policy. Moreover, twin delayed deep deterministic policy [7] mainly
utilizes the clipped double Q learning to alleviate the above overesti-
mation. SAC [8, 29] is the SOTA algorithm of policy learning under
the model-based paradigm. In the framework of SAC, the actor aims
to maximize expected reward with entropy and the critic evaluates
the expected cumulative reward with entropy. Due to the splendid
performance of SAC, we choose it as the RL instance to prove the
theoretical properties, by distilling the planning into an RL policy.

3 Preliminaries

3.1 Notation

We consider continuous control tasks which can be formulated as
infinite-horizon Markov Decision Processes (MDP) (S,A, p, r, γ),
where the state space S and the action space A are both continuous.
State transition p : S × A × S → R

+ and reward r : S × A → R

are the dynamics of the environment and the reward function, re-
spectively. γ is the discount factor. Additionally, we define π(a|s) :
S×A → R

+ as the RL policy on the state s, with Q(s,a) and V (s)
as the corresponding value functions.

3.2 Soft Actor-Critic

Soft Actor-Critic(SAC) [8] develops a maximum entropy objective
to incentivize the policy to explore more widely, which is the dis-
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counted sum of both the reward and the entropy.

Jst(π) = Eat∼π

[ ∞∑
t=0

γt · [r(st,at)− α · logπ(at|st)]

]
. (1)

The coefficient α balances the importance of the reward and en-
tropy, and hence controls the policy exploration. we omit α in the rest
of this paper for simplicity. The policy evaluation of SAC is based on
the maximum entropy objective, i.e., the value function Q and V also
contain the discounted sum of the entropy over the subsequent states.
The Bellman backup operator T π of SAC is given by:

T πQ(st,at) = r(st,at) + γ · V (st+1), (2)

V (st) = Eat∼π [Q(st,at)− logπ(at|st)] . (3)

In the policy improvement step of SAC, the new policy optimizes
the V (st) on each state st:

πnew(·|st) = argmax
π

Eat∼π [Qπold(st,at)− logπ(at|st)] .

(4)

We reformulate the objective as:

πnew(·|st) = argmax
π

Eat∼π [ r(st,at)− logπ(at|st)

+ γ · V πold(st+1) ] .
(5)

This objective function leads the new policy to optimize the modi-
fied reward r(st,at)−logπ(at|st) only on the current state st w.r.t.
at, with the subsequent states following the old policy πold, which
is myopic under the model-based paradigm, because the dynamics
of the environment can be approximated by the environment model,
which enables the joint optimization of actions over multiple future
time-steps.

3.3 Environment Model

A common setting used in model-based RL is model ensemble [3,
13, 11, 17, 19], where an ensemble of models learn the distribution
of the transitions from historical interactions. Typically, the models
are parametric function approximators p1:K(·|s,a) and are trained
via maximum likelihood:

∑K
i=1 E [log(pi(st+1|st,at))].

4 Distillation from Planning into Policy

In this section, we propose an approach to distilling the solution of
model-based planning into the policy, which is a multi-step exten-
sion of the original policy improvement of SAC. We will first derive
this extension. Then, we will verify its theoretical properties and ad-
vantages. Finally, based on our theory, we will develop a practical
reinforcement learning algorithm by discussing the essential design
choices in the next section.

4.1 Multi-step Optimization

The policy improvement of SAC optimizes the trade-off between the
expected cumulative reward and entropy only with regard to the ac-
tion distribution on the current time-step st, with the future states
st+1:∞ following the old policy πold, formalized in Equation (5).
Under the model-based paradigm, we assume that the true dynamics
of the environment is accessible. Because we can always obtain a dy-
namic model with a lower generalization error [13, 11], as the train-
ing proceeds. This assumption enables us to quantify the expected

future state and the according reward and entropy with regard to the
future action sequence over a given horizon H , and derive a more
foresighted optimization form than the original SAC. Specifically,
we extend the one-step optimization in Equation (5) to a multi-step
optimization problem of the action planning over H steps based on
the environment model, with the objective JH

st (π) on the state st de-
fined as:

JH
st (π) = Eat∼π

[
H−1∑
i=0

γi · rπ(st+i,at+i) + V πold(st+H)

]
,

(6)

rπ(st+i,at+i) = r(st+i,at+i)− logπ(at+i|st+i). (7)

Here H is the planning horizon, π is the policy only defined on st

and its subsequent H−1 steps. rπ(s,a) is the sum of the reward and
the logarithmic likelihood, which inherits the maximum entropy ob-
jective of SAC. Specifically, when H = 1, this objective degenerates
to that of SAC.

4.2 Extended Policy Improvement

The improvement property of distillation from planning into an RL
policy has not been well discussed. Another work[4] proves that the
solution of action planning achieves a higher value, but it does not
develop a distillation approach to obtain a policy πnew with prov-
ably higher value V πnew (st), i.e., a policy with higher cumulative
rewards. In this section, we propose a distillation approach, also an
extended form of the original policy improvement step in SAC, based
on the multi-step optimization. We will show that the proposed ex-
tended policy improvement provably achieves a new policy with a
higher value than the old policy with respect to the maximum en-
tropy target Equation (1) defined in SAC.

Distillation. We use πH
st to denote the optimal solution of JH

st (π).
After the policy improvement, we define the new policy πnew(·|st)
as πH

st(·|st), i.e., although πH
st is define on H steps of states

st:t+H−1, we only adopt the policy πH
st(·|st) of the current state st

and discard the policy πH
st(·|st+1:t+H−1) over the following states.

Improvement. We present the improvement property of this dis-
tillation in Lemma 1. Please note that Lemma 1 is a more general
multi-step extension of the Lemma 21 in SAC [8]. Our result reveals
that, if we optimize the policy jointly over a horizon starting from
each state st and only adopt the optimal policy on the first state st,
the resulting new policy has a monotonic improvement. Specifically,
when H = 1, Lemma 1 degenerates to the Lemma 2 in SAC (see
Appendix A.2 for more details).

Lemma 1. Let πH
st be the optimizer of the optimization objective

of Equation (6). When the new policy πnew(·|st) = πH
st(·|st),

V πnew (st) ≥ V πold(st) for all st ∈ S.

4.3 Policy Convergence

The monotonic increasing property of our extended form is crucial,
because it facilitates the derivation of the proposition that this form
will provably converge to the optimal maximum entropy policy de-
fined in SAC. We present the result in Theorem 1.

1 https://arxiv.org/pdf/1801.01290.pdf
2 The proof of Appendix A. is available at https://arxiv.org/abs/2307.12933.
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Theorem 1. Let π0 be any initial policy. Assuming |A| < ∞, if
the policy evaluation in Equation (2) and the policy improvement
with the objective in Equation (6) are alternatively carried out, π0

converges to a policy π∗, with V π∗(st) ≥ V π(st) for any st ∈ S.

4.4 The Effect of Planning Horizon

We have shown that the proposed extension of policy improvement,
based on optimization of the action planning over multiple time
steps, can always lead to a higher value via the developed distilla-
tion, which is guaranteed to converge to the optimal policy. In this
section, we will discuss another problem: does the extended form of
policy improvement incorporate the farsight of planning and benefit
SAC? Or more generally, does a larger planning horizon H always
result in a better value?

Unfortunately, there exist some special cases where a larger H
leads to a smaller value due to a bad initial policy πold. Although a
larger H is not equivalent to a higher value, we can still show the
potential advantage of increasing H in two aspects.

(1) A larger horizon results in a higher optimization objective de-
fined in Equation (6), as formalized in Lemma 2.

Lemma 2. Let πH
st and πH+1

st be the optimal solution of JH
st (π)

and JH+1
st (π). Then JH+1

st (πH+1
st ) ≥ JH

st (π
H
st) for all H ≥ 1 and

st ∈ S.

Lemma 2 proves that a larger H can always achieve a higher ob-
jective value when the subsequent states after the planning horizon
follow πold.

(2) Although the resulting policy does not have a value monoton-
ically increasing with H , we can prove that πnew converges to the
optimal policy as H increases, which is formalized in Theorem 2.

Theorem 2. Let πH
st be the optimal solution of JH

st (π), and
πnew(·|st) = πH

st(·|st). π∗ denotes the optimal policy. As H in-
creases, V πnew and JH

st (π
H
st) converge to V π∗ for all st ∈ S.

Specifically, V πnew ≥ JH
st (π

H
st) ≥ V π∗(st)− γH ·rmax

1−γ
with rmax

the maximum of rπ(s,a) over all π and (s,a) ∈ |S| × |A|.
Starting from Theorem 2, it can be naturally derived that, we can

always find a larger Ĥ than H , which results in a policy with a larger
value. We formalize this conclusion as Theorem 3.

Theorem 3. Let πH
st be the optimal solution of JH

st (π), and
πH
new(·|st) = πH

st(·|st). There exists another Ĥ > H , with

V πĤ
new ≥ V πH

new for all st ∈ S, assuming |S| < ∞.

Proof. According to Theorem 2, we can always find a Ĥ with

V π∗−V πĤ
new ≤ V π∗−V πH

new on all states, which means V πĤ
new ≥

V πH
new .

5 Implementation

According to the above theory, the extended policy improvement via
planning over multiple time steps can also guarantee value improve-
ment and convergence to the optimal policy. And the increase of
planning horizon has the potential to get a better new policy. In this
section, we discuss some essential design choices for distilling the
model-based planning into SAC [8]. We further propose a practical
algorithm, Model-based Planning Distilled to Policy (MPDP), under
the model-based paradigm. There are two essential issues in the de-
sign of MPDP, (1) how to solve the objective in Equation (6), and (2)

how to reduce the bias introduced by the generalization error of the
environment model.

5.1 Solver

Solving the proposed objective defined by Equation (6) is a model-
based planning problem, which has been widely discussed in many
prior works [20, 3, 25]. We roughly divide the current solvers into
two categories, sample-based methods and gradient-based methods.

Sample-based methods typically include random shooting and
cross-entropy method (CEM) [1]. However, sample-based methods
are usually inefficient in complex high-dimensional tasks. Gradient-
based methods include gradient optimization and collocation method
[20], which optimize with reward to the action sequence and back-
propagate the gradient to all actions in the sequence. Both gradient
optimization and collocation methods suit our formulation due to
their accessibility of the gradient. We can develop a practical algo-
rithm based on both of them. We observe that they perform compa-
rably on the MuJoCo benchmark in our early-stage experiments.

With the above discussion, we choose gradient optimization as our
solver, because it naturally suits the framework of SAC and achieves
comparable performance without introducing extra hyperparameters
and computational cost compared to the collocation method.

Algorithm 1 Farsighted Policy Improvement

Require: state batch B, policy networks π0:Hmax−1, dynamic mod-
els p1:K , threshold uT , coefficient α and β

1: for s in B do

2: s0 = s, J = 0
3: for t = 0 : Hmax − 1 do

4: Sample at ∼ πt

5: Predict st+1 ∼ p1:K(st+1,at)
6: if u(st,at) ≥ uT or st+1 is a terminal state then

7: J = J + γt+1 · V (st+1)
8: break
9: end if

10: J=J+γt · [r(st,at)−α · logπ(at|st)−β · u(st,at)]
11: end for

12: end for

13: Update π0:Hmax−1 with the mean of ∇a0:Hmax−1J

5.2 Model Regularization

The bias resulting from the environment model’s generalization er-
ror raises two issues for consideration. First, although increasing the
planning horizon has the potential of resulting in a higher value the-
oretically, we must consider the trade-off between the bias of Qπold

and the environment model. A larger H introduces more model bias
but reduces the bias of Qπold . Secondly, we need to avoid the update
of the policy towards the area where the model has high general-
ization error, because this will result in a sub-optimal policy and the
gradients of the environment model at those unseen state-action pairs
(s, a) are unsupervised and not numerically stable, i.e., applying the
environment model iteratively for many time steps may lead to gra-
dient explosion [20].

Both the two issues need the estimation of the model error, which
has been well discussed in prior works. In this paper, we use One-
vs-Rest (OvR) [19], a simple method to estimate model errors. OvR
learns multiple dynamic models and uses the KL divergence between
models as an estimator of model error, which is formalized as:

u(s,a) =
K∑
i=1

DKL[pi(·|s,a)‖p−i(·|s,a)]. (8)
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Figure 1: Performance curves for our method (MPDP) and baselines on MuJoCo continuous control benchmarks. Solid lines depict the mean
of four random seeds and shaded regions correspond to standard deviation among seeds. The dashed lines indicate the asymptotic performance
of PETS at the corresponding training steps (15k steps for InvertedPendulum, 100k steps for Hopper, and 200k steps for the other tasks) and
SAC at 2M steps.

Here pi(·|s, a) is the predicted distribution of the one model and
p−i(·|s, a) is the mean of the rest models’ prediction.

Based on OvR, we develop two parts separately for the above two
issues. First, we use adaptive horizons for trajectories starting from
different states. The planning terminates when a trajectory generates
a state-action pair which has a model error larger than a pre-defined
threshold. Secondly, we utilize an additional regularization of model
error, which adds the model error estimated by OvR on our objective

Equation (6). This regularization directs the final solution to the area
where the environment model is more believable and reduces both
the numerical instability and the model error. Specifically, we add
the estimation u(s,a) on the original reward rπ(s, a) as a regular-
ization, and re-formalize Equation (6) as:
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JH,u
st (π) = Ea∼π

[
H−1∑
i=0

γi · rπ,u(st+i,at+i) + V πold(st+H)

]
,

(9)
rπ,u(st+i,at+i) =r(st+i,at+i)− logπ(at+i|st+i)

− β · u(st+i,at+i).
(10)

Algorithm 2 Model-based Planning Distilled to Policy

1: Initialize data buffer D = ∅, dynamic models p1:K , policy net-
works π0:Hmax−1, value networks Q and V

2: repeat

3: Collect data from real environment with policy π0: D ←
D ∪ (s, a, r, s′)

4: Train ensemble models p1:K on D
5: Sample a batch B from D
6: Update Q and V with B as in SAC
7: Update π0:Hmax−1 by Algorithm 1.
8: until Convergence

5.3 Model-based Planning Distilled to Policy

We conclude our extended policy improvement in Algorithm 1. The
algorithm processes a batch of states at each iteration and the model
rollouts states until the task terminates, that is to say, the pair of
(st,at) has a larger model error than the threshold uT , or the rollout
reaches the max horizon Hmax. And we maintain the policy net-
works π0:Hmax−1 at H time steps. The policy networks generate the
actions for each step and are updated jointly in our extended improve-
ment step. After the model rollouts, the policy networks π0:Hmax−1

are updated with the gradients to the action sequence. The complete
algorithm is described in Algorithm 2. The method alternates among
using the policy π0 on the first step to interact with the environment,
training an ensemble of models, and updating the policy with policy
evaluation and our extended policy improvement.

6 Experiment

Our experiment goal is to investigate the following questions: (1)

How the sample efficiency and the asymptotic performance of
MPDP compared to state-of-the-art(SOTA) model-based planning
algorithms? (2) How the proposed extended policy improvement and
the design choices affect the performance?

6.1 Comparison

Baseline. In this section, we focus on understanding how well
MPDP performs compared to SOTA model-based planning algo-
rithms. We choose PETS [3], which uses CEM to perform model-
based action planning; and POPLIN [25], which extends CEM from
action space to the domain of policy network parameters and dis-
tills the planning results into the policy with behavior cloning. Addi-
tionally, we compare our proposed approach to the SOTA model-free
methods and model-based methods without planning. For model-free
algorithms, we compare to SAC [8] and DDPG [16], which are the
two competitive policy learning algorithms. For model-based RL, we
choose MBPO [11] and M2AC [19], which are the previous SOTA
model-based baselines. MPDP, PETS, POPLIN, MBPO and M2AC

share the same model architecture. The implementation details of our
method are in Appendix B3.

Results. The performance curves on all six environments of Mu-
JoCo are shown in Figure 1. It demonstrates that MPDP significantly
outperforms the SOTA model-based planning algorithms (PETS and
POPLIN) on both sample efficiency and asymptotic performance.
For example, on the highly dimensional Ant task, MPDP’s perfor-
mance at 140k steps is equivalent to that of POPLIN at 200k steps.

Further, the results in Figure 1 reveal that MPDP achieves much
higher convergence speed than the SOTA of model-free algorithms
(SAC and DDPG) on the all tasks and obtains comparable asymptotic
performance, which also validates that incorporating our extended
policy improvement benefits a lot. We also observe that MPDP
achieves better performance than the SOTA model-based algorithms,
MBPO and M2AC on some complex tasks like Humanoid, and is
comparable to them on the rest of tasks.

6.2 Ablation Study

In this section, we conduct a series of ablation studies on MPDP to
investigate the effect of the designed adaptive horizon and regulariza-
tion on the model error. We choose the Hopper task in the MuJoCo
for the experiments.
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Figure 2: This figure demonstrates the length of the adaptive horizon
of MPDP. The solid lines denote the average horizon length evaluated
on each training batch. As the interactions accumulate, the model
generalizes better and our method rapidly adapts to larger horizons.

Horizon. To verify that our method can really adapt the horizon
to the model error, i.e. the adaptive horizon does not fall into a very
small range and increases as the model generalizes better, we profile
the average horizon of MPDP during the training on Hopper with
different error threshold uT in Figure 2. As shown in the curves, the
horizon grows from 2 to 12 as the training proceeds, where the model
becomes more accurate in Figure 3. It also proves that MPDP does
not degenerate to SAC.

3 The details in Appendix B. are available at https://arxiv.org/abs/2307.12933.
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Figure 3: This figure shows the model error curves of MPDP with
β varying from 0.2 to 0.7, measured by the average L2 norm of the
predicted states on every 250 interactions. The model error decreases
with β, which verifies that optimizing under our regularization effec-
tively restricts behavior policy in the areas with low model error.

Model Error. We validate that the regularization based on OvR
does push the policy to explore areas with low dynamic model er-
ror. We vary β at Equation (10) with {0.2, 0.5, 0.7} and evaluate
the model error as shown in Figure 3. The result demonstrates that
the model error decreases with β, which verifies the effectiveness of
the designed regularization. We also plot the final performance of
corresponding β in Figure 4. However, we find that a too large reg-
ularization harms the asymptotic performance due to the excessive
restriction on the exploration area of the policy. Figure 4 also implies
that a larger regularization brings more stable results.
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Figure 4: This figure displays the performance of MPDP with β vary-
ing from 0.2 to 0.7 along with MBPO on the Hopper task, evaluated
over 4 trials. As β increases, the performance increases at first then
decreases due to the too strong restriction on the exploration. It also
reveals that a larger regularization achieves more robust results.

7 Conclusion and Future Work

In this paper, we investigate the theoretical guarantee of distillation
from model-based planning into an RL policy. We first extend the
one-step optimization of SAC to a multi-step optimization formu-
lation. Then, we develop a distillation approach based on the so-
lution of the proposed multi-step optimization. It provably has the
guarantee of monotonic improvement and convergence to the opti-
mal policy. We further theoretically verify its potential to incorporate
the foresight planning. Based on the theory, we discuss several de-
sign choices to instantiate a practical algorithm MPDP. Experimental
results confirm that MPDP outperforms the state-of-the-art model-
based planning algorithms in both sample efficiency and asymptotic
performance on a range of continuous control tasks in MuJoCo.

One limitation of our work is that the generalization ability of
the horizon-adapted policy may not be strong enough because we
fit the horizon to the model error for fast convergence speed. Thus,
our method is efficient for task-specific but not exploration-oriented
problems. We leave this to future work.
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