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Abstract. In various applications, ads are displayed together with
prices, so as to provide a direct comparison among similar products
or services. The price-displaying feature not only influences the con-
sumers’ decision, but also affects the bidding behavior of advertis-
ers. In this paper, we study ad auctions with display prices from the
perspective of mechanism design, in which advertisers are asked to
submit both the product costs and the display prices of their com-
modities. We first provide a characterization for all individually ra-
tional and incentive-compatible mechanisms in the presence of dis-
play prices, then use it to design ad auctions in two scenarios. In the
former scenario, the display prices are assumed to be exogenously
determined. For this scenario, we derive the welfare-maximizing and
revenue-maximizing auctions for any given display price profile. In
the latter, advertisers are allowed to strategize their display prices
freely. We investigate two families of allocation policies within the
scenario and identify the equilibrium display prices accordingly. Our
findings demonstrate the impact of display prices on the design of ad
auctions, and highlight how platforms can utilize display price infor-
mation to optimize the performance of ad delivery.

1 Introduction

Online advertising has been an indispensable part of modern adver-
tising market. According to the newly released report of IAB [12],
full-year online advertising revenue has reached $209.7 billion in
2022. An important reason for wide-spread adoption of online ad-
vertisement comes from its high return on investment for advertisers,
compared to other traditional marketing methods [20]. As an efficient
tool of deriving revenue, auctions are commonly used to allocate the
display opportunities. Every day, millions of ad auctions are con-
ducted in real time to decide which advertisers’ ads are shown, how
these ads are arranged, and what the advertisers are charged. To date,
online advertising platforms [9, 19, 7] have developed various types
of products for different types of advertisers, such as pay-per-mille or
pay-per-impression (PPM), pay-per-click (PPC), and pay-per-action
(PPA). In the classic ad auction setting, such as sponsored search, ads
are presented in the form of hyper-links together with relevant key-
words or well-designed creatives, serving as portals of advertisers’
websites or products. Which ads are displayed depends on advertis-
ers’ bids and the relevance of their ads to the context [24]. However,
in numerous real applications, like Temu or Ttrip, ads (or products)
are displayed also together with the prices, e.g., it can be the per-night
price of a room or the group purchase price of a commodity. The
price-displaying feature brings two significant changes for the adver-
tising system. On the one hand, the prices provide a direct compar-
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Figure 1: Ads with display prices on Ttrip.

ison among similar products or services, which can easily influence
the consumers’ decision. One the other hand, the price information
also affects the advertisers’ bidding behavior and the efficiency of the
deployed ad auctions [2]. As the display price has changed the bid-
ding language and the way advertisers participate in the ad auction,
fundamental investigation into mechanism design for auctions with
display prices should be made.

In this paper, we study how the presence of display prices affects
ad auction design. In our model, advertisers are asked to submit both
the product costs and display prices of their commodities and the
advertising platform allocates the display opportunities and decides
the charges based on the submitted information. Our model differs
from the classic one in two ways. Firstly, rather than submitting a
single bid for the display opportunities, we ask advertisers to submit
both the costs and prices of their products. Secondly, in classic ad
auctions, a conversion of an ad, like a purchase, is exogenously de-
termined and is independent of the submitted information. However,
in our model conversions are essentially determined by the submit-
ted display prices. Based on the framework of mechanism design, we
carry out a systemic investigation on ad auctions with display prices.
Our contributions advance the state of the art in the following ways:

• We propose the formal model of ad auctions with display prices,
where advertisers are asked to submit not only the product costs
of their commodities but also the display prices.

• We characterize all incentive-compatible and individuality ratio-
nal auctions in the presence of display prices. (Theorems 1, 2)

• In non-strategic price settings, we derive the welfare-maximizing
and revenue-maximizing auctions for any given display price pro-
file. (Theorems 3, 5)

• In strategic price settings, we characterize the equilibrium price
report for two families of allocation policies, namely the price-
independent allocation policy and the affine maximizer allocation
policy. (Propositions 1, 2)

Our results show that the display prices do affect the design of ad
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auctions, and the advertising platforms can leverage such information
to further optimize the performance of ad delivery.

1.1 Related Work

In addition to the great industrial success, ad auctions have attracted a
lot of attention from the research community. Since Overture, for the
first time, adopted the generalized first price auction mechanism in
its sponsored search system in 1997 [5, 13], many researchers from
economics, computer sciences, management science, etc. have been
working on different aspects of ad auctions for decades. Some of
them focus on studying the theoretical properties of the deployed
ad auctions [6, 24, 26], while some others are devoted to design
new auction mechanisms towards different scenarios and objectives
[15, 16, 8]. With the development of AI, it is even possible to de-
sign ad auctions automately [1, 23, 27], based on advanced machine
learning techniques and massive transaction data. To the best of our
knowledge, Castiglioni et al. [2] is the very first to study ad auctions
with display prices. The authors studied the allocation efficiency of
two widely used ad auctions, namely VCG [25, 3, 10] and GSP [6],
in the presence of display prices, and analyzed the Price of Anarchy
(PoA) and the Price of Stability (PoS) in the direct and indirect real-
izations of these two auctions, respectively. In contrast, we focus on
the counterpart and study new ad auctions involving display prices
from the perspective of mechanism design.

The reminder of this paper is organized as follows. Section 2
presents the formal model of auction with display prices and de-
fines several general concepts of an auction mechanism. Section 3
characterizes all truthful auctions with display prices. Following the
characterization, Section 4 investigates the welfare-maximizing and
revenue-maximizing auctions, under the assumption of non-strategic
display prices. Section 5 studies two families of auction mechanisms
in strategic price settings and Section 6 summarizes this work.

2 Preliminaries

Suppose there is a set N of advertisers and K available ad slots, i.e.,
display opportunities. For each advertiser i ∈ N , let ci ∈ [ci, ci]
denote the product cost of her commodity, which is private informa-
tion and is derived from a distribution Ci. In addition, let pi denote
the display price that i sets for her commodity. The advertising plat-
form runs an auction to allocate the display opportunities. Besides
the product cost, each advertiser is additionally asked to report her
display price to the auction. Since product costs are private informa-
tion, advertisers can game the auction mechanism to benefit them-
selves via strategic actions. Accordingly, let (c′i, pi) denote i’s report,
where c′i is the reported product cost and pi is the reported display
price. For convenience, we use c′ and p to denote the reported costs
and display prices of all advertisers, respectively. In addition, let c′−i

and p−i be the reported costs and display prices of all advertisers ex-
cept i, i.e., c′ = (c′i, c

′
−i) and p = (pi,p−i). The formal definition

of auction mechanisms with display prices is given below.

Definition 1. An auction mechanism M = (π, x) consists of an
allocation policy π = {πi}i∈N and a payment policy x = {xi}i∈N ,
where πi : R|N|

+ ×R|N|
+ → {0, 1} and xi : R|N|

+ ×R|N|
+ → R are

the allocation and payment policies for i, respectively.

Given all advertisers’ reports (c′,p), πi(c
′,p) indicates whether

or not advertiser i wins a slot and xi(c
′,p) denotes the amount each

advertiser i pays to the advertising platform. The revenue generated

by an auction mechanism is defined by the sum of all advertisers’
payments, denoted by R(c′,p,M) =

∑
i∈N xi(c

′,p).
Due to the limited number of display opportunities, the mechanism

cannot over-allocate the slots.

Definition 2. An allocation policy is feasible if for all reports (c′,p),
we have that

∑
i∈N πi(c

′,p) ≤ K.

In the following contents, we only consider feasible allocation
policies. The display prices provide a direct comparison among sim-
ilar commodities or services, which would further influence or deter-
mine the purchasing behavior of consumers. Given a set Z of winners
and their display prices pZ = {pi}i∈Z , we use λi(p

Z) to denote the
probability that a conversion of i’s commodity, like a purchase, is ac-
quired under display price vector pZ , aka the conversion rate. In this
paper, we focus on separable conversion rate functions, in which each
consumer is only influenced by the commodity and the display price
associated with the commodity, i.e., λi(p

Z) = λi(pi). With the as-
sumption of separable conversion rate functions, the expected value
advertiser i achieves when her commodity is displayed on the adver-
tising platform can be formulated as vi(ci, pi) = (pi − ci)λi(pi).
Given an auction mechanism M = (π, x) and reports (c′,p), ad-
vertiser i’s utility function is quasi-linear and is defined as follows:

ui

(
ci, c

′,p, (π, x)
)
= vi(ci, pi)πi(c

′,p)− xi(c
′,p). (1)

We next present several properties that an auction mechanism
should satisfy. Given an auction mechanism M, the social welfare
obtained in (c′,p), denoted by W (c′,p,M), is defined as the total
utilities of all participants (including the advertising platform), which
can be formulated as W (c′,p,M) =

∑
i∈N vi(ci, pi)πi(c

′,p). We
say an auction mechanism is efficient with reported prices (EF-RP)
if for all equilibrium reports (c′,p) it maximizes W (c′,p,M).

Definition 3. An auction mechanism M is efficient with reported
prices (EF-RP) if for all c and all equilibrium reports (c′,p)

M ∈ argmaxM′W (c′,p,M′). (2)

Let Πi(c) = argp′ maxp′,π′
∑

i∈N vi(ci, p
′
i)π

′
i(c,p

′) denote
the space of the optimal price profiles that maximize the social wel-
fare for a given c. We say an auction mechanism M is efficient (EF)
if it maximizes W (c′,p,M) and the reported prices p ∈ Πi(c).

Definition 4. An auction mechanism M is efficient (EF) if for all c
and all equilibrium reports (c′,p), we have that p ∈ Πi(c) and

M ∈ argmaxM′W (c′,p,M′). (3)

In other words, the EF-RP property only asks the mechanism to
maximize the social welfare with respect to the reported display
prices, while the EF property requires the mechanism to maximize
the social welfare at the optimal display prices p ∈ Πi(c). Clearly,
if an auction mechanism is efficient, it is also efficient with reported
prices, but the reverse is not true.

Definition 5. An auction mechanism M is incentive-compatible (IC)
if for all i, all ci, all p, and all c′,

ui

(
ci, (ci, c

′
−i),p,M

) ≥ ui

(
ci, (c

′
i, c

′
−i),p,M

)
. (4)

Incentive compatibility requires that submitting true product costs
is a dominant strategy for all advertisers, i.e., each advertiser’s utility
is maximized by acting truthfully, no matter what the others do. An-
other important concept is called individual rationality which guar-
antees that each advertiser will not receive a negative utility when
revealing her product cost truthfully.
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Definition 6. An auction mechanism M is individually rational (IR)
if for all i, all ci, all p, and all c′−i,

ui

(
ci, (ci, c

′
−i),p,M

) ≥ 0. (5)

If an auction mechanism violates the IR property, some advertisers
may obtain negative utility when revealing their true costs, in which
case quitting the auction system is the best reply. Therefore, individ-
ual rationality is also known as the participation constraint.

In the following contents, we study auction mechanisms that sat-
isfy EF(-RP), IC, IR and other desired properties in the presence of
display prices. We first characterize a set of conditions for an auction
mechanism to be IC and IR, then using these conditions to design ad
auctions towards different scenarios and objectives.

3 Characterizations of IC and IR Auctions

In this section, we characterize all auction mechanisms involving dis-
play prices that are incentive-compatible and individually rational.
We first present two conditions that an incentive-compatible auction
mechanism should hold, then show that the two conditions are also
sufficient for an auction mechanism to be incentive-compatible.

Lemma 1. If an auction mechanism M is incentive-compatible, then
πi is non-increasing with ci for all i, all p and all c′−i.

Proof. Consider two possible costs c1i and c2i of advertiser i with
c1i > c2i . Incentive compatibility requires that for all p and c′−i,

vi(c
1
i , pi)π(c

1
i , c

′
−i,p)− xi(c

1
i , c

′
−i,p) ≥

vi(c
1
i , pi)π(c

2
i , c

′
−i,p)− xi(c

2
i , c

′
−i,p), (6)

and

vi(c
2
i , pi)π(c

2
i , c

′
−i,p)− xi(c

2
i , c

′
−i,p) ≥

vi(c
2
i , pi)π(c

1
i , c

′
−i,p)− xi(c

1
i , c

′
−i,p). (7)

Adding above two inequalities, we obtain that

(vi(c
1
i , pi)− vi(c

2
i , pi))(πi(c

1
i , c

′
−i,p)− πi(c

2
i , c

′
−i,p)) ≥ 0.

Recall that vi(ci, pi) is decreasing with ci, therefore the above in-
equality leads to the fact that

πi(c
1
i , c

′
−i,p) ≤ πi(c

2
i , c

′
−i,p). (8)

That is, πi should be non-increasing with ci in any IC auction.

Lemma 2 unfolds the interconnections of the payment policy and
the allocation policy. It shows that in any IC auction, the allocation
policy essentially pins the payment policy.

Lemma 2. If an auction mechanism M is incentive-compatible, then
for all i, all p and all c′−i, xi(ci, c

′
−i,p) can be formulated as

vi(ci, pi)πi(ci, c
′
−i,p)− λi(pi)

∫ ci

ci

πi(z, c
′
−i,p)dz

− Ui(c
′
−i,p), (9)

where Ui(c
′
−i,p) is independent of i’s cost report.

Proof. Given any IC auction M = (π, x), based on Definition 4 we
have that for all i, all p and all c′−i the following equation must hold:

ui(ci, (ci, c
′
−i),p) = max

c′i
vi(ci, pi)πi(c

′
i, c

′
−i,p)− xi(c

′
i, c

′
−i,p).

By the envelope theorem, the above equation is equivalent to the
condition of

∂ui(ci, (ci, c
′
−i),p)

∂ci

=
∂(vi(ci, pi)πi(c

′
i, c

′
−i,p)− xi(c

′
i, c

′
−i,p))

∂ci
|c′i=ci

(10)

which can be simplified as

∂ui(ci, (ci, c
′
−i),p)

∂ci
= −λi(pi)πi(ci, c

′
−i,p). (11)

Integrating both sides of formula (11) over [ci, ci] on ci, we can get
that in any IC auction, advertiser i’s utility can be denoted by

ui(ci, (ci, c
′
−i),p) = Ui(c

′
−i,p) + λi(pi)

∫ ci

ci

πi(z, c
′
−i,p)dz,

where Ui(c
′
−i,p) = ui(ci, (ci, c

′
−i),p) is independent of adver-

tiser i’s cost report. Based on formula (1), it is clear that advertiser
i’s payment xi(ci, c

′
−i,p) can be formulated as (9).

Since both λi(pi) and πi(ci, c
′
−i,p) are non-negative, Lemma 2

also suggests that each advertiser’s utility is non-increasing with her
true product cost in any IC auction. We next show that the above two
conditions are also sufficient for an auction to be IC.

Theorem 1. An auction mechanism M is incentive-compatible if
and only if for all i, all p and all c′−i,

1. πi is non-increasing with ci,
2. xi can be formulated as

vi(ci, pi)πi(ci, c
′
−i,p)− λi(pi)

∫ ci

ci

πi(z, c
′
−i,p)dz

− Ui(c
′
−i,p).

Proof. To prove the theorem, it suffices to prove that if an auction
mechanism M satisfies Condition 1 and Condition 2, then it is IC.
Given an advertiser i with true cost ci, to prove IC, we need to show
that the inequality

ui(ci, (ci, c
′
−i),p) ≥ ui(ci, (c

′
i, c

′
−i),p) (12)

holds for all c′i, all p and all c′−i. Plugging in the formula of
xi(ci, c

′
−i,p) and making simplification accordingly, inequality (12)

can be reformulated as
∫ ci

ci

πi(z, c
′
−i,p)dz ≥ πi(c

′
i, c

′
−i,p)(c

′
i − ci)

+

∫ ci

c′i
πi(z, c

′
−i,p)dz. (13)

Case 1: If c′i ≥ ci, then inequality (13) is equivalent to

∫ c′i

ci

πi(z, c
′
−i,p)dz ≥ πi(c

′
i, c

′
−i,p)(c

′
i − ci), (14)

which is true under Condition 1.
Case 2: If c′i < ci, then inequality (13) is equivalent to

πi(c
′
i, c

′
−i,p)(ci − c′i) ≥

∫ ci

c′i
πi(z, c

′
−i,p)dz, (15)

which is also true under Condition 1.

B. Li and Y. Lei / Mechanism Design for Ad Auctions with Display Prices 1375



Besides the IC property, another desired property is individual ra-
tionality, which requires the advertiser’s utility to be non-negative
when acting truthfully.

Theorem 2. An incentive-compatible auction mechanism M is in-
dividually rational if and only if for all i, all p and all c′−i,

Ui(c
′
−i,p) ≥ 0. (16)

Proof. (“⇒”) For any IC auction M = (π, x), we have that adver-
tiser i’s utility ui(ci, (ci, c

′
−i),p) is identical to

Ui(c
′
−i,p) + λi(pi)

∫ ci

ci

πi(z, c
′
−i,p)dz.

Since λi(pi) ≥ 0 and πi(z, c
′
−i,p) is non-negative, we know that

if Ui(c
′
−i,p) ≥ 0 then ui(ci, (ci, c

′
−i),p) ≥ 0.

(“⇐”) If Ui(c
′
−i,p) < 0 for some p and c′−i, then advertiser i

with (ci, pi) will obtain a negative utility, which violates IR.

Theorems 1 and 2 show the importance of the price information in
ad auction design. On the one hand, the platform can leverage the in-
formation of display prices to allocate the ad slots. On the other hand,
the display price is also a key component in determining the charg-
ers of each advertiser. In order to elicit advertisers’ true costs and
optimize the overall performance of the adverting platform, the dis-
play prices need be taken into consideration when designing ad auc-
tions. Nevertheless, evaluating the performance of a given auction
mechanism is non-trivial as we need to figure out how each adver-
tiser submits her display price in the auction. If the display prices are
exogenously determined, then techniques developed for traditional
auctions without display prices can apply here with slight modifica-
tion. Otherwise, we need to identify the reported display prices in
equilibrium at first, which presents inherent challenges.

In the following contents, we first study auctions with non-
strategic display prices, then turn to the general scenario where ad-
vertisers can strategize their display prices in their favor. As the
advertising platform acts as a profit-maximizing agent, for conve-
nience’s sake the term Ui(c−i,p) is treated as zero hereafter for all
i, all c−i and all p, without violating IC and IR.

4 Auction Design with Non-Strategic Prices

In many real-world scenarios, advertisers rarely adjust, or are some-
times prohibited from adjusting, the display prices of their commodi-
ties. For example, brand advertisers aim to build brand awareness
and long-term relationships with customers, and the display prices
of their products rarely changes. Moreover, many sales platforms,
such as Tmall and Meituan, stipulate that the listing price of a prod-
uct cannot be changed at will it is released, or can only be changed
periodically. The display prices in above situations can be considered
exogenously determined and fixed. Motivated by these scenarios,
this section focuses on designing welfare-maximizing and revenue-
maximizing ad auctions in non-strategic display price settings.

4.1 Welfare-Maximizing Auction Design

Social welfare reflects the overall efficiency of an auction mecha-
nism, which is defined by the summation of all participants’ utilities.
Based on Theorems 1 and 2, we next propose an auction mechanism,
called welfare maximizer with reported prices (abbreviated as WM-
RP), to maximize the social welfare in non-strategic price settings.
As the reported display prices are assumed to be fixed, here the pur-
sued property is EF-RP (see Definition 3).

Welfare Maximizer with Reported Prices

• Allocation Policy: Given reports (c′,p), allocate the ad slots
to maximize

∑
i∈N vi(c

′
i, pi)πi(c

′,p), break tie arbitrarily.
• Payment Policy: For each advertiser i ∈ N , her payment

xi(c
′,p) is defined below:

– if πi(c
′,p) = 0, then xi(c

′,p) = 0;

– if πi(c
′,p) = 1, then xi(c

′,p) is defined as

vi(v
−1
i (v(K+1)(c′,p), pi), pi),

where v−1
i is the inverse function of vi w.r.t. ci and

v(K+1)(c′,p) denotes the K + 1 highest reported value.

In other words, in WM-RP the slots are allocated to the advertisers
with the top K highest reported values, and the winning advertisers
pay the K + 1 highest reported value to the advertising platform
and the losers pay zero. Next, we prove that WM-RP maximizes the
social welfare for any given display price profile.

Theorem 3. WM-RP is IC, IR and EF-RP.

Proof. According to the definitions of WM-RP and EF-RP, to prove
this theorem it is sufficient to show that WM-RP is IC and IR. Firstly,
it is straightforward that the allocation policy is non-increasing with
ci for all i, all p and all c−i, so the first condition of Theorem 1 is
satisfied. Secondly, we show that the payment policy of WM-RP is
identical to (9). According to the allocation policy, the slots will be
allocated to the advertisers with the top K highest reported values.
Given reports (c′,p), let v(K+1)(c′,p) be the K + 1 highest value
under (c′,p). For all losers i, πi(c

′,p) = 0 for all c′′i ≥ c′i and
therefore i’s payment xi(c

′,p) is zero according to (9). For a winner
i, we know that her allocation πi(c

′,p) = 1 as long as

vi(c
′
i, pi) ≥ v(K+1)(c′,p), (17)

which is equivalent to the condition of

c′i ≤ v−1
i (v(K+1)(c′,p), pi), (18)

where v−1
i is the inverse function of vi w.r.t ci (recall that vi is

decreasing with ci, so the reverse function v−1
i is existing). Let

Ui(c
′
−i,p) = 0 for all i, all c′−i and all p. Then according to (9),

advertiser i’s payment xi(c
′,p) can be expressed as

vi(c
′
i, pi)πi(c

′
i, c

′
−i,p)− λi(pi)

∫ ci

c′i
πi(z, c

′
−i,p)dz (19)

= vi(c
′
i, pi)− λi(pi)(v

−1
i (v(K+1)(c′,p), pi)− c′i) (20)

= vi(v
−1
i (v(K+1)(c′,p), pi), pi). (21)

Note that v−1
i is the inverse function of vi, therefore

the winner’s payment vi(v
−1
i (v(K+1)(c′,p), pi), pi) is exactly

v(K+1)(c′,p)−the K + 1 highest reported value. In addition,
given any allocation policy, the only freedom for an IC auction is
Ui(c

′
−i,p). Since IR requires Ui(c

′
−i,p) ≥ 0 and we set Ui(c

′
−i,p)

to be zero in WM-RP, the following result is straightforward.

Corollary 1. Among all IR, IC and EF-RP auctions, WM-RP maxi-
mizes the platform’s revenue.
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Besides the allocation efficiency, another desiderata of the plat-
form is revenue. We next investigate ad auctions that maximize the
platform’s revenue in non-strategic display price settings.

4.2 Revenue-Maximizing Auction Design

The following lemma gives a succinct description of advertiser’s ex-
pected payment, which is key in characterizing revenue-maximizing
auctions, and its proof follows the proof of Lemma 3 in [21].

Lemma 3. Given any IC and IR auction M, any reported price
profile p and any cost profile of others c−i, the expected payment of
advertiser i can be represented by

Eci∼Ci [xi(c,p)] = Eci∼Ci [πi(c,p)φi(ci, pi)], (22)

where C′
i is the p.d.f of Ci and φi(ci, pi) = vi(ci, pi)−λi(pi)

Ci(ci)
C′
i(ci)

is defined as the virtual value of advertiser i with respect to (ci, pi).

Proof. Given an IC and IR auction M, reported prices p and c−i,
according to the proof of Theorem 1, we know that advertiser i’s
expected payment Eci∼Ci [xi(c,p)] is identical to

∫ ci

ci

[vi(y, pi)πi(y, c−i,p)]C′
i(y)dy

−
∫ ci

ci

C′
i(y)

∫ ci

y

λi(pi)πi(z, c−i,p)dzdy. (23)

Since pi is independent of advertiser i’s cost ci, we can change the
order of integration for the latter term of formula (23):

∫ ci

ci

C′
i(y)

∫ ci

y

λi(pi)πi(z, c−i,p)dzdy

=

∫ ci

ci

λi(pi)πi(z, c−i,p)

∫ z

ci

C′
i(y)dydz (24)

=

∫ ci

ci

λi(pi)πi(z, c−i,p)Ci(z)dz. (25)

Now, Eci∼Ci [xi(c,p)] can be formulated as

∫ ci

ci

[vi(y, pi)πi(y, c−i,p)− λi(pi)πi(y, c−i,p)
Ci(y)

C′
i(y)

]C′
i(y)dy

= Eci∼Ci [πi(c,p)φi(ci, pi)], (26)

where φi(ci, pi) = vi(ci, pi)− λi(pi)
Ci(ci)
C′
i(ci)

.

Based on Lemma 3, we can characterize the seller’s expected rev-
enue for any IC and IR auction and any given display price profile.

Theorem 4. Given a display price profile p and any IC and IR auc-
tion M, the expected revenue of the platform can be denoted by

Ec∼C [
∑
i∈N

xi(c,p)] = Ec∼C [
∑
i∈N

πi(c,p)φi(ci, pi)]. (27)

Proof. Take the expectation, with respect to c−i, of both sides of

Eci∼Ci [xi(c,p)] = Eci∼Ci [πi(c,p)φi(ci, pi)], (28)

we obtain that

Ec∼C [xi(c,p)] = Ec∼C [πi(c,p)φi(ci, pi)]. (29)

Applying linearity of expectations, we can obtain that

Ec∼C [
∑
i∈N

xi(c,p)] =
∑
i∈N

Ec∼C [xi(c,p)] (30)

=
∑
i∈N

Ec∼C [πi(c,p)φi(ci, pi)] (31)

= Ec∼C [
∑
i∈N

πi(c,p)φi(ci, pi)]. (32)

Theorem 4 shows that the platform’s expected revenue is identi-
cal to the expectation of the virtual social welfare. To maximize the
revenue, we can maximize the virtual social welfare pointwisely for
any (c,p). Based on this observation, we now propose the virtual
welfare maximizer with reported prices (abbreviated as VWM-RP).

Virtual Welfare Maximizer with Reported Prices

• Allocation Policy: Given reports (c′,p), allocate the ad slots
to maximize

∑
i∈N φi(c

′
i, pi)πi(c

′,p), break tie arbitrarily.
• Payment Policy: For each advertiser i ∈ N , her payment

xi(c
′,p) is defined below:

– if πi(c
′,p) = 0, then xi(c

′,p) = 0;

– if πi(c
′,p) = 1, then xi(c

′,p) is defined as

vi(φ
−1
i (max{φ(K+1)(c′,p), 0}, pi), pi),

where φ−1
i is the inverse function of φi w.r.t. ci and

φ(K+1)(c′,p) denotes the K + 1 highest virtual value.

Different from WM-RP, in VWM-RP the allocation policy maxi-
mizes the virtual social welfare. Note that if all advertisers’ virtual
values are negative, the platform will not allocate the slots accord-
ing to the allocation policy, i.e., VWM-RP does not satisfy EF-RP.
To implement the allocation policy of VWM-RP, we need a regular
condition on the cost distributions, which is defined below.

Definition 7. A distribution Ci is regular if the virtual value function
φi(ci, pi) is non-increasing with ci for all pi.

Recall that φi(ci, pi) can be reformulated as vi(ci +
1

σi(ci)
, pi),

where σ(ci) = C′
i(ci)/Ci(ci) is the reverse hazard rate of Ci. Since

vi(·, ·) is non-increasing with the first variable, a sufficient condition
for regularity is σ(·) is non-increasing. We next prove that VWM-RP
maximizes the seller’s revenue for regular cost distributions.

Theorem 5. Given a set of regular distributions {Ci}i∈N , VWM-RP
is IC and IR, and maximizes the platform’s expected revenue for any
fixed display price profile.

Proof. If {Ci}i∈N are regular, then the allocation policy of VWM-
RP is non-increasing with ci. Following the proof of Theorem 3, we
can verify that the payment policy of VWM-RP is consistent with
(9), therefore VWM-RP is IC and IR according to Theorem 1. Since
VWM-RP maximizes the virtual welfare

∑
i∈N πi(c

′,p)φi(c
′
i, pi)

pointwisely for all (c′,p), then based on Theorem 4, we know that
VWM-RP maximizes the seller’s expected revenue.

If Ci is not regular, we can use the “ironing technique” to obtain a
surrogate C̃i [21], which is regular, and replaces Ci in VWM-PR.
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5 Auction Design with Strategic Prices

In this section, we study the general setting where advertisers are
allowed to report display prices in their favor. Since product costs are
private information for all advertisers, Bayesian Nash Equilibrium
(BNE) is a suitable solution concept for advertisers’ price report.

Definition 8. Given an IC and IR auction M and a set of product
costs c, a strategy profile pM(c) = (pMi (ci))i∈N forms a Bayesian
Nash Equilibrium if for all i and all p′i,

Ec−i∼C−i [ui(ci, c, (p
M
i (ci),p

M
−i(c−i)),M)]

≥ Ec−i∼C−i [ui(ci, c, (p
′
i,p

M
−i(c−i)),M)],

where pM
−i(c−i) = (pMj (cj))j∈N\{i}.

In other words, a strategy profile pM(c) is a BNE if no one can
gain more utilities by unilaterally deviating from pM(c). Finding
BNE in games is known to be a hard problem both analytically and
computationally [22]. Previous works derived the BNE analytically
only for the simplest auction settings [14]. Recall that the display
price information enters into both the allocation and payment poli-
cies according to Theorem 1, hence it is impossible to obtain a closed
form of the equilibrium price report for all auctions. For tractability,
this section studies two special classes of allocation policies, namely
the price-independent allocation policy and the affine maximizer al-
location policy, where the equilibrium prices are given analytically.

5.1 Price-Independent Allocation Policy

We first investigate price-independent allocation policies, in which
the allocation of ad slots is independent of the display price informa-
tion. It can apply to applications where the display price information
is unavailable before the auction or the advertisers tend to adjust their
display prices dynamically after the auction. The formal definition of
the price-independent allocation policy is given below.

Definition 9 (Price-Independent Allocation Policy). We say an allo-
cation policy π is price-independent (PI) if for all i ∈ N , and any
two reports (c′,p1) and (c′,p2),

πi(c
′,p1) = πi(c

′,p2).

Based on Theorem 1, we can easily derive the equilibrium prices
for PI allocation policies.

Proposition 1. Given any IC and IR auction M with a PI allocation
policy, the following price report forms the unique BNE:

pMi (ci) = argmax
p′i

{λi(p
′
i)}, ∀i ∈ N. (33)

Proof. Suppose M is IC and IR, then according to Theorem 1 ad-
vertiser i’s utility can be simplified as

ui(ci, (ci, c−i),p,M) = λi(pi)

∫ ci

ci

πi(z, c−i,p)dz.

If the allocation policy is PI, then the term
∫ ci
ci

πi(z, c−i,p)dz is
independent of pi, and the expected utility of i can be denoted by

Ec−i∼C−i [ui(ci, c,p,M)]

= Ec−i∼C−i [λi(pi)

∫ ci

ci

πi(z, c−i,p)dz] (34)

= λi(pi)Ec−i∼C−i [

∫ ci

ci

πi(z, c−i)dz]. (35)

To maximize the expected utility, i can simply choose the price pi
that maximize λi(pi), no matter what the others report. Therefore,
(pMi (ci))i∈N forms the unique BNE, where the uniqueness is from
that submitting pMi (ci) is a dominant strategy for all i ∈ N .

Proposition 1 suggests that pMi (ci) is also a dominant strategy
for all i ∈ N . If the platform searches ad auctions over PI allocation
policies, then the following auction maximizes the expected revenue.

Virtual Welfare Maximizer with Price-Independent Alloca-

tions (VWM-PIA)

Given a set of conversion rate functions {λi}i∈N , let (pi)i∈N

be a price profile, where pi = argmaxp′i λi(p
′
i).

• Allocation Policy: Given reports (c′,p), allocate the ad slots
to maximize

∑
i∈N φi(c

′
i, pi)πi(c

′,p), break tie arbitrarily.
• Payment Policy: For each advertiser i ∈ N , her payment

xi(c
′,p) is defined below:

– if πi(c
′,p) = 0, then xi(c

′,p) = 0;

– if πi(c
′,p) = 1, then xi(c

′,p) is defined as

vi(φ
−1
i (max{φ(K+1)(c′,p), 0}, pi), pi).

Theorem 6. Given a set of regular distributions {Ci}i∈N , VWM-PIA
is IC and IR, and maximizes the platform’s expected revenue over all
PI allocation policies.

Proof. According to Proposition 1, if the allocation policy is PI, then
the equilibrium price is cost-independent. Hence, Lemma 3 and The-
orem 4 can extend to auctions with PI allocation policies. Since the
allocation policy is PI and the cost distributions are regular, one can
check that the payment policy of VWM-PIA is consistent with (9),
i.e., VWM-PIA is IC and IR. In addition, as the allocation policy is
PI, then each advertiser will submit pi according to Proposition 1.
Recall that VWM-PIA maximizes the virtual welfare pointwisely for
each report, then according to Theorem 4 VWM-PIA maximizes the
platform’s expected revenue over all PI allocation policies.

5.2 Affine Maximizer Allocation Policy

This section investigates another family of allocation policy, called
affine maximizer allocation policy. In such an allocation policy, ad
slots are allocated in such a way as to maximize the weighted and
boosted social welfare. The advertising platform can utilize this kind
of allocation policy to artificially increase the winning chance of ad-
vertisers with low values or outright ban certain outcomes in order to
boost the revenue [11]. The formal definition of an affine maximizer
allocation policy is given below.

Definition 10. Given a set of advertiser weights w = (wi ∈
R+)i∈N and a set of allocation boosts b = (bo ∈ R)o∈O , an allo-
cation policy π is called an affine maximizer if for all reports (c′,p),
it picks the following outcome:

π(c′,p) ∈ arg max
π′(c′,p)∈O

Ww,b(c′,p),

where O denotes the set of all feasible allocations, and

Ww,b(c′,p) = bπ′(c′,p) +
∑
i∈N

wivi(c
′
i, pi)π

′
i(c

′,p)
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is the weighted and boosted social welfare under π′(c′,p).

For convenience, we use πw,b to denote the affine maximizer
allocation policy defined by (w,b) and use Ww,b to denote the
weighted and boosted social welfare function under πw,b. According
to Definition 10, it is clear that πw,b is non-increasing with ci for all
possible (w,b) and all i ∈ N . Based on Theorems 1 and 2, we can
design a payment policy denoted as xw,b for any πw,b, ensuring that
(πw,b, xw,b) is individually rational and incentive-compatible. This
auction mechanism, commonly referred to as the affine maximizer
auction, is formally defined as follows.

Affine Maximizer Auctions (AMA)

Predefine a set of advertiser weights w and allocation boosts b.

• Allocation Policy: Given advertiser’ reports (c′,p), choos-
ing an outcome π(c′,p) ∈ O that maximizes

bπ(c′,p) +
∑
i∈N

wivi(c
′
i, pi)πi(c

′,p),

i.e., applying the affine maximizer allocation policy πw,b.
• Payment Policy: For each advertiser i ∈ N , her payment

xw,b
i (c′,p) is defined as

Ww,b(c′−i,p−i)−Ww,b(c′,p)
wi

+ vi(c
′
i, pi)π

w,b
i (c′,p),

where Ww,b(c′−i,p−i) denotes the maximum affine social
welfare without i’s participation.

In the above description, the wi and the bo are constant parameters.
Therefore, every AMA mechanism is exactly characterized by |N |+
|O| parameters. For any assignments of the parameters, we can prove
that the corresponding AMA is IC and IR.

Proposition 2. AMA is IC and IR, and the following price report
forms the unique BNE:

p̃Mi (ci) = argmax
p′i

{vi(ci, p′i)}, ∀i ∈ N. (36)

Proof. Given any instance of AMA, denoted as Mw,b, and reports
(c′,p), advertiser i’s utility can be formulated as

ui(ci, c
′,p,Mw,b) = vi(ci, pi)π

w,b
i (c′,p)− xw,b

i (c′,p)

=
1

wi
[

∑
j∈N\{i}

wjvj(c
′
j , pj)π

w,b
j (c′,p) + wivi(ci, pi)π

w,b
i (c′,p)

+ bπw,b(c′,p) −Ww,b(c′−i,p−i)]. (37)

Suppose i reports her true cost, then her utility can be simplified as

1

wi
[Ww,b((ci, c

′
−i),p)−Ww,b(c′−i,p−i)] ≥ 0. (38)

Therefore, AMA is IR. Next, we show misreporting is not beneficial
for advertiser all i ∈ N . Note that the term Ww,b(c′−i,p−i) is
independent of i’s report, and hence i’s utility is only determined by
the following component:

∑
j∈N\{i}

wjvj(c
′
j , pj)π

w,b
j (c′,p) + wivi(ci, pi)π

w,b
i (c′,p)

+ bπw,b(c′,p). (39)

Moreover, note that the coefficient of πw,b
i (c′,p) is wivi(ci, pi)

other than wivi(c
′
i, pi). Hence, for any price pi and any others’ re-

ports (c′−i,p−i), the value of (39) is maximized by reporting c′i
truthfully according to the definition of affine maximizer alloca-
tion policy, i.e., AMA is IC. In addition, the value of (39) is non-
decreasing with vi(ci, pi), implying that advertiser i’s utility is also
non-decreasing with vi(ci, pi). Therefore, choosing a display price
p̃Mi (ci) = argmaxp′i vi(ci, p

′
i) can maximize advertiser i’ util-

ity, no matter what the others report. Combined with above analy-
sis, we conclude that AMA is individually rational and incentive-
compatible, and the price report profile (p̃Mi (ci))i∈N forms the
unique BNE in AMA for all advertisers, where the uniqueness is
from the fact that submitting p̃Mi (ci) is a dominant strategy for i.

Recall that the allocation policy of WM-RP is a special instance
of the affine maximizer allocation policy. Based on Proposition 2, we
can obtain the following important result.

Proposition 3. WM-RP is IR, IC and EF in strategic price settings.

Proof. According to the definition of WM-RP and Definition 10, we
know that the allocation policy of WM-RP is an instance of the affine
maximizer with b = {bo = 0}o∈O and w = {wi = 1}i∈N . Since
WM-RP is IC and IR for all reported prices, then each advertiser will
report (ci, p̃Mi (ci)) to maximize her own utility. Clearly, for any c,
we have that the price vector (p̃Mi (ci))i∈N belongs to Π(c), i.e.,
(p̃Mi (ci))i∈N ∈ argp′ maxp′,π′

∑
i∈N vi(ci, p

′
i)π

′
i(c,p

′). Based
on Definition 4, Theorem 3 and Proposition 2, we can conclude that
WM-RP is not only EF-RP, it is also EF.

Proposition 3 has important implications. It demonstrates that the
advertising platform can design practical ad auctions, namely WM-
RP, to maximize the overall social welfare, regardless of whether
or not advertisers strategize the display prices of their commodities.
To optimize the platform’s revenue over all affine maximizer alloca-
tion policies, we only need to adjust the parameters (w,b) in AMA,
which is a typical optimization problem. Since there is no known
short-cut for calculating the expected revenue [11], previous studies
have developed many techniques to search for the (approximate) op-
timal parameters, e.g., grid-based gradient descent approach [17, 18],
LP-based heuristic [11], neutral networks [4].

6 Conclusion

In this paper, we formulated the problem of ad auction design in the
presence of display prices. We characterized all IC, IR auctions with
display prices and analyzed the welfare-maximizing and revenue-
maximizing auctions under various scenarios. Besides theoretical
implications, the study results also provide meaningful insights for
practitioners designing ad auctions to optimize the performance of
ad delivery. For the objective of maximizing social welfare, our find-
ings (Theorem 3, Corollary 1 and Proposition 3) suggest that the
platforms can simply adopt WM-RP. For the profit-maximizing ob-
jective, the results (Theorems 5 and 6) indicate that the platforms
should set a display-price-based reserve price for each advertiser. As
Lemma 3 cannot generally extend to the strategic price settings, de-
signing revenue-maximizing auctions in general settings presents in-
herent challenges, and we leave the full analysis as future work.
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