
Extracting and Exploiting Bounds of Numeric Variables
for Optimal Linear Numeric Planning

Ryo Kuroiwaa;*, Alexander Shleyfmanb and J. Christopher Becka

aDepartment of Mechanical and Industrial Engineering, University of Toronto
bDepartment of Computer Science, Bar-Ilan University

ORCiD ID: Ryo Kuroiwa https://orcid.org/0000-0002-3753-1644,
Alexander Shleyfman https://orcid.org/0000-0001-9187-2354,

J. Christopher Beck https://orcid.org/0000-0002-4656-8908

Abstract. In numeric AI planning, a state is represented by propo-
sitions and numeric variables, actions change the values of numeric
variables in addition to adding and deleting propositions, and goals
and preconditions of actions may include conditions over numeric
variables. While domains of numeric variables are rational numbers
in general, upper and lower bounds on variables affected only by
constant increase and decrease can sometimes be determined and ex-
ploited by a heuristic function. In this paper, we generalize the ex-
isting method to variables that are changed by linear effects. We ex-
ploit the extracted bounds to improve the numeric LM-cut heuristic, a
state-of-the-art admissible heuristic for linear numeric planning. Em-
pirical evaluation shows that our method improves the performance
of LM-cut in multiple domains. The proposed method can also detect
unsolvability of some numeric tasks in polynomial time.

1 Introduction

While in the past two decades classical planning has been widely
studied by the AI planning community, formalisms that can address
more realistic planning problems have received much less attention.
A case in point is numeric planning, an extension of classical plan-
ning with numeric state variables, that has recently had a resurgence
in popularity. While early research focused only on the satisficing
setting, where the objective is to find an executable plan regardless
of its length or cost [8, 3], recent work has developed techniques to
solve numeric planning problems optimally using model-based ap-
proaches [16, 13] and heuristic search [21, 19, 17, 12, 10]. In par-
ticular, heuristic search approaches use A∗ search [5] with admissi-
ble heuristic functions, which compute a lower bound of the optimal
cost, and achieve state-of-the-art performance.

Although the domains of numeric variables are unbounded in gen-
eral, Coles at al. [3] proposed a method to identify lower and upper
bounds in some special cases. The extracted bounds are exploited by
heuristic functions in both satisficing and optimal settings [3, 17].
The proposed method, however, is applicable only when the changes
in numeric variables are given by constants.

In this paper, we generalize the existing method of extracting the
bounds of numeric variables to linear numeric planning, where both
conditions and effects on numeric variables are represented by lin-

∗ Corresponding Author. Email: ryo.kuroiwa@mail.utoronto.ca.

ear formulas. We obtain bounds on numeric variables using induc-
tive equations and prove that their fixed point yields valid bounds.
While such bounds can be useful for both model-based and heuristic
search approaches, we incorporate them in LM-cut [10], a state-of-
the-art admissible heuristic for linear numeric planning, without loss
of the admissibility. We empirically show that the use of the bounds
improves the performance of LM-cut in almost all of the existing
numeric planning domains. We also introduce a new linear planning
domain to highlight the benefits of our method.

2 Numeric Planning

Linear numeric planning is a subset of PDDL 2.1 [4] (see the PICKUP

domain explained in Sec. 5.1 and supplementary materials [11]). A
task is represented by a 5-tuple 〈F ,N ,A, s0, G〉, where F is the set
of propositions, N is the set of numeric variables, s0 is the initial
state, and G is the set of goal conditions. A state s is a pair 〈sp, sn〉,
where sp ⊆ F is a set of propositions, and sn : N → Q is a
value assignment to the numeric variables. We denote the value of
a numeric variable v in s by s[v]. The initial state s0 is a state. A
numeric condition ψ is a linear formula

∑
v∈N wψv v � wψ0 with

∀v ∈ N , wψv ∈ Q, wψ0 ∈ Q, and �∈ {≥, >}. The condition ψ is
satisfied in a state s if

∑
v∈N wψv s[v] � wψ0 , denoted by s |= ψ.

The goal conditions G = 〈Gp, Gn〉 is a pair of a set of propositions
Gp ⊆ F and a set of numeric conditions Gn, and a state s is a goal
state if Gp ⊆ sp and ∀ψ ∈ Gn, s |= ψ.

An action a ∈ A is a triplet 〈pre(a), eff(a), cost(a)〉, where
pre(a) = 〈prep(a), pren(a)〉 is the set of preconditions, eff(a) =

〈add(a), del(a), num(a)〉 is the set of effects, and cost(a) ∈ Q+
0 is

the cost. Propositional preconditions prep(a) ⊆ F are a set of propo-
sitions, numeric preconditions pren(a) are a set of numeric condi-
tions, and a is applicable if pren(a) ⊆ sp and ∀ψ ∈ pren(a), s |=
ψ. In the set of effects, add(a) is a set of propositions to add, del(a)
is a set of propositions to remove, and num(a) is a set of numeric ef-
fects on variables u ∈ N in the form of u +=

∑
v∈N wa,uv v+wa,u0

with ∀v ∈ N , wa,uv ∈ Q and wa,u0 ∈ Q. Alternately, we can repre-
sent the effect as u := (wa,uu + 1)u +

∑
v∈N\{u} w

a,u
v v + wa,u0 .

We assume that an action has at most one numeric effect on a given
numeric variable. When a is applied in a state s, it transitions to a
successor state s[[a]], where s[[a]]p = (sp \ del(a)) ∪ add(a) and
s[[a]][u] = s[u] +

∑
v∈N wa,uv s[v] + wa,u0 .

ECAI 2023
K. Gal et al. (Eds.)

© 2023 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA230409

1332

https://orcid.org/0000-0002-3753-1644
https://orcid.org/0000-0001-9187-2354
https://orcid.org/0000-0002-4656-8908

Given a state s, an s-plan is a sequence of actions π =
〈a1, . . . , am〉 such that for i ∈ [m] := {1, . . . ,m}, action ai is
applicable in state si−1 where si = si−1[[ai]] with s0 := s, and
sm |= G is a goal state. The cost of π is cost(π) =

∑m
i=1 cost(ai),

and an optimal s-plan minimizes its cost. A solution for a linear nu-
meric planning task is an s0-plan, and optimal planning is to find an
optimal s0-plan. The cost of an optimal s-plan is denoted h∗(s).

For the effect of an action a on a numeric variable u, when
∀v ∈ N , wa,uv = 0, i.e., in the form of u += wa,u0 , it is called
a simple effect. Numeric variables affected only by simple effects are
called simple numeric variables. When all numeric effects are sim-
ple effects, a task is called a simple numeric planning task. When no
numeric variables exist, a task is called a classical planning task.

3 Extracting Bounds in Numeric Planning

Bounds of numeric variables can be useful in heuristic search and
model-based methods. For example, the LM-cut heuristic for nu-
meric planning (see Sec. 4) underestimates the cost to achieve a
numeric condition ψ :

∑
v∈N wψv v � wψ0 using an action a

[10], and more accurate estimation results in a better heuristic. If
a has effect u +=

∑
v∈N wa,uv v + wa,u0 on variable u in ψ with

wψu > 0, LM-cut needs to overestimate the effect to underesti-
mate the cost to achieve ψ using a. Unless the effect is simple,
i.e., u += wψ0 , it needs to compute an upper bound on a lin-
ear formula

∑
v∈N wa,uv v. LM-cut can obtain an upper bound for

some special cases, e.g., where all variables v with wa,uv
= 0 are
simple variables. However, in the worst case, the linear formula is
overestimated by ∞, assuming that ψ is achieved by applying a
only once. If we know finite upper bounds v for wa,uv > 0 and
lower bounds v for wa,uv < 0, we can obtain a better estimation∑
v∈N :w

a,u
v >0 w

a,u
v v +

∑
v∈N :w

a,u
v <0 w

a,u
v v. In another example,

in a mixed-integer programming model for numeric planning, si[v],
the value of variable v in the i th state achieved by a plan, is rep-
resented by a decision variable [16]. A tighter bound for a decision
variable results in a tighter linear relaxation.

We say that v ∈ Q is an upper bound of v, if for any state s that lies
along any plan π it holds that s[v] ≤ v. Similarly, v ∈ Q is a lower
bound of v if s[v] ≥ v always holds. Below, we introduce an existing
method to extract the upper and lower bounds of simple numeric
variables [3]. We adapt this method to a more general setting.

In what follows, we only consider numeric conditions in the
form ψ :

∑
v∈N wψv s[v] ≥ wψ0 ; if all v ∈ N with wψv
= 0

are simple variables, we can normalize
∑
v∈N wψv s[v] > wψ0 to∑

v∈N wψv s[v] ≥ wψ0 + 1
M

, where M is an integer such that Mwψ0 ,
Mwψv for all v, and Mwa,v0 for all a ∈ A and v ∈ N with wψv
= 0
are integer. If there exists a non-simple variable v with wψv
= 0, we
relax the condition to

∑
v∈N wψv v ≥ wψ0 . This condition is always

satisfied when the original condition is satisfied. In what follows,
when a numeric condition is satisfied, we assume that its normalized
or relaxed counterpart is satisfied and use ≥ instead of >.

3.1 Bounds on Simple Numeric Variables

For simple numeric variables, Coles et al. [3] defined the notion of a
producer and a consumer and proposed a method to extract bounds
of numeric variables.

Definition 1 (Bounded producer and consumer [3]) Let an action
a have a simple effect on v, v += wa,v0 . If the effect is positive, i.e.,

wa,v0 > 0, and a has a precondition in the form of −v ≥ wψ0 , then
a is a bounded producer of v. If the effect is negative, i.e., wa,v0 < 0,
and a has a precondition in the form of v ≥ wψ0 , then a is a bounded
consumer of v.

Let A(v) and A(v) be the sets of bounded producers and consumers
of a variable v, respectively. When all actions having positive effects
on v are bounded producers, then the upper bound of v is

v = max

{
s0[v], max

a∈A(v)
min

ψ∈pren(a):−v≥wψ
0

{−wψ0 + wv,a0 }
}
.

When all actions having negative effects on v are bounded con-
sumers, then the lower bound of v is

v = min

{
s0[v], min

a∈A(v)
max

ψ∈pren(a):v≥wψ
0

{−wψ0 + wv,a0 }
}
.

3.2 Bounds in Linear Numeric Planning

In this section, we extend the above method to linear numeric plan-
ning tasks. Since we aim to compute bounds on the numeric variables
of the task Π, we ignore its propositional component. As all numeric
preconditions are linear inequalities, we can view the numeric do-
main where each action a is applicable as a polytope, which may
not necessarily be unbounded. Consequently, each linear effect of a
may have an upper or lower bound. We propose a method to approx-
imate these bounds when they exist. To avoid the need to solve linear
programs at each step, we restrict the LP constraints to axis-parallel
boxes, or “boxes” for short. Boxes are polytopes where each face is
defined by inequalities of the form x ≤ c or x ≥ c. Computing
a max/min of a linear function on a box is linear in the number of
numeric variables involved.

We start by setting the upper bound and lower bounds on each
numeric variable v ∈ N to be v0 := ∞ and v0 := −∞. We intend
to update these bounds iteratively. We assume that ∞ + c = ∞
and −∞ + c = −∞, c · ∞ = ∞ if c > 0, and c · (−∞) =
∞ if c < 0. The −∞ behaves similarly under multiplication by a
constant. In what follows we do not use −∞ + ∞. We define the
bounds of the numeric variables of the task in iteration i as a box
Bi =

Ś
v∈N [vi, vi], where vi and vi are an upper and a lower bound

on v. For completeness, we assume that 0 times infinity is always 0.1

Let va and va be upper and lower bounds on the domain of v
where the action a can be applied. For example, in the case discussed
by Coles et al. [3], the action a with precondition pre(a) = {v ≥ 1}
has the bounds va = 1 and va = ∞. Since our bounds are computed
iteratively we denote them by via and via for each iteration i ∈ N. We
define preBia :=

Ś
v∈N [via, v

i
a] to be the minimal |N |-dimensional

box that contains the intersection of the polytopes pren(a) and Bi−1.
We aim to derive tighter bounds on va and va, using the linear pre-
conditions of a. Let ψ ∈ pren(a) be a precondition of the form∑
v∈N wψv v ≥ wψ0 . Let u ∈ N be a numeric variable s.t. wψu
= 0.

For a to be applicable, the following condition on u must hold

wψuu+
∑

v �=u:wψ
v >0

wψv v
i−1
a +

∑
v �=u:wψ

v <0

wψv v
i−1
a ≥ wψ0 .

1 The intervals belong to [−∞,∞] – the extended real line – a compactifica-
tion of R. [−∞,∞] = {−∞}∪R∪{∞}, where for each x ∈ R it holds
that −∞ < x <∞.

R. Kuroiwa et al. / Extracting and Exploiting Bounds of Numeric Variables for Optimal Linear Numeric Planning 1333

(0, 0) (2, 0)(2.5, 0)

(0, 2)

(0, 2.5)

(0, 3)

(1, 1.5)

(2, 2)

b1ψ1,y

b1ψ2,y

b1ψ2,x
b1ψ1,x x0

a

y0
a

ψ2 ψ1

x1
a

y1

a

Figure 1. Suppose that an action a has as its preconditions the linear in-
equalities ψ1 : x + y ≥ 2.5 and ψ2 : 3x + 2y ≥ 6. The points that obey
this inequalities lie to the right of the black lines in the picture. Suppose that
in the previous iteration we determined that x0

a = 2, y0a = 2, x0
a = −∞,

and y0
a
= −∞. The dashed lines represent the respective upper bounds xa

and ya. Using this we can compute that b1ψ1,y
= 0.5, b1ψ2,y

= 0 and that
b1ψ1,x

= 0.5, b1ψ2,x
= 2/3. Thus, using these values we can determine

that x1
a = 2/3 and y1

a
= 0.5 (denoted by blue lines). Note that the box

preB1
a = [2/3, 2]× [0.5, 2] is the smallest box possible to include the set of

all points where a can be applied – the red area on the graph.

Thus, if the appropriate vi−1
a ’s and vi−1

a ’s are finite we can derive
the upper or the lower bound on u, depending on the sign of wψu , i.e.,

biψ,u =

∑
v �=u:wψ

v >0
wψv v

i−1
a +

∑
v �=u:wψ

v <0
wψv v

i−1
a − wψ0

−wψu
. (1)

To apply a, we need the bounds to hold altogether, thus

via = min

{
vi−1, min

ψ∈pren(a):w
ψ
v <0

biψ,v

}
, (2)

via = max

{
vi−1, max

ψ∈pren(a):w
ψ
v >0

biψ,v

}
. (3)

Thus, we recursively defined preBia using preBi−1
a and Bi−1 (for a

brief example see Fig. 1).
We now calculate the numerical bounds for the effects of a based

on preBia. For the purpose of bound computation we transfer all
numeric effects into their assignment form. For the general linear
effect of a on u ∈ N : u += ξ ⇐⇒ u := u + ξ, where
ξ =

∑
v∈N wa,uv v + wa,u0 . If action a does not effect the variable u

– for the purpose of bound computation – we add the nominal effect
u := u. Transforming increment effects into assignment effects may
enable tighter bounds. For example, if we did not obtain any bounds
on u under the application of a, i.e., uia = ∞ and uia = −∞, the
increment effect u += −u + 2 will result the bounds on u being
∞ and a −∞. However, the assignment effect u := 2 will result in
the upper and lower bounds of 2. Thus, for the rest of this section we
replace all additive linear effects with assignment effects.

For the effect (u := u+ ξ) ∈ effn(a), we compute the bounds

ξ
i

u =
∑

v �=u:wa,u
v >0

wa,uv via +
∑

v �=u:wa,u
v <0

wa,uv via + wa,u0

ξi
u
=

∑
v �=u:wa,u

v >0

wa,uv via +
∑

v �=u:wa,u
v <0

wa,uv via + wa,u0 .

For brevity we transform these into bounds on assigment effects. If
wa,uu ≥ −1, an upper and a lower bound on u made by are given by:

asnia,u = (wa,uu + 1)uia + ξ
i

u, (4)

asnia,u = (wa,uu + 1)uia + ξi
u
. (5)

If wa,uu < −1, uia and uia are swapped in the equations above.
Furthermore, if the linear formula of the effect is used in a precon-

dition of the action, we can exploit the precondition to derive bounds
of the effect. For example, the precondition 2x+2y ≤ 3 imposes an
upper bound of 3

2
on u under the effect u := x+ y.

Thus, let us assume that some ψ ∈ pre(a) is of the form ψ :
r
∑
v∈N wa,uv v ≤ wψ0 , with the effect u :=

∑
v∈N wa,uv v+wa,u0 is

one of the effects of a. If r > 0, we replace the bound on the effect
of a on u with asnia,u := min

{
asnia,u, w

ψ
0 /r + wa,u0

}
, if r < 0

we multiply the inequality by −1 and replace the bound asnia,u.2

Lastly, we set the upper bound on the result of the application of
a to be l

i
a,u = max{s0[u], asnia,u}. The lower bound on the appli-

cation is defined in a similar fashion lia,u = min{s0[u], asnia,u}.
Using these bounds we define the following effect box effBia :=
Ś

v∈N [lia,u, l
i
a,u]. Note that for each i ∈ N and each a ∈ A it holds

that s0 ∈ effBia.
We define the next iteration of the bounds: vi = maxa∈A l

i
a,u and

vi = mina∈A lia,u. This gives us the box Bi :=
Ś

v∈N [vi, v
i].

Geometrically speaking, Bi is the smallest possible box s.t.⋃
a∈A effBia ⊆ Bi.
We first compute via and via, bounds on variable v when action a

is applicable. Using via and via, we compute bounds on effects of a.
Using bounds on effects of all actions, we compute vi and vi, bounds
on numeric variables. Then, we compute vi+1

a and vi+1
a using via

and via and repeat the process. We sketch the algorithm we use to
compute the bounds.

1. Initialize the initial upper bounds with ∞ and the lower bounds
with −∞.

2. For i ∈ N repeat 3–5 until there is no change or until i exceeds
some given i0.

3. Compute via and via for each variable v and action a in an arbitrary
order (Equations (1) – (3)).

4. Compute asnia,v and asnia,v for each action a and variable v in
an arbitrary order (Equations (4) and (5)).

5. Compute vi and vi for each v ∈ N in an arbitrary order.

The following example demonstrates that this procedure does not

necessarily terminate.

Example 1 Consider a planning task Π with two numeric variables
N = {x, y}, F = ∅, initial state s0[x] = s0[y] = 0, and actions
A = {a1, a2}, where pre(a1) = {x ≤ 1, x ≤ 0.3y}, num(a1) =
{x += 1}, pre(a2) = {y ≤ x} and num(a2) = {y += 0.5x}. The
goal does not affect our computation, thus we set it G = {y ≥ 2}.

Note that xi = xia = yi = yi
a

= 0. In this example, we are
interested only in the upper bounds. Also, xi = xia2 and yi = yia1 .
We show the bounds after the first to fifth iterations.

i xia1 xi yi+1
a2

yi+1

1 1 2 2 3
3 0.9 1.9 1.9 2.85
5 0.855 1.855 1.855 2.7825

2 Since all linear conditions in pre(a) are represented in their linear normal
form (LNF) [8], we do at most one update per bound.

R. Kuroiwa et al. / Extracting and Exploiting Bounds of Numeric Variables for Optimal Linear Numeric Planning1334

In general for i ≥ 2, xi+1 = 1 + 0.3yi and yi+1 = 1.5xi, so
yi+2 = 1.5 + 0.45yi. These series are infinite, but their fixed points
are limi→∞ yi = 30/11 and limi→∞ xi = 20/11 since (yi+2 −
30/11) = 0.45(yi − 30/11).

Next, we show that while our algorithm does not necessarily termi-
nate, we can end it at any point and still get feasible bounds.

3.3 Correctness of the Algorithm

A function f is called increasing (decreasing) if for all x and y s.t.
x ≤ y one has f(x) ≤ f(y) (f(x) ≥ f(y)). A linear function Rn →
R, �x → ∑n

j=1 cjxj+c0 is increasing in xj if cj ≥ 0, and decreasing
if cj ≤ 0. Constant functions are both increasing and decreasing.
Let both f1 and f2 be increasing (decreasing) functions and let g ∈
{min,max}, then g(f1, f2) is also increasing (decreasing).

We start the proof of correctness with the following lemma.

Lemma 1 For each i ∈ N it holds that Bi+1 ⊆ Bi.

Proof Sketch: The claim is proven by induction. We assume that
for each k < i it holds that Bk+1 ⊆ Bk and preBk+1

a ⊆ preBka
for each a ∈ A. Then, using monotonicity of compositions of linear
and max and min functions, we prove that preBi+1

a ⊆ preBia. Next,
once again using monotonicity, we prove that effBi+1

a ⊆ effBia. This
observation grants us

⋃
a∈A effBi+1

a ⊆ ⋃
a∈A effBia. Thus,⋃

a∈A
effBi+1

a ⊆ Bi :=
ą

v∈N
[vi, v

i].

Since Bi+1 is the smallest box that contains
⋃
a∈A effBi+1

a , we have
that Bi+1 ⊆ Bi. The full proof can be found in [11]. �

We proved that Bi+1 ⊆ Bi ⊆ · · · ⊆ B0, and by construction
(s0)n ∈ Bi for all i ∈ N. Thus, we can define B∗ :=

⋂∞
i=1 B

i,
which we call the bounding of the task, and we know that B∗
= ∅.
Moreover, since each sequence of bounds {vi}∞i=1 is a monotonic
sequence bounded by s0[v], we know that limi→∞ vi = v∗. Thus,
B∗ forms a box. To finish the proof, we need to show that for every
consequently applicable sequence of actions π = 〈a1, . . . , am〉 ap-
plied from s0 and resulting in a state s it holds that sn ∈ B∗. Given
we are interested in numeric bounds, it is enough to show this for a
relaxation where we ignore the propositional part, i.e., we set F = ∅.

Lemma 2 Let sn ∈ B∗ be a proper numeric state3 s.t. sn |=
pren(a). Then, sn�a� ∈ B∗.

Proof Sketch: Let ψ ∈ pren(a). Since we know that sn |= pren(a),
we know that

∑
v∈N wψv s[v] ≥ wψ0 . We also know that sn ∈ B∗,

hence sn ∈ Bi for each i ∈ N. Next, we prove by induction that
sn ∈ preBia for each i. Then, for each effect u += ξ ∈ num(a)
the result of its application sn[u] + sn[ξ] lies in effBia. Since each
action affects each variable exactly once (recall the dummy effects
u += 0) we have that sn�a� ∈ effBia. Thus, sn�a� ∈ effBia ⊆ Bi

for each i. Hence, we have that sn�a� ∈ B∗. Once again, the full
proof is found in the supplementary material. �

These two lemmas provide us with the following result.

Theorem 1 Let Π be a linear numeric planning task, let B∗ be the
bounding of Π. Let π = 〈a1, . . . , am〉 be a plan for Π, and let
〈s0, . . . , sm〉 be the sequence of states that corresponds to π. Then,
skn ∈ B∗ for each k ∈ [m].

3 We assume that all values of sn are finite.

Since {Bi}∞i=1 is a sequence of nested boxes s.t. B∗ ⊆ Bi for each
i, we can compute Bj ⊇ B∗ for some large enough j.

Lastly, we present an unsatisfaibility criteria for the linear numeric
planning task. Let AG be the polytope defined by Gn, the linear con-
ditions given in the numeric goal part of the task.

Corollary 1 Suppose we have a linear numeric planning task Π,
with its bounding box denoted by B∗, and its goal polytope denoted
by AG. The condition B∗ ∩AG = ∅ is sufficient but not necessary to
determine that Π is unsolvable.

Since B∗ ⊆ Bi for each i, the task is unsolvable if Bi ∩ AG = ∅ for
some i, and since both Bi and AG are represented as sets of linear
inequalities, finding if B∗ ∩AG is empty can be done in polynomial
time [9]. For example, a task is unsolvable if x ≥ 2 ∈ G, s0[x] = 0,
and the only action has effect x += 1 with precondition x ≤ 0.

4 Exploiting Bounds in a Heuristic Function

Next, we show how to exploit the pre-computed bounds of nu-
meric variables in linear numeric planning tasks. The state-of-the-art
method for optimal linear numeric planning is A∗ [5] with hLM-cut

2

[10], the LM-cut heuristic generalized from classical planning [7]
and simple numeric planning [12]. LM-cut maps a state s to a non-
negative rational value, hLM-cut

2 (s), that is less than or equal to the
cost of an optimal s-plan. The latter property is called the admissi-
bility, which ensures the optimality of A∗. LM-cut obtains the lower
bound on the optimal cost by computing a lower bound on the cost to
achieve each condition ψ using a single action a. We tighten this es-
timation by using bounds of numeric variables: intuitively, we com-
pute an upper bound on the net effect of a on the linear formula ψ us-
ing the individual bounds of each variable. These bounds, described
in Sec 3, are computed once, prior to the execution of the search.

4.1 LM-Cut for Linear Numeric Planning

LM-cut first transforms a numeric planning task by one-variable
compilation (OVC), which replaces a numeric condition ψ :∑
v∈N wψv � wψ0 with xψ � wψ0 , where xψ is an auxiliary numeric

variable and �∈ {≥, >}. In OVC, a larger numeric variable value
is always better because more numeric conditions are possibly satis-
fied. Then, LM-cut relaxes the transformed task by ignoring negative
effects that decrease the values of numeric variables. In the relax-
ation, the value of a numeric variable monotonically increases. The
relaxation is called the delete-relaxation as it is similar to the delete-
relaxation of classical planning, where delete effects are ignored, and
the set of satisfied propositions monotonically expands. Here we only
describe the key features of hLM-cut

2 related to our method. For a full
definition, please refer to the original paper [10].

4.1.1 One-Variable Compilation

In OVC, for a numeric condition
∑
v∈N wψv v � wψ0 , where �∈ {≥

, >}, an auxiliary variable xψ is introduced, and ψ is represented by
xψ � wψ0 . Let us now look at the effects of a on xψ . Assume that
u +=

∑
v∈N wa,uv v + wa,u0 is the effect of a on each original vari-

able u ∈ N (here, for brevity, we allow the constants to be zeroes,
but obviously in the implementation these can be removed). Then,
the effect of a on xψ is given by

xψ +=
∑
u∈N

wψu

(∑
v∈N

wa,uv v + wa,u0

)
,

R. Kuroiwa et al. / Extracting and Exploiting Bounds of Numeric Variables for Optimal Linear Numeric Planning 1335

where the constants can be rewritten as wa,ψv =
∑
u∈N wψuw

a,u
v and

wa,ψ0 =
∑
u∈N wψuw

a,u
0 . Thus, the effect of a on xψ is written as

xψ +=
∑
v∈N wa,ψv v + wa,ψ0 , which is in a linear formula. There-

fore, after moving to OVC we still have linear effects on the variables,
but all conditions in OVC are of the from u � wψ0 . Next, we will see
how these linear effects are treated in the delete-relaxation.

4.1.2 First- and Second-Order Delete-Relaxations

In the delete-relaxation of OVC, propositional delete effects del(a)
and numeric effects that decrease the value of a numeric variable
are ignored. In simple numeric planning, simple effects u += wa,u0

with wa,u0 ≤ 0 are relaxed to u += 0 [12]. In the first-order delete-
relaxation for linear numeric planning (see [10]), non-simple effects
are relaxed to conditional effects that increase numeric variables to
infinity if certain conditions are satisfied. For each non-simple ef-
fect u +=

∑
v∈N wa,uv v + wa,u0 on a non-auxiliary variable u,

numeric conditions xa,u+ > 0 and xa,u− > 0 are introduced, cor-
responding to

∑
v∈N wa,uv v > 0 and

∑
v∈N wa,uv v < 0. Effects

on xa,u+ and xa,u− are introduced according to effects on xψ . Then,
u +=

∑
v∈N wa,uv v+wa,u0 is relaxed to conditional effect u += ∞

if xa,u+ > 0. For auxiliary variables xψ corresponding to numeric
condition ψ, if wψu > 0, the effect of a on xψ is relaxed to condi-
tional effect xψ += ∞ if xa,u+ > 0. Accordingly, if wψu < 0, the
effect is relaxed to conditional effect xψ += ∞ if xa,u− > 0.

In the second-order delete-relaxation [10], if a non-simple effect is
identified as a second-order simple effect (SOSE), it is not relaxed to
the above conditional effect. A non-simple effect on an auxiliary or
a non-auxiliary variable u, u +=

∑
v∈N wa,uv v + wa,u0 , is a SOSE

if it is only affected by simple effects of actions that do not change
u. In other words, if the effect is a SOSE, each action a′ satisfies
wa,uv
= 0 → ∀v′ ∈ N , wa

′,v
v′ = 0 (only simple effect on a) and

either of the following conditions:

1.
∑
v∈N wa,uv wa

′,v
0 ≤ 0 (no positive effect on a).

2. wa
′,u

0 = 0 and ∀v ∈ N : wa
′,u
v = 0 (no effect on u).

When a′ satisfies only the second condition, it is called a second-
order supporter for a on u. For a SOSE u +=

∑
v∈N wa,uv v +

wa,u0 , an auxiliary variable xa,u+ , corresponding to
∑
v∈N wa,uv v, is

introduced even if u is an auxiliary variable, and the effect is replaced
with u += xa,u+ + wa,u0 . The effect of action a′ on this variable is

xa,u+ +=
∑
v∈N wa,uv wa

′,v
0 , which is a simple effect.

4.1.3 Action Multiplicators

In the computation of hLM-cut
2 , the number of applications of action a

to achieve numeric condition ψ from state s is estimated by an ac-
tion multiplicator ma(s, ψ). While there can be multiple choices for
ma(s, ψ), the admissibility is guaranteed as long as ma(s, ψ)cost(a)
is a lower bound of the minimum cost to achieve ψ from s using only
a in the delete-relaxation [12]. Let e be the effect of action a on vari-
able xψ for condition ψ in the delete-relaxation. We assume that nu-
meric conditions are normalized or relaxed to xψ ≥ wψ0 without loss
of admissibility and s
|= ψ, i.e., s[xψ] < wψ0 . If e is not a SOSE,

ma(s, ψ) =

⎧⎪⎪⎨
⎪⎪⎩
∞ if e : xψ += 0

1 else if e : xψ += ∞
w

ψ
0 −s[xψ]

w
a,ψ
0

otherwise.
(6)

If a has no effect on ψ, we cannot achieve ψ using a. If a has a
non-simple effect, we need to apply a at least once, so ma(s, ψ) is
underestimated by 1. If a has a simple effect, we estimate the number
of applications by division.

Suppose that e is a SOSE xψ += y+w where y is a variable and
w is a constant. If we only use a to achieve ψ,

ma(s, ψ) =

{∞ if s[y] + w ≤ 0
w

ψ
0 −s[xψ]

s[y]+w
otherwise.

(7)

Consider achieving ψ using a and its second-order supporter
y += w′ ∈ effn(a

′). Let my
a′,a(s, ψ) and mψ

a′,a(s, ψ) be ac-
tion multiplicators for a′ and a. The admissibility is guaranteed
if my

a′,a(s, ψ)cost(a
′) + mψ

a′,a(s, ψ)cost(a) is a lower bound to
achieve ψ from s using only a′ and a in the second-order relaxation.

If cost(a′) = 0, then my
a′,a(s, ψ) = 0 and mψ

a′,a(s, ψ) = 1

because a′ can be applied an arbitrary number of times, and a must be
applied at least once. Similarly, if cost(a) = 0, then mψ

a′,a(s, ψ) = 0
while my

a′,a(s, ψ) depends on s[y] + w: if s[y] + w > 0, then a

is unnecessary, so my
a′,a(s, ψ) = 0; if s[y] + w < 0, then a′ is

applied multiple times to make s[y] + w positive, so my
a′,a(s, ψ) =

−s[y]−w
w′ ; if s[y] + w = 0, then a′ must be applied at least once, so

my
a′,a(s, ψ) = 1.
Now, assume that cost(a) > 0 and cost(a′) > 0. We first in-

crease the value of y to Y using a′ and then increase the value of
xψ by applying a X times. Relaxing the domain of X to continuous
values, the minimum cost to achieve ψ from s using a′ and a is lower
bounded by the optimal cost of the following optimization problem:

min Xcost(a) +
Y − s[y]

w′ cost(a′)

s.t. wψ0 − s[xψ] = X(Y + w).

By solving the problem using Lagrange multipliers, the optimal so-
lution (X,Y) = (X∗, Y ∗) is given as follows:

X∗ =
wψ0 − s[xψ]

Y ∗ + w
.

Y ∗ =

√
(wψ0 − s[xψ])w′cost(a)

cost(a′)
− w.

If Y ∗ < s[y], we should use only a to achieve ψ, so my
a′,a(s, ψ) = 0

and mψ
a′,a(s, ψ) = ma(s, ψ). Therefore,

my
a′,a(s, ψ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if Y ∗ < s[y] ∨ cost(a′) = 0

0 if cost(a) = 0 ∧ s[y] + w > 0

1 if cost(a) = 0 ∧ s[y] + w = 0
−s[y]−w

w′ if cost(a) = 0 ∧ s[y] + w < 0
Y ∗−s[y]
w′ otherwise.

(8)

mψ
a′,a(s, ψ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ma(s, ψ) if Y ∗ < s[y]

1 if cost(a′) = 0

0 if cost(a) = 0

X∗ otherwise.

(9)

4.2 Improving LM-Cut with Bounds

Using the method proposed in Section 3.2, we can compute ıncia,v
and ıncia,v , upper and lower bounds of the increment effect of ac-
tion a on variable v. We omit i in what follows, assuming that the

R. Kuroiwa et al. / Extracting and Exploiting Bounds of Numeric Variables for Optimal Linear Numeric Planning1336

computation is stopped with a fixed number of iterations.

ınca,v :=
∑

v:w
a,v
u >0

wa,vu ua,u +
∑

v:w
a,v
u <0

wa,vu ua,u + wa,v0 ,

ınca,v :=
∑

v:w
a,v
u <0

wa,vu ua,u +
∑

v:w
a,v
u >0

wa,vu ua,u + wa,v0 .

These bounds can be used to overestimate the effect of a on a nu-
meric condition ψ, which satisfies the admissibility. For the auxiliary
variable xψ for a numeric condition ψ, the upper bound of the incre-
ment effect of action a is

ınca,ψ :=
∑

v:w
ψ
v >0

wψv ınca.v +
∑

v:w
ψ
v <0

wψv ınca,v. (10)

We use the following action multiplicator instead of Equation (6):

ma(s, ψ) =

⎧⎪⎪⎨
⎪⎪⎩
∞ if ınca,ψ ≤ 0

1 if ınca,ψ = ∞
w

ψ
0 −s[xψ]

ınca,ψ
if 0 < ınca,ψ < ∞.

(11)

The cost to achieve ψ using only a from s in the delete-relaxation is
lower bounded by ma(s, ψ)cost(a).

Furthermore, we possibly identify more SOSEs based on
the bounds. Suppose that an action a has an effect u +=∑
v∈N wa,uv v+wa,u0 . Recall that the effect is a SOSE if it is only af-

fected by simple effects of actions that do not change u. With upper
bounds, we can overestimate non-simple effects by simple effects.
Now, we extend the definition of SOSE: the effect of a on u is a
SOSE if each action a′ with effect u += ξ satisfies either of the
following conditions:

1.
∑

v:w
a,u
v >0

wa,uv ınca′,v +
∑

v:w
a,u
v <0

wa,uv ınca′,v ≤ 0.

2.
∑

v:w
a,u
v >0

wa,uv ınca′,v +
∑

v:w
a,u
v <0

wa,uv ınca′,v < ∞ and

ınca′,u ≤ 0.

Now, a′ is a second-order supporter if it satisfies only the second con-
dition. The upper bound of the effect of a′ on the auxiliary variable
xa,u+ , which is used in the SOSE u += xa,u+ + wa,u0 , is

ınca′,xa,u
+

:=
∑

v:w
a,u
v >0

wa,uv ınca′,v +
∑

v:w
a,u
v <0

wa,uv ınca′,v.

The upper bound on xa,u+ when a is applicable is

xa,u+ :=
∑

v:w
a,u
v >0

wa,uv va +
∑

v:w
a,u
v <0

wa,uv va.

Based on these bounds, we extend the action multiplicators.

Theorem 2 Given action a with a SOSE u += y+w and its second-
order supporter a′, let ınca′,y be an upper bound on the effect of
a′ on y and ya be an upper bound of y when a is applicable. The
optimal cost of the following optimization problem is a lower bound
of the cost to achieve numeric condition ψ : xψ ≥ wψ0 from state s
using only a′ and a.

min Xcost(a) +
Y − s[y]

ınca′,y
cost(a′),

s.t. wψ0 − s[xψ] = X(Y + w)

0 ≤ X, 0 ≤ Y ≤ ya.

The optimal solution (X,Y) = (X∗, Y ∗) for the above problem is
given as follows:

X∗ =
wψ0 − s[xψ]

Y ∗ + w
,

Y ∗ = min

⎧⎨
⎩ya,

√
(wψ0 − s[xψ])ınca′,ycost(a)

cost(a′)
− w

⎫⎬
⎭ .

Proof: The optimal solution (X∗, Y ∗) is from the analytical solution
of the minimization problem. We note that linear function achieves
its extrema (if such exist) on the boundary of the domain, and then
apply the method of Lagrange Multipliers to compute its minimum.
The full proof appears in the supplementary material. �

With Theorem 2, we can use the following action multiplicator in-
stead of Equation (8).

my
a′,a(s, ψ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if Y ∗ < s[y] ∨ cost(a′) = 0

0 if cost(a) = 0 ∧ s[y] + w > 0

1 if cost(a) = 0 ∧ s[y] + w = 0
−s[y]−w
ınca′,y

if cost(a) = 0 ∧ s[y] + w < 0
Y ∗−s[y]
ınca′,y

otherwise.

(12)

We call our version of hLM-cut
2 extended with the bounds hLM-cut

2b .

4.3 Rounding Up Action Multiplicators

It is possible that the use of bounds decreases the action multiplicator
and results in a less informative heuristic: comparing Equations (6)
and (11), if action a has a non-simple effect on ψ and ınca,ψ >
wψ0 −s[xψ], then ma(s, ψ) < 1 in Equation (11) while ma(s, ψ) = 1
in Equation (6). To address this issue, we round up ma(s, ψ) < 1 to
1 following LM-cut in simple numeric planning [12]. LM-cut does
not lose admissibility with the rounded action multiplicators because
a must be applied at least once to achieve ψ. We apply this method
in Equations (6), (7), (9), and (11). In Equations (8) and (12), it is
applied only when my

a′,a(s, ψ) > 0. We call the resulting heuristics
hLM-cut
2+ and hLM-cut

2b+ , respectively.

5 Empirical Evaluation

We implemented the method described in Sections 3.2 and 4.2 in
Numeric Fast Downward (NFD) [1]4 using Python 2.7.5 and GCC
9.4.0. All experiments are performed on an Intel Xeon Gold 6148
processor with a single-thread, a 30-minute time limit, and a 4GB
RAM limit with GNU Parallel [23].

For numeric preconditions and goal conditions, we add redun-
dant constraints in the same way as Scala et al. [20]. When
computing bounds and heuristic functions, for numeric conditions∑
v∈N wψv s[v] > wψ0 where all v is a simple variable if wψv
= 0, we

transform it to
∑
v∈N wψv s[v] ≥ wψ0 + 1

M
as described above. For

M , we use the minimum 10k such that 10kwψ0 , 10kwψv for all v, and
10kwa,v0 for all a ∈ A and v ∈ N with wψv
= 0 are integer.

We extract bounds of numeric variables once at the pre-processing
stage using the initial state and at most 10 iterations, which are
enough to converge to the fix point for every task present. The pro-
cess takes less than 0.1 seconds in domains except for TPP, where

4 https://github.com/Kurorororo/numeric-fast-downward

R. Kuroiwa et al. / Extracting and Exploiting Bounds of Numeric Variables for Optimal Linear Numeric Planning 1337

https://github.com/Kurorororo/numeric-fast-downward

hLM-cut
2 hLM-cut

2b hLM-cut
2+ hLM-cut

2b+

All SOSE c. time #exp. c. time #exp. c. time #exp. c. time #exp.
FO-FARMLAND (50) 25 152.5 35044 25 153.0 35044 29 27.6 7053 29 28.2 7053
FO-COUNT (20) 4 2.5 9237 4 1.6 6221 4 1.9 7036 5 1.1 4238
FO-COUNT-INV (20) 4 79.3 233905 4 44.6 128324 4 66.0 200346 4 33.8 100941
FO-COUNT-RND (60) 14 0.4 1923 16 0.3 1651 15 0.4 1684 16 0.3 1329
FO-SAILING (20) 4 373.1 3151304 7 36.6 653082 4 379.6 3151267 7 37.7 652983

Some SOSE
LIN-CAR-EXP (34) 27 53.3 3670787 27 53.3 3670787 27 52.7 3670782 27 53.1 3670782
LIN-CAR-EXP-UNIT (34) 29 72.4 3824756 29 65.4 3291420 29 71.7 3825158 29 65.5 3292320
No SOSE
BARMAN (15) 2 2.1 7202 2 2.1 6640 2 2.1 7202 2 2.1 6640
BARMAN-UNIT (15) 2 2.1 9548 2 2.2 9286 2 2.1 9539 2 2.2 9272
LIN-CAR-POLY (34) 14 30.9 2525965 14 34.5 2527291 14 30.3 2525965 14 33.8 2525307
LIN-CAR-POLY-UNIT (34) 14 53.5 2642867 14 48.4 1959943 14 51.8 2641905 14 47.8 1948991
ROVER-METRIC (10) 6 36.1 47445 6 36.1 47415 6 37.8 49984 6 36.1 47388
TPP-METRIC (40) 5 18.8 17181 5 6.4 6307 5 10.1 10957 5 3.7 3361
ZENOTRAVEL-LINEAR (10) 8 46.6 1228 8 41.0 1226 8 30.1 776 8 30.8 779
PICKUP (20) 14 344.1 5247955 16 267.7 3588681 14 326.2 5233143 16 254.2 3515057

TOTAL (416) 172 - - 179 - - 177 - - 184 - -

Table 1. Coverage (c.), wall-clock time (time) mesaured in seconds, and the number of expansions before the last f -layer (exp.). Time and #exp. are averaged
over instances solved by all methods.

some instances require up to 2 minutes, when the large instances are
unsolved by all methods.

We evaluate the heuristics with A∗ using the domains introduced
by previous work [14, 13, 10, 22], five of which have only simple
effects and SOSEs (All SOSE), two of which have both SOSEs and
non-SOSEs (Some SOSE), and seven have no SOSEs (No SOSE).

We show the coverage, the mean wall-clock time to solve an in-
stance, and the mean number of expansions before the last f -layer in
Table 1. Using bounds reduces the number of expansions in almost
all domains and achieves higher coverage in FO-COUNT-RND and
FO-SAILING. In addition, hLM-cut

2b+ solves more instances than hLM-cut
2+

in FO-COUNT. However, in non-SOSE domains, the improvement
does not lead to an increase in coverage, and using bounds slightly in-
creases the number of expansions in a few domains: hLM-cut

2b expands
slightly more states than hLM-cut

2 in LIN-CAR-POLY, and hLM-cut
2b+ ex-

pands more than hLM-cut
2+ in ZENOTRAVEL-LINEAR.

Comparing hLM-cut
2 and hLM-cut

2+ , the latter increases the coverage in
FO-FARMLAND and FO-COUNT-RND and has a better or equal num-
ber of expansions in all domains except for ROVER-METRIC. Sim-
ilarly, hLM-cut

2b+ has higher coverage than hLM-cut
2b in FO-FARMLAND,

FO-COUNT-RND, and FO-COUNT and expands equal or fewer states
in all domains except for LIN-CAR-EXP-UNIT.

5.1 PICKUP Domain

To show the advantage of our method in no SOSE domains, we intro-
duce a new domain PICKUP, inspired by the capacitated vehicle rout-
ing problem in Operations Research. In this problem, n customers
and one depot are given. A worker must pick up a commodity from
each customer, while it can carry at most C commodities at a time.
The number of commodities carried by the worker is represented by
a numeric variable x. At the depot, there is a truck with a capacity
Q to deliver commodities to a center. The number of commodities
loaded into the truck is represented by y, and the number of com-
modities delivered to the center is represented by z. In the initial
state, x = y = z = 0. The goal is to deliver all commodities to the
center, i.e., z ≥ n. The worker can load all commodities to the truck
(y += x and x := 0) if y + x ≤ Q at the depot. If y + x > Q,
the worker can load commodities as much as possible (y := Q and

x += y −Q). The commodities are delivered to the center by driv-
ing the truck (z += y and y := 0), which also returns the truck to
the depot. While there are no SOSEs since all numeric variables are
affected by non-simple effects, they have upper and lower bounds.
We generate 20 instances with different parameters (see the supple-
mentary material). As shown in Table 1, hLM-cut

2b and hLM-cut
2b+ solves

two more instances than hLM-cut
2 and hLM-cut

2+ .

6 Conclusion

In this paper, we generalized the method to extract the bounds on nu-
meric variables in linear numeric planning [3]. We argue that these
bounds can be used to determine the unsolvability of certain tasks
in polynomial time. In addition, we strengthen the numeric LM-cut
heuristic [10] with these bounds, maintaining its admissibility. The
experimental evaluation demonstrates that the extracted bounds im-
prove the performance of LM-cut in most linear numeric domains.

In future work, we intend to improve the bound extraction using
the theory of zonotopes, that were previously employed by Löhr et
al. [15] in hybrid systems.

In simple numeric planning, operator-counting (OC) heuristics
[18, 17] exploit the bounds in state-equation constraints (SEQ) [2].
LM-cut achieves better performance combined with SEQ in OC [12].
Generalizing SEQ to linear numeric planning and using it with the
extracted bounds may be a fruitful direction.

While we use LM-cut as it has state-of-the-art performance, our
method of bound extraction is independent of particular solving ap-
proaches. For example, the bounds may also improve inadmissible
heuristics for linear numeric planning [8, 14]. In model-based ap-
proaches, such as mixed-integer programming and satisfiability mod-
ulo theories [16, 13], we may derive redundant constraints.

Furthermore, the use of the bounds allows us to reason about the
unsolvability of some tasks, a topic that has not been discussed in the
literature so far, given that proving that a numeric task is unsolvable
is impossible in the general case [6].

Acknowledgements

This work was partially supported by the Natural Sciences and Engi-
neering Research Council of Canada.

R. Kuroiwa et al. / Extracting and Exploiting Bounds of Numeric Variables for Optimal Linear Numeric Planning1338

References

[1] Johannes Aldinger and Bernhard Nebel, ‘Interval based relaxation
heuristics for numeric planning with action costs’, in Proc. KI, pp. 15–
28, (2017).

[2] Blai Bonet, ‘An admissible heuristic for SAS+ planning obtained from
the state equation’, in Proc. IJCAI, pp. 2268–2274, (2013).

[3] Amanda Jane Coles, Andrew Coles, Maria Fox, and Derek Long, ‘A
hybrid LP-RPG heuristic for modelling numeric resource flows in plan-
ning’, J. Artif. Intell. Res., 46, 343–412, (2013).

[4] Maria Fox and Derek Long, ‘PDDL2.1: An extension to PDDL for ex-
pressing temporal planning domains’, JAIR, 20, 61–124, (2003).

[5] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael, ‘A formal basis for
the heuristic determination of minimum cost paths’, IEEE Trans. Syst.
Sci. Cybern., 4(2), 100–107, (1968).

[6] Malte Helmert, ‘Decidability and undecidability results for planning
with numerical state variables’, in Proc. AIPS, pp. 303–312, (2002).

[7] Malte Helmert and Carmel Domshlak, ‘Landmarks, critical paths and
abstractions: What’s the difference anyway?’, in Proc. ICAPS, pp. 162–
169, (2009).

[8] Jörg Hoffmann, ‘The Metric-FF planning system: Translating ”ignoring
delete lists” to numeric state variables’, J. Artif. Intell. Res., 20, 291–
341, (2003).

[9] Leonid G. Khachiyan, ‘A polynomial algorithm in linear program-
ming’, Soviet Mathematics – Doklady, 20, 191–194, (1979).

[10] Ryo Kuroiwa, Alexander Shleyfman, and J. Christopher Beck, ‘LM-
cut heuristics for optimal linear numeric planning’, in Proc. ICAPS, pp.
203–212, (2022).

[11] Ryo Kuroiwa, Alexander Shleyfman, and J. Christopher Beck. Extract-
ing and exploiting bounds of numeric variables for optimal linear nu-
meric planning – supplementary materials. https://tidel.mie.utoronto.
ca/pubs/Supplement_Numeric_Bound_ECAI23.pdf, 2023.

[12] Ryo Kuroiwa, Alexander Shleyfman, Chiara Piacentini, Margarita P.
Castro, and J. Christopher Beck, ‘The LM-cut heuristic family for opti-
mal numeric planning with simple conditions’, J. Artif. Intell. Res., 75,
1473–1544, (2022).

[13] Francesco Leofante, Enrico Giunchiglia, Erika Ábrahám, and Armando
Tacchella, ‘Optimal planning modulo theories’, in Proc. IJCAI, pp.
4128–4134, (2020).

[14] Dongxu Li, Enrico Scala, Patrik Haslum, and Sergiy Bogomolov,
‘Effect-abstraction based relaxation for linear numeric planning’, in
Proc. IJCAI, pp. 4787–4793, (2018).

[15] Johannes Löhr, Martin Wehrle, Maria Fox, and Bernhard Nebel, ‘Sym-
bolic domain predictive control’, in AAAI, pp. 2315–2321, (2014).

[16] Chiara Piacentini, Margarita P. Castro, André Augusto Ciré, and
J. Christopher Beck, ‘Compiling optimal numeric planning to mixed
integer linear programming’, in Proc. ICAPS, pp. 383–387, (2018).

[17] Chiara Piacentini, Margarita P. Castro, André Augusto Ciré, and
J. Christopher Beck, ‘Linear and integer programming-based heuris-
tics for cost-optimal numeric planning’, in Proc. AAAI, pp. 6254–6261,
(2018).

[18] Florian Pommerening, Gabriele Röger, Malte Helmert, and Blai Bonet,
‘Heuristics for cost-optimal classical planning based on linear program-
ming’, in Proc. IJCAI, pp. 4303–4309, (2015).

[19] Enrico Scala, Patrik Haslum, Daniele Magazzeni, and Sylvie Thiébaux,
‘Landmarks for numeric planning problems’, in Proc. IJCAI, pp. 4384–
4390, (2017).

[20] Enrico Scala, Patrik Haslum, and Sylvie Thiébaux, ‘Heuristics for nu-
meric planning via subgoaling’, in Proc. IJCAI, pp. 3228–3234, (2016).

[21] Enrico Scala, Patrik Haslum, Sylvie Thiébaux, and Miquel Ramírez,
‘Subgoaling techniques for satisficing and optimal numeric planning’,
J. Artif. Intell. Res., 68, 691–752, (2020).

[22] Alexander Shleyfman, Ryo Kuroiwa, and J. Christopher Beck, ‘Sym-
metry detection and breaking in linear cost-optimal numeric planning’,
in Proc. ICAPS, (2022).

[23] Ole Tange, ‘GNU parallel - the command-line power tool’, ;login: The
USENIX Magazine, 36, 42–47, (2011).

R. Kuroiwa et al. / Extracting and Exploiting Bounds of Numeric Variables for Optimal Linear Numeric Planning 1339

https://tidel.mie.utoronto.ca/pubs/Supplement_Numeric_Bound_ECAI23.pdf
https://tidel.mie.utoronto.ca/pubs/Supplement_Numeric_Bound_ECAI23.pdf

	Introduction
	Numeric Planning
	Extracting Bounds in Numeric Planning
	Bounds on Simple Numeric Variables
	Bounds in Linear Numeric Planning
	Correctness of the Algorithm

	Exploiting Bounds in a Heuristic Function
	LM-Cut for Linear Numeric Planning
	One-Variable Compilation
	First- and Second-Order Delete-Relaxations
	Action Multiplicators

	Improving LM-Cut with Bounds
	Rounding Up Action Multiplicators

	Empirical Evaluation
	Pickup Domain

	Conclusion

