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Abstract. The Adapter framework introduces lightweight mod-
ules that reduce the complexity of Multi-Domain Machine Transla-
tion systems. Compared to fine-tuned models, Adapters train faster,
do not overfit, have smaller memory requirements, and maintain
the base model intact. However, just like fine-tuned models, they
need prior information about the domain of the sentence. Otherwise,
their performance decreases for out-of-domain and unknown-domain
samples. In this work, we propose a solution that does not require
the information and can decide on the sample’s origin on-the-fly
without compromising quality or latency. We introduce a built-in gat-
ing mechanism utilising a knowledge distillation framework to acti-
vate a subset of softly-gated, domain-specific Adapters that are rel-
evant to the sentence. The effectiveness of the proposed solution is
demonstrated through our experiments on two language pairs, using
both in-domain and out-of-domain datasets. Our analysis reveals that
Gated Adapters provide significant benefits, particularly in the case
of ambiguous, misclassified samples, resulting in an improvement of
over +5 COMET points.

1 Introduction

Neural Machine Translation (NMT) emerged as a go-to solution for
Machine Translation, providing state-of-the-art results, especially in
high-resource scenarios [2, 41, 31]. NMT models are usually trained
using large, general-purpose parallel corpora. Therefore, to limit one
of the known shortcomings of NMT – out-of-domain translation [18],
there is a need to perform domain adaptation and improve the qual-
ity in the unknown domain, which might not be well represented in
the parallel corpora.

Multi-Domain Machine Translation (MDMT) is a technique
aimed at addressing the shortcomings of a general-purpose NMT
model in translating text that falls outside its scope from various do-
mains. According to Koehn and Knowles [18], a domain is charac-
terized by a corpus from a particular source and may differ in terms
of topic, genre, style, level of formality, among other things. This
complexity underscores the challenge of MDMT. While fine-tuning
one model for each domain is a straightforward approach that has
been proven to be effective [12], it becomes challenging to imple-
ment in real-world scenarios where the number of domains and lan-
guage pairs is substantial.

Recently, the Adapter framework [15] has been introduced as
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an alternative to regular fine-tuning. Adapters are lightweight mod-
ules injected into a pre-trained model and fine-tuned to a specific
task. This method requires training only newly introduced parame-
ters, keeping the base model frozen. In a multi-domain setting, one
Adapter per domain must be trained. However, unlike fine-tuned
models, Adapters can be deployed together when they share the same
base model. On the downside, the domain of each sentence must be
known at inference time to activate the right Adapter. When the ori-
gin of the sentence is unknown or out-of-domain (we refer to both
cases as an unannotated domain), a classifier is typically used to pre-
dict a likely domain [16]. This solution has two drawbacks: (i) it
comes with a latency cost, as a pipeline approach increases the over-
all complexity, and (ii) it requires extra computation resources (i.e.
additional GPU unit) to perform on-the-fly classification.

In this work, we propose a built-in gating mechanism, named
Gated Adapters (GAD), to handle unannotated domains without com-
promising quality or latency. Gated Adapters extend the Adapter
framework with the gates learnt via knowledge distillation [14]. The
gates perform a fusion between sample-relevant Adapter modules.
In contrast to the Adapters, GAD performs a soft-gating, i.e. multi-
ple Adapters might be triggered, rather than a hard-gating when only
one Adapter is used. Soft-gating in Adapter modules allows them to
share relevant, cross-domain knowledge with each other (i.e. enhanc-
ing positive transfer learning). This is unlike the standard Adapters,
which isolate a medical Adapter from a law one, for example. Addi-
tionally, the proposed method does not require an external classifier
during inference and performs the domain prediction on-the-fly.

We evaluate the Gated Adapters on in- and out-of-domain transla-
tion, showing that the performance is on-par or better than the previ-
ous work. Moreover, our analysis reveals that in the case of ambigu-
ous, misclassified examples (i.e. samples where the external classi-
fier would assign an incorrect label), GAD outperforms other MDMT
systems. To summarise, our contributions are as follows:

• We propose Gated Adapters as an extension to Adapters in the
MDMT setting that does not require an external classifier at infer-
ence when the origin of the sentence to translate is unknown.

• We present an extensive evaluation of two language pairs: English
to Polish and English to Greek, with six domains per pair.

2 Method

2.1 Adapters

Adapters [15] are lightweight modules injected into a pre-trained
model and trained on new data while keeping the pre-trained model
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frozen. This means that Adapters train only a fraction of the parame-
ters of the initial model. Furthermore, because Adapters do not alter
the base model, unlike conventional fine-tuning, there is no need to
maintain a separate model for each task (e.g. domain).

In the standard NMT setup [4], an Adapter (AD) processes a trans-
former hidden state x at a layer i and consists of a residual connec-
tion [13], a layer norm LN [1] and two linear layers: down-project D
and up-project U , creating a bottleneck with an activation function
ReLU [23].

ADi(xi) = U(ReLU(D(LN(xi)))) + xi (1)

2.2 Gated Adapters

This work extends the Adapter framework by introducing a gating
mechanism that allows the system to handle sentences from any
domain and decide on its domain on the fly. The module provides
probability-based soft gating that, given a set of domain-specific
Adapters, multiplies each Adapter’s output by a factor proportional
to the probability of the sentence belonging to the Adapter’s domain.
This approach follows the mixture-of-experts (MoE) technique [37];
however, in contrast to regular MoEs, the experts in our proposed
model have a pre-defined role – they are domain-specific modules.

In the following subsections, we describe (i) the gating mechanism
and (ii) the knowledge distillation framework used to train the gates.
The overview of our method is presented in Figures 1 and 2.
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+

Figure 1. The schema illustrates a single Gated Adapter module, where
the Adapter’s output is multiplied by the probability value provided by the
external gating module (gd). This probability value indicates the degree to

which a sentence belongs to the domain represented by the Adapter.

2.2.1 Gating mechanism

The gating mechanism is injected at each transformer layer i and acts
as a weighted average over the output of each Adapter at that layer:

xout =
D∑

d

gnormdADd(xin) (2)

where xin ∈ Rhidden_dim is the Adapter’s input, and gnorm is com-
puted as:

gnorm = norm(Wg × agg(xinT )) (3)

Here Wg ∈ R|D|×hidden_dim is a matrix of learnable weights, norm
is a general normalisation function, and agg is a general aggregation
function over all the time steps T xinT = x1:T for the encoder layers,
and over all the steps up to the current one xinT = x1:t for the
decoder layers (xinT ∈ Rhidden_dim×|T|). In this work, we set norm
to a softmax with a temperature parameter β and agg to a standard
average operation.

2.2.2 Knowledge distillation

A standard NMT model is trained using a cross-entropy loss (LCE)
with label smoothing [39]. We extend this setup and apply the knowl-
edge distillation framework [14] to learn the values of the gates.
Given a source sentence s, we estimate a probability distribution over
domains conditioned on the sentence. As the actual distribution is
unknown, we provide it as an estimation from an external classifier
(Pclf = Pθ(d|s), implementation details in Section 3.2.2). The ad-
ditional objective, Kullback–Leibler divergence (LKL), teaches the
gates to mimic the teacher model.

We train the model jointly, in the same manner as Adapters, freez-
ing everything but the parameters of Adapters and gates. The hyper-
parameter α weights the impact of the additional loss function, and
τ is a softmax temperature used to estimate the probabilities Pg (ob-
tained as a softmax function over the gates values g from Equation 3).

LKL = τ2DKL(Pclfτ ||Pgτ ) (4)

L = LCE + αLKL (5)

3 Experiments

3.1 Data

Our experimental setup involves two language pairs: English to Pol-
ish and English to Greek. We initiated the experiments by training
a general-purpose machine translation model using ParaCrawl [3] as
a baseline (BASE). To ensure the effectiveness of our approach, we
selected a diverse set of domains from OPUS [40], including medi-
cal, legal, and IT domains, which vary significantly in terms of style,
level of formality, and domain-specific terminology. By incorporat-
ing these domains, we aimed to demonstrate the robustness of our
approach in handling various domain adaptation scenarios. The cho-
sen six domains are listed below:

• LAW: legal documents from JRC Acquis
• IT: combination of KDE4 (only EN→PL), PHP, GNOME and

Ubuntu localisation files
• SUB: a subset of OpenSubtitles 20181

• TALK: TED Talks transcripts [35]
• MED: medical documents from European Medicines Agency

(EMEA)
• REL: Bible (EN→EL) [8] and Koran (EN→PL)

The statistics of the training data after pre-processing (includ-
ing punctuation normalisation, ratio, language [22], length and
dictionary-based filtering) are presented in Table 1. We held 2000
examples per domain for evaluation purposes (1000 for validation
and 1000 as a test set).

Our analysis of the data involved utilising an SVM classifier2

with averaged BERT [9] embeddings as features to measure the A-
Proxy [6] distance between the domains. The A-Proxy distance is

1 http://www.opensubtitles.org
2 As implemented in scikit-learn [27]
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Source: "Law act related to the usage of artificial intelligence..."

Translation: "Ustawa prawna dotycząca wykorzystania sztucznej inteligencji..."

Figure 2. Overview of Gated Adapters. Given a sentence, the gating module predicts the probability of the sentence belonging to each domain. The
probabilities behave as a weighting factor for the corresponding domain-specific Adapters. In the example sentence, the gates lean towards law and IT Adapters

and discard the medical one, as the text concerns an AI-related law act.

Table 1. Statistics of the training corpora as the number of parallel
sentences. The table does not include 2000 parallel sentences per domain for

validation and test purposes.

English→Polish English→Greek

BASE 33M 20,1M
LAW 838k 1244k
IT 96k 89k
SUB 1854k 1780k
TALK 206k 257k
MED 229k 257k
REL 108k 59k
SUM 3331k 3686k

a measure that falls within the range of 0 to 2, where 0 indicates
a perfect domain match and 2 represents complete separability. As
shown in Figure 3, the domains were correctly separated, with SUB
and TALK demonstrating the closest relationship and LAW exhibiting
the greatest distance from the others.

3.2 Systems

We employed the Transformer Base [41] architecture implemented
in fairseq3 [25] for all our models. It consists of six encoder and
six decoder layers, with an embedding dimension of 512, an FFN of
2048, and eight attention heads. The source and target embeddings
are shared and tied with the output layer. We tokenised the data using
a unigram SentencePiece model [19, 20] with a size of 32k. Table 2
presents the parameters of all the systems described in the following
sections.

3.2.1 Baselines

The experiments begin with training a general-purpose model, la-
belled as BASE, using large-scale data from ParaCrawl (refer to Ta-

3 fairseq architecture: transformer_wmt_en_de

LAW 1.91 1.97 1.94 1.87 1.99

IT 1.91 1.91 1.85 1.96

SUB 1.19 1.96 1.83

TALK 1.94 1.82

MED

IT SUB TALK MED

1.98

REL

Figure 3. The A-Proxy distance between the domains.

Table 2. The rounded number of overall and trainable parameters of the
evaluated models. In square brackets, we denoted the relative difference to

the BASE model.

Model Parameters Trainable

BASE 79M 79M
FT 6× 79M [+5× 79M] 6× 79M
MIX 79M 79M
TAG 79M [+3k] 79M
AD 98M [+19M] 19M
GAD 98M [+19M] 19M
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ble 1). This model is evaluated on all domains to establish a lower
bound for all MDMT systems and is used as a pre-trained Machine
Translation model (i.e. MDMT systems build upon the model rather
than starting from scratch). Additionally, we employ this model for
fine-tuning (FT) to create a set of domain-specific models, each for
a different domain. This strategy is an upper bound for MDMT sys-
tems; however, it has limitations when scaling the solution across
various language pairs and domains as it produces a separate model
per domain. The training details of these and the following models
are described in the Appendix.

We employ two MDMT, non-adapter baselines: (i) MIX, which is
straightforward training the model on a concatenation of domain cor-
pora, (ii) TAG, which adds a domain-control mechanism in the form
of domain-specific tag included into each source sentence and en-
ables the model to differentiate between the domains [16, 38]. Both
methods use BASE as a starting checkpoint.

3.2.2 Adapter-based systems

To assess the effectiveness of the Adapter-based systems, we ex-
amine the standard Adapters (AD) and compare their performance
with the newly proposed Gated Adapters (GAD). Compared to other
MDMT systems, Adapter-based systems train a fraction of parame-
ters (refer to Table 2) as these methods freeze the NMT model and
train only the Adapter modules. For AD and GAD, we rely on MIX as
a starting checkpoint [30] and use Adapter modules with a bottleneck
of 2 (i.e. reducing the dimensionality via the down-project layer D
by 2). The rest of the training procedure is consistent with the other
MDMT systems.

Gated Adapters use RoBERTa4 [21] as a base model for an exter-
nal classifier required for knowledge distillation (see Eq. 4). We train
two classifiers, one per language pair, using the English side of the
parallel corpora as the datasets are not equivalent, e.g. EN→EL uses
Bible and EN→PL Koran. To prevent data leakage, only the training
parallel corpora are used to train and validate the models. The eval-
uation of the classifiers is presented in Table 3. The classifiers serve
not only as a teacher model for GAD (i.e. required only during train-
ing) but also as a means of predicting the domain for the TAG and AD
baselines during inference. In the results section, we denote the sys-
tems that rely on the classifier during inference with an index CLF.
Those baselines are constructed as a pipeline solution, i.e. first, the
classifier predicts a domain, and then the MDMT model translates
a sentence. For clarity, we present the ORACLE version as an up-
per bound of those systems, which always utilises the ground truth
domain.

Furthermore, we up-sampled all the domains to the one with the
highest sentence count. This step prevents high-resource domains
from overshadowing other domains’ weights. Otherwise, we noticed
in preliminary experiments that a high-resource domain could harm
a similar (in terms of domain closeness) lower-resource domain (i.e.
TALK in SUB–TALK pair).

3.3 Metrics

Following the study and recommendation of Kocmi et al. [17], we
use COMET5 [34] as main evaluation metric. In addition, we provide

4 roberta-large [43]
5 We use wmt20-comet-da COMET model and multiply results by 100

Table 3. Quality of the RoBERTa-based classifiers in terms
micro-averaged F1 score.

Model F1

EN → PL 95.65
EN → EL 94.83

chrF [32] and BLEU [26] scores using SacreBLEU6,7 [33]. Due to
computational and time constraints, we compute three independent
runs exclusively for Adapter-based systems (AD and GAD) and report
an average score with standard deviation for them.

3.4 Results

Table 4 presents the evaluation results. We report both per-domain
scores and aggregated metrics - unweighted and weighted averages
AVG, wAVG. The AVG metric should be treated as the primary metric
determining the quality of an MDMT system in the case of balanced
test distribution; the wAVG in the case of the test distribution match-
ing the training one. The weights for the latter metric are derived
from the ratio of domain-specific data based on the number of sen-
tences (see Table 1).

Gated Adapters perform the best out of all MDMT systems
based on aggregated metrics in both language pairs. Overall, Gated
Adapters are on-par or better than not only methods that require a
classifier but also their oracle version (e.g. Adapters with ground
truth domain tag) while simultaneously providing the possibility of
handling unannotated domains. Especially in the case of the AVG
metric, the GAD outperforms ADCLF with +1.5 and +3.5 COMET
point gain in English to Polish and English to Greek language pairs
correspondingly. We report other automatic evaluation metrics: chrF
and BLEU, in the Appendix.

4 Method analysis

This section dissects the Gated Adapters to examine the method’s
advantages and explain its performance beyond the main, in-domain
results. We analyse the cross-domain and out-of-domain capabilities
in Sections 4.1 and 4.3, measure the efficiency in Section 4.2 and
perform an ablation study in 4.4.

4.1 Knowledge sharing

The preliminary analysis revealed that the SUB and TALK domains
are the most related in terms of A-Proxy distance. This observation
is consistent with the achieved results. In Table 4, the CLF versions
of TAG and AD models have the most decrease in quality compared
to the ORACLE counterpart in these two domains. Additionally, the
confusion matrix of the classifier presented in Figure 4 demonstrates
that those two domains were the most difficult to distinguish in the
EN→PL dataset. While the other domains are classified with high
accuracy, rarely making any mistakes, the pair of SUB and TALK
is the most troublesome to both classifiers (the same phenomenon
appears in EN→EL, see Appendix).

The GAD model can handle ambiguous, cross-domain examples
(i.e. examples for which two or more domains are probable according
to the classifier) because it has learnt a soft gating mechanism that
allows knowledge sharing among outputs of different Adapters (see

6 chrF2|#:1|c:mixed|e:yes|nc:6|nw:0|s:no|v:2.2.0
7 BLEU|#:1|c:mixed|e:no|tok:13a|s:exp|v:2.2.0
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Table 4. Translation performance measured using COMET. For each system, we aggregate scores using an unweighted and weighted average, where the
weights come from the ratio of domain-specific training data based on the number of sentences. We report average scores over three runs with a standard

deviation for AD and GAD.

LAW IT SUB TALK MED REL AVG wAVG

English – Polish
BASE 84.58 39.18 30.74 46.24 54.79 11.21 44.46 46.50
FT 97.30 66.73 48.93 53.26 86.29 105.36 76.31 66.28
TAGORACLE 95.76 61.20 47.22 53.03 82.78 89.12 71.52 64.00
ADORACLE 96.11±0.27 63.47±1.90 46.98±0.53 53.36±0.80 83.26±0.38 98.83±1.25 73.67±0.36 64.38±0.31

MIX 95.79 61.93 47.50 52.42 82.56 86.88 71.18 64.05
TAGCLF 95.73 61.30 45.90 52.41 82.12 88.86 71.05 63.16
ADCLF 95.81±0.21 63.37±1.73 46.31±0.36 52.81±0.66 82.71±0.40 98.04±1.21 73.17±0.31 63.84±0.23

GAD 95.47±0.13 64.78±0.87 46.97±0.35 53.57±0.22 83.55±0.67 103.67±0.23 74.67±0.30 64.44±0.18

English – Greek
BASE 80.74 24.31 38.53 66.89 35.38 10.67 42.75 53.74
FT 87.55 73.09 53.28 77.02 74.68 78.31 73.99 68.87
TAGORACLE 88.34 62.70 51.30 75.19 72.36 46.03 65.99 67.13
ADORACLE 88.07±0.10 68.75±2.65 51.91±0.47 75.71±0.54 74.21±0.61 51.23±0.46 68.31±0.51 67.72±0.31

MIX 87.79 66.51 51.51 73.74 73.30 45.64 66.42 67.09
TAGCLF 88.19 61.97 50.05 73.58 72.08 45.85 65.29 66.32
ADCLF 88.04±0.08 68.60±2.54 50.91±0.41 73.97±0.26 73.79±0.62 50.91±0.41 67.70±0.45 67.07±0.26

GAD 87.69±0.10 69.34±0.35 52.29±0.25 74.67±0.59 73.83±0.29 70.23±1.22 71.34±0.40 68.00±0.14

Equation 2). Considering just misclassified (i.e. with a predicted non-
ground truth domain label) examples from the test dataset, the GAD
outperforms its counterpart in both language pairs by over 5 and 8
COMET points. Table 5 presents the results of the evaluation. The
quality of the methods that require a classifier during inference (TAG,
AD) drops significantly compared to GAD. While the Gated Adapters
use the same classifier during training (the classifier makes the same
mistakes), GAD is aware of the uncertainty (i.e. soft-gating instead
of hard-gating) and learns to handle such cases during knowledge
distillation. Table 6 presents the translation examples with the impact
of misclassification, showing that a wrong domain label may lead to
a meaningless translation in extreme cases.

Table 5. Translation evaluation of the misclassified sentences from the test
dataset using COMET. Gated Adapters outperform both methods that

require a classifier at inference whenever the classifier fails to predict a
correct domain label.

EN→PL EN→EL

TAGCLF 31.98 45.46
ADCLF 42.59 55.33
GAD 48.33 64.01

4.2 Efficiency

In order to evaluate the efficiency of our proposed model, we con-
ducted experiments to compare inference time. We calculated the
number of generated tokens and translation duration per domain and
aggregated the values to report the number of processed sentences
and tokens per second. We performed the inference per domain be-
cause each domain differs in its characteristics, such as average sen-
tence length. All experiments were run on a single NVIDIA V100
GPU, with a batch size of 64 and with greedy decoding.

Our method introduces two additional drawbacks that affect effi-
ciency: (i) the gating module and (ii) the requirement of using all the
Adapters to perform the aggregation. To limit the impact of the latter

LAW 982 4 0 5 7 0

IT 7 985 2 1 5 0

SUB 1 3 906 93 1 8

TALK 3 2 78 893 1 5

MED 7 6 5 2 986 0

REL 0

LAW

0

IT

9

SUB

6

TALK

0

MED

987

REL

Pr
ed

ic
te

d
cl

as
s

True class

Figure 4. Confusion matrix for the classifier in the EN→PL language pair.
Albeit its overall high quality, the model makes almost exclusively mistakes

between the SUB–TALK domain pair.
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Table 6. Misclassified examples from the EN→PL test dataset. AD generates higher-quality translation when we manually provide the right domain during
inference (i.e. by changing from CLF to ORACLE). At the same time, GAD does not rely on an external classifier and therefore does not suffer from the

aforementioned issue. Misclassification can lead to meaningless translation, as in the second example, where the model produces a relevant translation only
after providing the correct label, i.e. changing from TALK to REL (“trunk” given the context is incorrectly translated to “bagażnik” instead of “pień”).

Source These events are often transitory.
Reference Zaburzenia te są często przemijające.
ADCLF=TALK Zdarzenia te są często przejściowe.
ADORACLE=MED Zdarzenia te są często przemijające.
GAD Zdarzenia te są często przemijające.
Source The birth pangs brought her to the trunk of a date palm.
Reference I doprowadziły ją bóle porodowe do pnia drzewa palmowego.
ADCLF=TALK Pangi narodzin przywiozły ją do bagażnika palmy randkowej.
ADORACLE=REL I przyniosły ją bóle porodowe do pnia drzewa palmowego.
GAD I doprowadziły ją bóle porodowe do pnia palmy daktylowej.

drawback, we implemented a parallel approach instead of a sequen-
tial one. In the sequential approach, domain-specific Adapters are
processed one at a time, whereas in the parallel approach, all steps are
processed simultaneously, except for layer norms, via multi-channel
linear layers (i.e. the down-project D and up-project U layer with the
non-linear function ReLU) instead of iterating over domains.

We present the comparison between the Adapters + classifier
(ADCLF) pipeline versus Gated Adapters in Table 7. For reference,
we also include the raw Adapters, which assume a scenario where the
right domain is known. The Gated Adapters outperform the pipeline
scenario of Adapters preceded by a classifier. While GAD adds an
overhead over the Adapters setup, it does not require an additional
classifier. The Gated Adapters can use just one device (i.e., GPU) at a
time, whereas the pipeline requires two devices to avoid the overhead
of checkpoint loading for online translation. Additionally, compared
to the Adapters without a classifier, GAD does not need information
about the origin of a sample.

Table 7. Efficiency comparison in terms of processed sentences per second
and tokens per second between the classifier and Adapters pipeline (ADCLF)

and Gated Adapters (GAD). For reference, we include the standalone
Adapters (ADORACLE) values, that assumes prior domain knowledge for

each sentence.

sentences/s tokens/s

ADORACLE 88.11 2091.77
ADCLF 51.64 1225.90
GAD 58.65 1392.12

4.3 Out-of-domain evaluation

In Sections 3.4 and 4.1, we demonstrated the in-domain and cross-
domain capabilities of the Gated Adapters. However, as the gates are
merely a distilled version of an external classifier, the out-of-domain
capabilities remain in question. Therefore, we performed an addi-
tional, out-of-domain evaluation to verify the gating mechanism’s
robustness. This step checks whether the GAD’s quality does not de-
crease for out-of-domain samples and persists quality of the classifier
as in ADCLF. Both MDMT systems attempt to use an external clas-
sifier (RoBERTa in ADCLF) or an internal one (gates in GAD) to map
out-of-domain samples into one of the pre-defined domains.

We evaluate the models on two out-of-domain datasets: Flores-
200 devtest [24] and WMT’20 News test [5] dataset (the latter avail-
able only for EN→PL). We report the results in Table 8. Although
the gates match around 0.03% size of the classifier in terms of the

number of parameters (the gates introduce less than 40k new param-
eters), they retain similar performance and generalizability. On both
datasets, GAD presents on-par results with ADCLF while using a dis-
tilled version of the classifier embedded into the model and making
domain prediction on-the-fly, verifying the gating mechanism’s ro-
bustness.

Table 8. COMET scores for an out-of-domain evaluation on the
Flores-200 devtest and News WMT’20 test dataset. We report average of

three runs with the standard deviation.

EN → PL EN → EL

Flores
ADCLF 57.61±0.24 67.00±0.46

GAD 57.63±0.24 66.90±0.32

News
ADCLF 46.44±0.71 –
GAD 46.65±0.46 –

4.4 Knowledge distillation ablation

We conducted an ablation study to examine the effect of treating
gates as a regular classifier and using cross-entropy loss instead of
knowledge distillation, which is in line with the method used in pre-
vious works by Britz et al. [7] and Pham et al. [29]. The validation
dataset was used to present the ablation results in Table 9. The out-
comes demonstrate the advantages of the proposed approach, as it
enables Gated Adapters to match and even surpass the quality of
Adapters.

Table 9. Ablation on the EN→PL validation dataset comparing training
the gates as a classifier (CE) against the knowledge distillation (KD)

framework. We report AVG and wAVG for COMET score

AVG wAVG

CE 72.02 61.51
KD 73.62 62.73

5 Related work

The mixture-of-experts models are gaining more traction in the Ma-
chine Translation field [37]. Recently, Dua et al. [10] propose a tem-
perature heating mechanism and dense pre-training for easing the

M. Klimaszewski et al. / Gated Adapters for Multi-Domain Neural Machine Translation 1269



convergence of MoE MT models. The NLLB Team [24] presented
a multilingual MoE model on a larger scale, breaking the 200 lan-
guages barrier.

Adapters, as a specific version of a MoE, were lately also used for
the task of domain adaptation. The work of Vu et al. [42] focuses on
the domain generalisation task via Adapter leave one-out strategy. In
the similar, regularisation focused way, (and additionally improving
overall complexity), Rücklé et al. [36] proposed AdapterDrop tech-
nique to drop out Adapter layers, similarly to removing Transformer
layers [11]. The presented works can be applied to any Adapter-based
MDMT system and could be applied with the GAD model.

Pfeiffer et al. [28] introduce the AdapterFusion technique, which,
as our work, shares the knowledge between multiple Adapter mod-
ules. However, their method requires additional, separate training as
they extend the regular Adapter setup with a fusion layer on top of the
multiple Adapters and train the new parameters with the base model
and Adapter modules frozen. Moreover, they focus on the multi-task
setup rather than the multi-domain one. Pham et al. [29] propose to
extend a highway version of residual Adapters with domain classi-
fiers on top of an encoder and decoder and decide on a domain on a
word-per-word basis. They evaluate the solution in the MDMT set-
ting. As in the work of Pfeiffer et al. [28], they use an additional
training procedure that requires separate training of the classifiers.

6 Conclusions

In this work, we present an extension to the Adapters framework in
the MDMT setting called Gated Adapters, which perform soft-gating
over multiple domain-specific Adapters. We evaluate the validity of
the proposed solution on two language pairs and across six domains.

We show that GAD not only improves upon regular Adapters but
also demonstrates resistance to domain misclassification and pro-
vides high-quality translation, even when the sentences are ambigu-
ous in terms of their domain. Moreover, the proposed solution does
not require an external classifier at the inference time, making the
use more efficient – it requires less computational resources than a
pipeline solution of a classifier with an MDMT model (e.g. Adapters
AD).

7 Limitations

The main limitation of our technique is the data requirements. We
test our method on high-resource language pairs and domains that
fall within the mid-to-high-resource range. There is not enough ev-
idence that the technique would work for (extremely) low-resource
domains, considering the up-sampling required by Gated Adapters.
Future work could investigate if this is a shortcoming of the proposed
method. Furthermore, we rely on a classifier that is built upon a pre-
trained language model [21], which may not be sufficiently robust to
attain the desired level of accuracy in low-resource languages or may
not be accessible at all.
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