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Abstract. Complex Event Recognition (CER) systems detect event
occurrences in streaming input using predefined event patterns. Tech-
niques that learn event patterns from data are highly desirable in
CER. Since such patterns are typically represented by symbolic au-
tomata, we propose a family of such automata where the transition-
enabling conditions are defined by Answer Set Programming (ASP)
rules, and which, thanks to the strong connections of ASP to sym-
bolic learning, are learnable from data. We present such a learn-
ing approach in ASP, capable of jointly learning the structure of an
automaton, while synthesizing the transition guards from building-
block predicates, and a scalable, incremental version thereof that
progressively revises models learnt from mini-batches using Monte
Carlo Tree Search. We evaluate our approach on three CER datasets
and empirically demonstrate its efficacy.

1 Introduction

Complex Event Recognition (CER) systems [20, 3] detect occur-
rences of complex events (CEs) in streaming input, using temporal
patterns consisting of simple events, e.g. sensor data, or other com-
plex events. CE patterns are typically defined by domain experts in
some event specification language (ESL) [22] . Despite the diversity
of such languages, a minimal event processing operators that every
ESL should support [39, 4, 20, 21] includes sequence and iteration
(Kleene Closure), implying respectively that some particular events
should succeed one another temporally, or that an event should occur
iteratively in a sequence, and the filtering operator, which matches
input events that satisfy a set of predefined predicates.

Taken together, these three operators point to a computational
model for CER based on symbolic finite automata [11] (SFA), i.e.,
automata where the transition-enabling conditions are predicates
than need to be evaluated against the input, rather than mere symbols.
As a result, in most existing CER systems CE pattern definitions are
SFA-based [38, 1, 39, 16, 14, 15, 37, 35, 10, 3]. Prominent areas of
CER research, then, concern the study of trade-offs between ESLs’
expressive power and pattern matching complexity [16, 22], in addi-
tion to practical issues, such as scalability and distributed processing.

CE pattern learning is a less studied CER topic, which, however,
is of utmost importance, since CE patterns are not always known in
advance, or they frequently need to be revised. A few learning ap-
proaches have been proposed, which have several limitations. Some
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focus more on learning in the presence of commonsense phenom-
ena, such as the duration of events in time [24, 23], and less on the
sequential nature of such events; others do support operators such as
iteration [32, 25, 26, 19], or filtering predicates [28, 18], while most
offer very limited support for reasoning with background knowledge
and CE pattern revision.

To address such issues we propose answer set automata learning
(ASAL), a framework that allows to specify SFA-based CE patterns
in the form of answer set programs (ASP) [29], which, thanks to the
strong connections of ASP to symbolic learning, are directly learn-
able and revisable from data. ASAL allows to synthesize patterns uti-
lizing the core CER operators by jointly learning the structure of an
SFA pattern and the definitions of its transition guards, consisting
of Boolean combinations of building-block, background knowledge
predicates. The core ASAL approach relies on abduction w.r.t. an SFA
interpreter. To scale it up to large training sets, we utilize SFA revi-
sion in a Monte Carlo Tree Search (MCTS) that continuously re-
vises programs learnt from mini-batches of the data, in an effort to
approximate a global optimum. We evaluate both the batch and the
incremental, MCTS-based versions of our approach on three CER
datasets and compare it to classical automata learning techniques,
demonstrating empirically its efficacy.

2 Related Work

The methods introduced in [19] and [32] learn event-based patterns
from historical traces, along with filtering constraints between the
attributes of the constituent events. These methods assume purely
sequence-based ESLs that do not support iteration, therefore, they
are restricted to simple sequential patterns, rather than SFA-based
ones. Closely related is the technique of [25, 26], which extracts CE
patterns in the form of frequent queries. However, the number of such
queries can be excessive, without them being necessarily representa-
tive of the situations (CEs) of interest [26]. Moreover, this technique
is also restricted to a purely sequential ESL. The method of [28]
precedes the process of constructing a CE pattern in the form of a
probabilistic automaton, by a representation learning technique that
generates the pattern’s constituent events in an unsupervised fashion.
This is a a purely learning-based method designed to overcome the
unavailability of domain knowledge on informative event primitives.
On the downside, this method has no connections to concrete ESLs
and learns less interpretable patterns that cannot be used with exist-
ing CER engines, since a pattern’s constituent events are opaque.
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PATTERN SEQ(ITER(Xy), ITER(Y:), ITER(Z:))
FILTER Xy .alive < Xt—l .alive
AND Xt .apoptotic > Xy _ 7 .apoptotic
AND Y .alive < 800
AND Zy.alive < Zj.necrotic

any Py P2 p3
start 0 U Cj 3

p1(T) < decrease(alive(T)), increase(apoptotic(T)).
po (T) < less_than_val(alive(T), 800).
p3(T) < less_than_att(alive(T), necrotic(T)).

(a) A CE pattern that captures the simulation on the right (upper),
its corresponding SFA (middle) and the SFA’s guards (bottom).
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(b) Temporal evolution of different cell populations after the injec-
tion of a drug coctail over the course of a simulation [2, 36].

Figure 1: CER for cancer treatment simulation optimization.

ASAL supports the core CER operators of sequence, filtering and
iteration, thus going beyond the sequence pattern learning task of
[19, 32, 25, 26]. Moreover, in contrast to [28], the programs learnt
by ASAL are easily translatable into any ESL that supports the above-
mentioned minimum of expressive power.

The field of finite automata (FA) learning [12] has a long history
in the literature [5, 34, 27, 6, 18]. Most existing techniques are either
noise-intolerant leaners [5, 6], or rely on greedy heuristics for state
merging [34, 27], a technique that generalizes as much as possible
from a large, seed induction structure, the Prefix Tree Acceptor, gen-
erated from the entire training set. These approaches often tend to
learn large, overfitted models that generalize poorly and raise scala-
bility issues in large datasets. In contrast to the above, ASAL learns
incrementally from small data batches, never processing the training
set in its entirety, while still aiming for a model with an adequate
global performance, in a noise-tolerant fashion.

The aforementioned FA induction algorithms learn classical — as
opposed to symbolic — FA. Moreover, they all learn from single-
sequence input, an important limitation to their applicability in CER,
where the input is typically multivariate. On the other hand, al-
though some algorithms for SFA induction do exist [31, 7, 17], they
are mostly based on “upgrading” existing classical FA identification
techniques to infinite alphabets, and they thus suffer from the limita-
tions outlined above.

Learning FA and grammars has been an application domain for
Inductive Logic Programming (ILP) [9, 13] since its early days. More
recent ILP frameworks have also been applied to the task [33, 18].
Both these approaches are designed to learn from small univariate
training samples and cannot deal with noisy input.

3 Background and Problem Statement

We begin with a brief description of a tumor evolution simulation op-
timization task [2, 36], which we will refer to as a running example
throughout the paper. Figure 1(b) presents the temporal evolution of
tumor cell populations of different type (alive, necrotic, apoptotic) in
a computer simulation, as a result of injecting a tumor necrotic fac-
tor (TNF — a drug cocktail) into the tumor. The goal is to assess the
efficacy of the particular TNF in limiting tumor growth. Processing
such a simulation with a CER system would allow to detect critical
events over its course, which in turn may facilitate drug development
research. For instance, given that such simulations are extremely de-

manding computationally, early-stopping unpromising ones, based
on the detected events, to devote computational resources elsewhere,
can significantly speed-up the research [36].

Event tuples. Typically, CER systems operate on streams of
event tuples [20, 4], i.e. time-stamped tuples of attribute-value pairs.
In general, we can think about CER input as a multivariate se-
quence with one sub-sequence per event attribute. For instance, an
attribute may correspond to a particular sensor and its values to
the sensor readings over time, which may be numerical, or cate-
gorical. An event tuple, then, is a “snapshot” of the joint evolu-
tion of all domain sensor readings over time. As an example, the
multivariate sequence simulation input in Figure 1(b) is converted
into a sequence of event tuples, with one tuple per time step in
the simulation. The tuple corresponding to ¢ = 200 would be
(necrotic = 110, apoptotic = 420, alive = 770, time = 200).

CE patterns define a temporal structure over event tuples and a
set of constraints over their attributes. A pattern is matched once a
set of event tuples is encountered in the input, such that the tuples’
temporal ordering adheres to the pattern’s temporal structure and the
tuples’ attributes satisfy the pattern’s constraints.

The upper part of Figure 1(a) presents an example of such a pat-
tern that may be matched against the input of the simulation in Fig-
ure 1(b). The pattern is expressed in a pseudo-ESL that illustrates the
core CER operators of sequence, iteration and filtering. The pattern’s
variables X, Y;, Z; are assumed to be ranging over event tuples and
X refers to a tuple received at time ¢. The first line specifies the tem-
poral structure of the pattern, using the operators SEQ(E1 ... Ey),
which matches any occurrence of tuples E ... E, in a sequence,
and ITER(E) (iteration), which matches any iterative occurrence of
more than one instances ' of E.

The FILTER/AND part of the pattern defines the constraints that the
instances of X4, Y, Z; should satisfy. The first two lines (following
the “PATTERN” part) dictate that for each pair of consecutive tuples
X¢—1 and X; the value of the alive attribute should decrease and that
of the apoptotic attribute should increase. The next line dictates that
any Y; event tuple instance is expected to respect a threshold on the
population size of alive cells, while the last line in the pattern dictates
that for each Z; tuple instance, the value of necrotic should be lower
than that of alive. It may then be seen that the entire pattern matches

L This is the semantics of the iteration operator that we assume in this work.
This is in contrast to other iteration operator semantics, which match zero
or more occurrences of E.
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cases such as those presented in the simulation of Figure 1(b), where
(i) initially there is period where the alive cancer cells population is
constantly decreasing, while that of apoptotic ones is increasing; (ii)
this period is followed by another where the alive cells population
does not exceed a given threshold; (iii) the latter is followed by a last
period where the population of alive cells is strictly lower than that
of necrotic. This pattern expresses a common motif of the effects of
successful TNFs on tumor growth [2].

From CE patterns to SFA. CE patterns may be converted into
SFA by mapping a pattern’s temporal structure to the SFA’s struc-
ture and the pattern’s filters to the SFA’s transition guards. This is
illustrated in the middle and lower parts of Figure 1(a) respectively,
where the guards are presented as a set of logic programming rules.
Note that the T" variable there has the same meaning as the ¢ sub-
script in the pattern, i.e. to implicitly refer to the tuple received at
time 7. The SFA loops on its start state until the first occurrence of a
pi1-satistying tuple. The latter is defined as a conjunction of two pred-
icates, decrease/1 and increase/1, which are assumed to be defined as
background knowledge (BK) to reflect the simultaneous change in
alive and necrotic cell populations specified by the pattern’s filter
(we will provide example BK predicate implementations in Section
4). Upon the occurrence of a pi-satisfying tuple, the SFA moves to
state 1, where it loops on additional occurrences of such tuples. The
rest of the SFA’s functionality is similar.

The learning task that we address in this work is that of jointly
inducing the structure of an SFA from labeled sequences of event tu-
ples, and the definitions of the SFA’s transition guards from given,
BK predicates. By mapping compositions of ITER and SEQ operators
to SFA structure, and FILTER constraints to transition guard pred-
icates, learnt SFAs may be translated into ESL specifications and
vice-versa, provided that the target ESL supports SEQ and ITER.

Restriction to unary predicates. BK predicates constitute a lan-
guage bias for our learning task. A limitation of our proposed
method, which we plan to address in future work, is the fact that
such language bias is currently restricted to unary predicates, such
as p1/1,p2/1,p3/1 in Figure 1(a). Such predicates can only express
across-attribute relations within a single event tuple E¢, or across-
time relations between the attributes of two different event tuples E
and E¢_,,, for a fixed n. Predicates p2, p3 in Figure 1(a) are examples
of the former case. Predicate p; is an example of the latter case, since
via the decrease/1 and increase/1 predicates it performs tests on the at-
tributes of two consecutive event tuples, i.e. tuples F;_,, and F; with
n = 1. Unary filters can be evaluated using bounded memory. As a
result, a restriction to unary filters is often referred to as the “regular
fragment” of CER [22], in similarity to the regular languages, which
can also be recognized using bounded memory. In contrast, compu-
tational models for ESLs with higher-arity filters go beyond the class
of regular automata to families of automata with memory.

Event selection strategies (ESS) and windowing operators.
ESS refer to different policies regarding the occurrence of irrelevant
events during pattern matching. Prominent ESS are skip-till-next-match
and strict-contiguity [39], where the former allows to have irrelevant
events (to be “skipped”) in between those that explicitly occur in
the CER pattern, while the latter does not. As we will show later,
our learning method supports both these strategies. Another impor-
tant CER operator is windowing, which specifies a time frame within
which a pattern should be matched. We are not concerned with learn-
ing windows in this work.

Answer Set Programming. We assume familiarity with ASP and
refer to [29] for an in-depth account. An overview of basic ASP con-

Predicate Meaning

obs(S;q,av(A, V), T) Attribute A has value V' in sequence S, 4 at time
T.

holds(F, S;q,T) An instance of predicate F is true for sequence
S;q at time T'.

inState(S;q, X, T) An SFA is in state X at the T-th step of
processing sequence S .

An SFA moves from state S to state S2 using
the transition guard predicate F'.

transition(S1, F, S2)

Table 1: The core predicates used in our ASP encoding.

structs that are useful in what follows is provided in the Appendix>.

4 Answer Set Automata

As a first step towards learning SFA-based CE patterns, we present
an ASP encoding of such patterns, in programs that we call answer
set automata (ASA). ASA are executable programs with an one-to-
one correspondence to CE patterns and a correctness property, stating
that a pattern will be matched against a particular finite piece of input
when run with a CER engine, iff its corresponding ASA satisfies a
particular query, when run on the same input with an ASP solver. The
left part of Table 1 presents the core predicates that we use for our
encoding, which we will explain as we go along.

Representing input. To represent a finite input sequence S of

event tuples Ei, ..., E, we use the obs/3 predicate (which stands
for “observation”), presented first in Table 1. In particular, we first
assign a unique’ id, siq to the tuple sequence S and then for
each tuple E; = (att; = valy, ..., alty, = valy, time =t) € S
of m attribute-value pairs, we generate m obs/3 atoms of the form
obs(.S;a, av(att;, val;), T'). For instance, assuming that the tuple:
(necrotic = 110, apoptotic = 420, alive = 770, time = 200)
belongs to a sequence S with ¢d = s;4, it will be represented by the
following facts:
obs(siq, av(necrotic, 110), 200), obs(siq, av(apoptotic, 420), 200)
obs(siq, av(alive, 770), 200).
Therefore, an m-attribute/value pair tuple sequence of length n is
converted into a Herbard Interpretation (set of true ground facts) of
n X m obs/3 facts. In the following we refer to such logical represen-
tations of actual input simply as input sequences.

Regarding SFA structure representation, we use integers to denote
states. We fix state O to always be the start state and use transition/3
facts from Table 1 to denote transitions between states. As an ex-
ample, Table 2(ii) presents the structure of the SFA from Figure 1,
where any is a domain constant that evaluates to true.

BK predicates, which are used as building blocks for defining
SFA transition rules, are implemented using the holds/3 pred-
icate from Table 1. Table 2(iv) presents an implementation of
the BK predicates from Figure 1. For example, the decrease/l
predicate is implemented by using the obs/3 predicate to retrieve
and compare consecutive values for A from the input. Given this
implementation and the facts obs(siq,av(necrotic, 100), 200),
obs(siq4, av(apoptotic, 170),201), we can derive the fact
holds(decrease (alive), siq, 201).

The transition guards are defined in terms of the BK predicates,
also using the holds/3 predicate. Table 2(iii) presents such definitions
for the guard predicates from Figure 1.

The SFA interpreter presented in Table 1 is the core of the en-
coding, defining the behavior of an SFA. Its first rule simply states

2 https://cer.iit.demokritos.gr/publications/papers/2023/ecai2023.pdf
3 Referencing individual input sequences in the ASP encoding will be useful
during learning, where such sequences are treated as training examples.
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(i) An SFA interpreter:

inState(S;q,0,T) <« sequence(S;q4), start(T').

inState(S;q4, 52, T + 1) « inState(Seqld, S1, T), transition(S1, F, S2), holds(F, Seqld, T).

accepted(S;q) < inState(S;q, X, T'), accepting(X ), seqEnd(S;a, T

The ASA that corresponds to the SFA from Figure 1

(ii) Definition of the SFA structure:

transition(0, any, 0). transition(0, p;, 1). transition(1, p;, 1). transition(1, pz, 2). transition(2, pz, 2). transition(2, ps, 3).

(iii) Tre tion guards definitions:

holds(p2, Sia, T) < holds(less_than_val(alive, 800), S;q4, T')

holds(p1, Sia, T§ “— hBIdsgdecrease(alive), Sia, T),holds(increase(apoptotic), Sia, T).

holds(ps, Sia,T) < holds(less_than_att(alive, necrotic), Sia, T').
(iv) Background knowledge (BK) predicates definition:

holds(decrease(A), Sia, T') < 0bs(S;q,av(A, V1), T),0bs(S;q,av(A, Va), T—1),V1 < V.
holds(increase(A), Siq, T) < 0bs(S;4,av(A, V1), T),0bs(S;q,av(A, Vo), T—1), V1 > Va.

holds(less_than_val(A, V'), S;q, T) < 0bs(S;q,av(A, V1),T), Vi < V.
holds(less_than_att

A1, Az), Sia, T) +0bs(S;q,av(A1,V1),T),0bs(S;q,av(Az,V2),T), Vi < Va.

Table 2: The core predicates used in our ASP encoding, an SFA interpreter and the implementation of some example BK predicates.

that initially, i.e., at the start point of any sequence, the SFA is in state
0. The second rule states that an SFA moves from S; to Sz at time
T if there is a transition-enabling guard F', which evaluates to true at
time 7. The last rule defines the acceptance condition for a sequence
Sid, where the seqEnd/2 predicate is properly defined to capture the
ending point of the sequence and accepting/1 denotes a designated
accepting state.

We may now define an ASA as an ASP program IT = ZUT UBUG,
where 7 is an SFA interpreter, 7 is a set of transition/3 facts defining
the SFA structure, 5 is a set of BK predicate definitions and G is a
set of transition guard definitions. To formally define its transition
function, let us first denote by ¥ an SFA “alphabet” of obs/3 facts
encoding the input and by @ the set of states referenced in 7. Note
that 7" may be seen as defining a mapping 7 : @ xXG — @ that maps
astate ¢; € @ and a guard predicate g4, to a next state go, specified
by the fact transition(q1, gq, , g2) € T*. Given such a 7 and an ASA
I1, we define its transition function & : Q x 2% — 29 U {L} as:

N;+1 _ {57_(,1, gq) €Q | L;UIIE bOdy(pq)}v
it N A0,
O e {{q},{L}}, else.

Each I; should be thought of as being the restriction of an input se-
quence I to t, i.e. I’s subset of obs/3 instances where T = t°. Given
such an I; and a state ¢, 6 maps q to its set of next states N, obtained
via d7, which checks which of ¢ guards’ defining conditions (rule
bodies) are satisfied by ITU I;. If N; is empty then the SFA behaves
as dictated by a predefined event selection strategy (see Section 3)
and it either rejects the input by moving to a “dead state” L, thus im-
plementing strict-contiguity, or loops on ¢, following skip-till-next-match.
The former strategy is the default for the interpreter from Table 2,
since any input S will eventually be rejected — via closed world as-
sumption on accepted/1 — if there exists a point 7" in S;4, such that
no inState(S;4, ¢, T+1) instance can be derived for any state ¢ € Q.
In the following section we will also present a way to enforce the
skip-till-next-match policy.

Proposition 1 establishes the correctness of our ASA encoding.
The proof is provided in the Appendix®, along with a formal defini-
tion of matches(P, s) for some pattern P and some sequence s.

(5((], It) =

4 Note that in the presentation we “overload” the notation of G to denote
both a transition guard predicate g in the definition of §7 and its concrete
implementation as a rule in G in the text before the § definition.

5 More precisely, I; should be a segment of I that suffices for evaluating BK
predicates. For instance, to evaluate the increase/l, decrease/1 predicates
from Table 2 at time ¢, I; should contain obs/3 instances corresponding to
tand t—1.

6 https://cer.iit.demokritos.gr/publications/papers/2023/ecai2023.pdf

Proposition 1 (Correctness of the ASA encoding) Let L be any
ESL specified by the following grammar:

P := FILTER/1| SEQ(P1, P) | ITER(P) | OR(P1, P2)| AND(Py, P).
Let D be a set of event tuples and D* the set of all finite event
tuple sequences that may be generated from D. Let P be any L-
pattern, whose filters may be expressed as a stratified logic pro-
gram. Then there is an ASA Ilp, such that for any s € D,
matches(P, s) iff accepted(s) € SM (IIp U HI(s)), where SM(X)
denotes the unique stable model of the ASP program X and H1(s)
denotes the logical representation of s as a Herband interpretation.

5 Answer Set Automata Learning

We next turn to ASAL, whose core is an abductive learning task im-
plemented as a straightforward application of ASP’s generate-and-
test methodology, applied on our ASA encoding. Using the repre-
sentation of an ASA as I = ZU 7 U B U G, as in Section 4, the
goal is to learn its 7 and G parts, from its Z and B parts, which are
provided as input, and a set of training sequences. That is, learn the
FSA’s structural specification (7 — Table 2(ii)), while synthesizing
its transition guard rules (G — Table 2(iii)). 7 is abduced from the
ASA interpreter (Z — Table 2(i)) and G is constructed by abducing
BK predicate instances, which may be placed together as conjuncts
in the bodies of guard definitions, from 3 (Table 2(iv)).

ASAL can learn both deterministic (DSFA) and non-deterministic
(NSFA) automata. Although NSFA-based patterns are typically as-
sumed in CER, DSFA-based ones are much easier to interpret and
are mandatory in some CER applications [3]. Also, although NSFA
are determinazable [11], as in the classical FA case, learnt versions
thereof may yield unforeseen behavior, which needs to be manually
debugged, in order to extract constraints that can rule-out such be-
havior in future learning iterations. We thus opt for supporting learn-
ing of both types of SFA. Note that the encoding in Section 4 yields
NFSA (under the strict-contiguity ESS), since the transition function al-
lows to move to multiple states simultaneously. Enforcing determin-
ism requires additionally to ensure that the outgoing transitions from
a state ¢ are guarded by mutually exclusive rules. Providing support
for the — commonly assumed in CER — skip-till-next-match ESS, also re-
quires modifications to the encoding. We thus present our approach
as targeting DSFA under the skip-till-next-match ESS. Then, obtaining
the NSFA setting and the strict-contiguity ESS will only require a sim-
plification of the presented approach.

ASAL is presented in Algorithm 1. It consists of a few simple steps
that prepare the generate and test parts of the encoding (lines 1-3),
pass them to an ASP solver to obtain a solution within an optional
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(A) Example result of guard_template(n = 3, DSF A = true, ESS = skip-till-any-match):

(C) Example result of test_part(B):

(1) holds(g(0,0), S, T) « seq(S), time(T"), not holds(g(0, 1), S, T), not holds(g(0, 2), S, T).
(2; holds gEO, 1), S, T; — hoIdsEbodyEgSO,ng ,S,T),not holds(g(0,2),S,T).

(3) holds(g <+ holds 0,2),J),8,T

(4; holds(g(1,

0,2),8,T body(g

T) « holds(body(g(1, 2), J), S,T).
,T) < seq(S),time(T).

(8) < state(.S), not transition(.s, _, S).

(9) holds(body(1, J), S, T)

), S.

g S, T) « seq(S),time(T), not holds(g(1,0), S, T
S.

), S

s <
guard(I), disjunct(J), seq(.S), time(T), holds(F, S, T) : atom(I, J, F).

. T « holds(body(g(1,0). J), S, T, not holds%q%16t2g6|gé?“)(.l 2.5.1)
s gll,2),o, .

(16) :~ false_negative(S). [1@0, S]
(17) :~ false_positive(.S). [1@0, S|
(18) :~ atom(1, J, F). [1Q0, I, J, F]
(19) :~ used_attribute(A). [1@0, A]
(20) used_attribute(A) < atom(_
(21) used_attribute

... rest of used_attribute/1 definitions...

(22) false_negative(S) « pos(S), not accepted(S).
(23) false_positive(.S) < neg(.S), accepted(.S).

,_,increase(A)).
A) + atom(_, _,decrease(A)).

(B) Example result of generate_part(n, m, B) for B from Table 2(iv):

(D) Example of training data:

(10) state(0..2). start(0). accepting(2). guard(g(.S1, S2)) « transition(S1, g(S1,S2), S2).

(11) {transition(S1, g(S1, S2), S2)} « state(S1), state(S2).
(12) {disjunct(1..m)}.

(13) {atom(1, J, increase(A))} <+ guard(I), disjunct(J), attr(A).
(14) {atom(1, J, less_than_val(A, V))% < guard([l), disjunct(.J),av(A, V).
(15) {atom(I, J, less_than_att( A1, A2

)} < guard(I), disjunct(J), attr(A1), attr(As).

obs(s;,av(al, 200), 0),...,0bs(s;,av(al, 83), 50)
obs(s;,av(ap, 40), 0), ... ,0bs(s,,av(ap, 5), 50)
obs(s;,av(n, 0),0),...,0bs(s;,av(n, 800),50)

class(s1, positive)

class(s10, negative)

Table 3: Examples of core ASAL components.

Algorithm 1 ASAL(n, m, t, DSFA, ESS,Z,B,S)

Input: n: max number of states ; m: max number of alternative (disjunctive) defi-
nitions for a guard; ¢: solving time limit; DSFA: boolean flag for (n-)deterministic
SFA; ESS: event selection strategy; Z: SFA interpreter; B: BK predicate definitions;
S: labeled training set.

Output: 7 structural SFA specification of up to n states; G: transition guard defini-
tions

1: & + guard_template(n, DSFA, ESS).
2: Py < generate_part(n, m, B).

1 Pa < test_part(B).

: M « solve(t, €, P1,P2,Z,B,S).

1 (T,G) < assemble(M, E).

: return (7, G).

3

4

5

6

7: function assemble(M, £):

8: T < alltransition/3 facts in M

9: G+ 0

10:  for each atom v € M of the form o := atom(s, 7, ):

11 gi; < the j-th disjunct of guard ¢’s definition

12 if no such g;; exists in G:

13 G + GuUholds(gi;,S,T) <

14: else add 4 to the body of g;;

15: foreachrule g;; € G

16: add to g;;’s body its corresponding mutual exclusivity conditions
specified in £.

17: return (7, Q)

# adds empty-bodied rule

time limit (line 4), and finally interpreting the solution into the result
SFA (line 5).

The first of these steps generates a template, i.e., a “skeleton” for
the FSA’s structure and its guards definitions. The template incor-
porates a number of design decisions, the first of which is that the
starting point for our model is a fully-connected graph of max_states
nodes, which the SFA induction process then tries to simplify as
much as possible by dropping nodes (states) and edges (transitions).
An exception is the accepting state, which is always max_states (re-
call that we encode states as integers) and is assumed to be an ab-
sorbing one, so it has no outgoing transitions.

An example of such a template for maz_states = 3, DSFA and
skip-till-next-match is presented in rules (1)-(7) of Table 3(A). Assum-
ing that we represent the guard predicate of the (4, j)-transition by
g(%,7), rules (1)-(7) provide placeholder definitions for all these
predicates that correspond to a fully connected 3-graph, via the
holds/3 predicate of the ASA encoding (see Table 1).

Guards corresponding to self-loops on a non-accepting state g
(rules (1) and (5)) have no restrictions in their bodies, other than
their mutual exclusivity with other outgoing g-guards (recall that the
example aims for a DSFA). For instance, rule (1) allows g(0, 0) to
be trivially satisfied by any event tuple that does not satisfy ¢(0, 1)
and g(0,2). The intention is for any such tuple to be effectively
“skipped”, by triggering a self-loop transition on state 0. The con-

straint at (8) forces the inclusion of a self-loop for each state ref-
erenced in a learnt SFA. This reflects our second design decision,
namely that in the case where ESS = skip-till-next-match (as in the ex-
ample of Table 3(A)), we reserve self-loop transitions for realizing
this ESS and delegate the behavior of the ITER operator entirely to
learning, to be implemented via cycles between different states.

To conclude the discussion on self loops, note that rule (7) forces
the corresponding guard g(2, 2) to always be unconditionally satis-
fied, reflecting the assumption that the accepting state is absorbing.

9(2,2)

9(0,0)

g(1,1)

g(0,0) < not g(0,1).

g(1,1) < not g(1,0),not g(1,2).

g(2, 2) <+ H#true.

g(0, 1) < increase(apopt).

g(1,0) <« less_than_val(apopt, 700), decrease(alive), not g(1, 2).
g(1,2) < less_than_att(necr, alive).

g(1,2) < less_than_val(alive, 100), increase(apopt).

Figure 2: A learnt DSFA in simplified form (all predicates stripped of
their holds/3 wrapping).

Rules (2), (3), (4) and (6) in the template provide place-
holder definitions for “regular” (non self-looping) guards. These
rules have an extra condition in their bodies of the form
holds (body(g(S1, S2),J), S, T) (x)). Such atoms are meant to serve
as placeholders for conjunctions of BK predicate instances. A defi-
nition for such placeholder atoms is provided in rule (9), which uses
the ASP conditional expression in the end to do exactly that: col-
lect ground instances of BK predicates that are satisfied together, to
serve as a conjunctive definition for a guard. For the case of our run-
ning example, such BK predicates are generated in rules (13)-(15). J
in (%) atoms ranges over the alternative (disjunctive) definitions for
g(S1, S2) (see rule (12)).

The generate part of Algorithm 1 — see rules (11)-(15) of Table
3(B), uses choice rules to “guess” relevant atoms that when added
to the rest of the encoding (i.e the interpreter and the BK) form a
working SFA that may be used to accept/reject the training input. The
test part of the Algorithm introduces weak constraints that guide the
search towards an optimal solution (as defined by the constraints).
Rules (16), (17) aim at minimizing the training error, while rules
(18), (19) mix-in regularization constraints that try to minimize the
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Algorithm 2 ASAL-MCTS(all ASAL args, MBS, ER, MC, iters, roll_iters)
Input: MBS : mini-batch size; ER : exploration rate for MCTS; MC' : max

number of children for a node; iters: MCTS iterations; roll_iters: roll-out
(simulation iterations) for the default policy.

Output: 7, G: as in Algorithm 1

: (best_score, best_SFA, root.children) < (0.0,0,0)
: expand_node(root, all ASAL args, M C)

: for 1..iters do .
(score;, model;) < tree_policy(root, all ASAL args, MC, M BS)

if score; > best_score then
(best_score, best_SFA) < (score;, best_score)

PRIN RN

propagate_reward(reward)
return best_SF A

9: function expand_node(node;, all ASAL args, MC, MBS)
10: if node; = root:

11: D < sample_minibatch(MBS)

12: else:

13: D <+ most_urgent_minibatch(node;)

14: Run ASAL on D and keep up to M C locally-optimal solutions SFA;
15: Evaluate all models in SFA; on the training set.

16: node;.children < node.children U SFA;

17: return (best_model.score, best_model)

18: function tree_policy(root, all ASAL args, M C, M BS)
19: leaf = None
20: With probability p:

21: leaf <+ descent to best leaf

22: return expand_node(leaf , all ASAL args, MC, MBS)
23: With probability 1—p:

24 return expand_node(root, all ASAL args, MC, MBS)

25: function default_policy(node, all ASAL args, M C, M BS)
26: for 1..roll_iters:

27: D < sample_minibatch(MBS)

28: Run ASAL on D and return an optimal solution SFA
29: Evaluate SFA on the training set

30: return (best_score, best_model) from the roll-out

complexity of the learnt SFM. Symmetry breaking constraints that
simplify the solving process are discussed in the Appendix.

Each solution obtained from the solver is interpreted into an SFM
by the assemble function of Algorithm 1. This function simply re-
turns the transition/3 atoms found in a solution M, which specify the
structure of the SFA, and compiles the guard rules from the atom/3
instances in M, while adding to their bodies the mutual exclusiv-
ity conditions dictated by the template, as shown in Algorithm 1.
Regarding the latter, note that the template deals with the negation
involved in mutual exclusivity in a hierarchical fashion, so that no
pair of g-guards ¢(q, q1), g(q, g2) exist that reference each other via
negation. This ensures that the program that is compiled by assemble
is stratified, which plays a role in the proof of Proposition 1. Fig-
ure 2 presents a DSFA that may be learnt from our running example
domain. The last two guards are disjunctive alternatives.

To target NSFA and/or strict-contiguity we simply need to remove
the mutual exclusivity conditions from the guards’ definitions during
the template generation and/or remove constraint (8), Table 3.

6 SFA Revision and Monte Carlo Tree Search
(MCTS)

ASAL’s batch, abductive learning approach can learn an optimal SFA
given enough time and memory. The main drawback, however, is
that the requirements for such resources grow exponentially with the
complexity of the learning task and the size of the input, making
the approach infeasible in larger datasets. To address such issues we
present an incremental, mini-batch-based version of ASAL. Locally-
optimal SFA are continuously revised on new mini-batches, in an
effort to approximate a globally adequate solution.

SFA revision aims to specialize or generalize a model, by e.g.
adding/removing edges from accepting paths, adding/removing body

(reward, model) < default_policy(best_SFA, all ASAL args, MC, MBS)

literals from transition guard rules, or replacing threshold values in
such rules with more relaxed/constrained ones. Such revision oper-
ations may be realized by the same adbuctive learning process pre-
sented in Section 5. By “reversing” ASAL’s assemble process from
Algorithm 1, an existing SFA may be analyzed into abducible atoms
(transition/3 and atom/3 from Table 3). These may be directly injected
into the induction program in line 4 of Algorithm 1 as a “prior” and
be reasoned upon. The results may be interpreted as a revised version
of the initial SFA via the assemble function.

For instance, assume that in the current version of an
SFA, guard ¢(1,2) is defined via two rules ¢(1,2) <+ &
and ¢(1,2) < d2,03. These correspond to three abducible
atoms atom(g(1,2),1,01),atom(g(1,2),2,02),atom(g(1,2),2,d3).
We may add those into the BK when revising with an new mini-
batch, either as facts, or as weak constraints, with the second op-
tion allowing such atoms to be removed if deemed useful. If in the
generated solution either of these atoms is missing, the rules above
need to be generalized accordingly. In contrast, if an additional fact
is returned, e.g. atom(g(1,2), 1, d4), then the first of the above rules
needs to be specialized into g(1,2) < d1, d4. Entire guards may be
removed by the same process, triggering a restructuring of the SFA
with the removal of a transition edge, or new guards — and corre-
sponding edges — may be added.

To implement such a revision-based incremental learning we use
MCTS [8]. Algorithm 2 illustrates our implementation of MCTS’s
tree and default policies (also called “roll-out”, or “simulation
phase”). Starting from an empty root node we sample a mini-batch
and generate a limited number of locally optimal SFA, which are
added as children to the root, after evaluated on the training set. Next,
for a number of iterations a sequence of the tree and default policy
play-outs take place. During the tree policy, the algorithm randomly
chooses to either expand the tree horizontally, by descending to the
best leaf and expanding it, or vertically, by adding a new child to to
the root from a fresh mini-batch sample. In the former case a mini-
batch where the leaf node scores poorly (called “most urgent” in Al-
gorithm 2) is selected and used to generate a number of new SFA,
which are added as children to the selected leaf. During the roll-out
phase the leaf node samples new mini-batches for a number of iter-
ations and generates a new SFA from each. The best score obtained
from this sequence of revisions is returned as reward and propagated
to the leaf’s ancestor nodes. The algorithm keeps track of the best
model found so far, which is returned in the end. We use the stan-
dard UCT heuristics [8] to select the best child during the tree policy
phase. All scores (including rewards) are global F'-scores on the
training set.

7 Experimental Evaluation

We evaluate’ ASAL on 3 CER datasets from the domains of precision
medicine, maritime surveillance and activity recognition. The first
one contains 644 three-variate sequences of length 50 each, where
the attributes correspond to population sizes for alive, necrotic and
apoptotic cancer cells. The positive class corresponds to simulations
that were deemed promising by human experts.

The Maritime dataset was introduced in [3]. It contains data from
vessels that cruised around the port of Brest, France. It consists of
5,249 five-variate sequences of length 30, where the attributes are
signals for a vessel’s longitude, latitude, speed, heading, and course
over ground. The positive class is related to whether a vessel eventu-
ally enters the port of Brest.

7 The code and data are available from https://github.com/nkatzz/asal


https://github.com/nkatzz/asal

N. Katzouris and G. Paliouras / Answer Set Automata: A Learnable Pattern Specification Framework for Complex Event Recognition 1229

Method Batch MCTS F; /iterations | States| |Guards| Grounding  Solving Total
Fy-score (min) (min) (min)
5 10

(A)

Bio ASAL 0.968 4 5 1.8 7.2 7.2
MCTS 0.910 0.962 4 7 0.3 0.2 3.8

Maritime ASAL 0.982 4 4 2.7 12.6 12.6
MCTS 0.740 0.980 4 4 0.3 0.1 2.8

Activities ~ ASAL 0.788 6 8 1.2 18 18
MCTS 0.740 0.773 7 11 0.1 0.8 4.6

(B)

Bio MCTS 0.858 0.968 4 6 0.4 0.9 5.7

Maritime MCTS 0.915 0.985 5 6 0.6 1.2 72

Activities ~ MCTS 0.740 0.778 7 12 0.2 1.4 7.8

(©)

Bio MCTS 0.85 0.963 4 6 0.34 0.9 5.3
RPNI 0.702 13 0.05
EDSM 0.722 12 0.05

BioLarge MCTS 0.852 0.97 4 6 0.34 1.02 14.3
RPNI Memory error - - - - - - -
EDSM Memory error - - - - - - -

Table 4: Experimental results.

The activity recognition data were obtained from the the CAVIAR
dataset®, consisting of videos of actors performing various activities.
The data are annotated at two levels: atomic activities, performed by
a single person, e.g. walking, standing still and so on, and complex
activities, performed by more than one person, e.g. people meeting
each other (interacting), or moving (walking) together. We generated
250 four-variate sequences of length 100 each, each ending in either
one of the meeting and moving complex activities. The features are
each person’s atomic activities over time, persons’ distances and dif-
ferences in their orientation.

Clingo was used in all experiments. Six BK predicates were
used, including equality, attribute/threshold comparisons and at-
tribute/attribute value comparisons. ASAL-MCTS was run with an ex-
ploration rate of 0.005 and a max children parameter of 20. Both
ASAL versions were run with maz_states = 6 and targeted DSFA
under skip-till-next-match. In all datasets numerical values were dis-
cretized into ten bins using SAX [30]. All experiments were carried-
out on a Linux machine with a 3.6GHz processor (4 cores, 8§ threads)
and 16GB of RAM.

In our first experiment we compared ASAL to ASAL-MCTS. To al-
low for ASAL to be evaluated we sampled small data fragments from
each dataset. Their sizes varied per dataset and were such that ASAL
could run in a reasonable amount of time. The sample sizes were
50 examples (each a 4-variate multi-seq.) for CAVIAR, 200 exam-
ples (each a 5-variate multi-seq.) for Maritime and 150 examples
(each a 5-variate multi-seq.) for Bio. Two ASAL-MCTS runs were per-
formed for each sample, for 5 and 10 iterations respectively, while
ASAL-MCTS consumed the data in mini-batches of 20 examples. The
process was repeated 5 times. At each iteration a new training frag-
ment was sampled, along with a test set of equal size. The results are
presented in Table 4(A) in terms of average testing Fi-scores over
the course of the 5 runs, average number of states in the learnt SFA
and average size of its guards definitions, average grounding, solving
and total training times. Note that in all experiments, the total solving
time for ASAL-MCTS corresponds to its 10-iterations run.

The results indicate the ASAL-MCTS was able to effectively match
ASAL’s performance after 10 iterations. As expected, ASAL-MCTS is
significantly more efficient than ASAL. Note that the average total
training times for ASAL-MCTS do not reflect the average grounding
and solving times, since ASAL-MCTS evaluates a large number of
models during a run.

In our second experiment we evaluated ASAL-MCTS’s efficacy on

8 http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/

whole training sets (rather than samples) in a fivefold cross validation
process. In this experiment ASAL-MCTS was run with a batch size of
50. The results are presented in Table 4 and they are similar to those
from the previous experiment, with the exception of training times,
which slightly elevated, due to the larger batch size used, resulting
in larger grounding and solving times. Smaller batch sizes resulted
in suboptimal results and required 50 iterations to approximate the
results from batch_size = 10 experiment.

In our final experiment we compared ASAL-MCTS with two classi-
cal FA learning algorithms, namely RPNI [34] and EDSM [27], two
widely used algorithms of the state-merging (SM) family. These al-
gorithms are quite old, but are still considered SoA in SM-style learn-
ing and their LearrnLib® implementation used in the experiments is
extremely efficient and frequently used by practitioners. The experi-
ment was performed on a univariate version of the bio dataset (which
can be handled by RPNI and EDSM), which contains the alive at-
tribute only'®. In this experiment we additionally used a larger ver-
sion of the bio dataset with SOK simulations, in order to stress-test the
compared algorithms’ scalability. ASAL-MCTS was used with equality
and value comparison BK predicates only, since there are no cross-
attribute relations to be discovered. The results are presented in Table
4(C). In the small bio case RPNI and EDSM are lightning-fast, learn-
ing a model in approx. three secs. On the other hand, they have signif-
icantly inferior predictive performance as compared to ASAL-MCTS.
This may be attributed to greedy state merging heuristics. Note that in
the large bio dataset both these batch learners terminated with mem-
ory errors. In contrast, thanks to its incremental nature, ASAL-MCTS
was able to learn a model from this dataset.

8 Conclusion and Future Work

We presented an ASP-based framework for specifying and learning
complex event patterns for a particular fragment of the expressivity
that is commonly assumed in CER. We also presented an incremen-
tal, MCST-based version of our learning approach and evaluated both
on three CER datasets, demonstrating empirically their efficacy. Next
steps include enhancing the expressive power of the learnt models
and further improving scalability.

9 https://learnlib.de/
10 This attribute alone is informative enough to learn a useful model in the
bio dataset.
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