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Abstract. The performance of classification models depends on the
quality of training data labels. Unfortunately, acquiring good-quality
annotations for many tasks is infeasible or too expensive. To address
this challenge, active learning algorithms are commonly employed
to select only the most relevant data for labeling. However, this is
possible only when the quality and quantity of labels acquired from
experts are sufficient. In many applications, a trade-off between an-
notating individual samples by multiple annotators to increase label
quality vs. annotating new samples to increase the total number of
labeled instances is necessary. In this paper, we address the issue of
faulty data annotations in the context of active learning. In particular,
we propose two novel annotation unification algorithms that utilize
unlabeled parts of the sample space. The proposed methods require
little to no intersection between samples annotated by different ex-
perts. Our experiments on four public datasets indicate the robustness
and superiority of the proposed methods in both, the estimation of the
annotator’s reliability, and the assignment of actual labels, against the
state-of-the-art algorithms and the simple majority voting.

1 Introduction

Supervised learning algorithms are commonly used to create pre-
diction models for various classification tasks. The quality of most
of these machine learning models heavily depends on the labeled
dataset used during model construction. In real-life scenarios, we of-
ten start with no or only a few labeled samples, as the data annotation
process is expensive and requires laborious human involvement. To
make this process more cost-effective, active learning algorithms are
commonly employed [17].

Active learning can be defined as a set of algorithms that, given
a limited labeling budget, try to obtain the best possible model un-
der the assumption that they can iteratively query an oracle (usually
human experts) to annotate chosen samples. In some cases, labels
can be obtained in an automated manner, e.g., using computer simu-
lations. However, for many classification problems, such as security
alert notifications [6], humans have to manually annotate selected
samples. Since it requires considerable domain knowledge and expe-
rience, we usually refer to the annotators as experts.

As humans are imperfect by nature, the acquired annotations
might contain mistakes, influencing the quality of obtained models.
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The frequency of those mistakes usually depends on the difficulty of
the task itself and the annotators’ expertise. If errors occur too often
and the quality of acquired labels is insufficient, corrective measures
must be used. In this field, there are two dominant approaches: an-
notation unification algorithms [16] (also known as consensus algo-
rithms), and faulty label identification and removal methods [8].

The first approach involves using input from multiple human ex-
perts to create a more accurate label for a given sample. It takes
advantage of the fact that some of the experts will provide correct
information. However, since multiple experts are typically needed
to label each sample, it introduces a trade-off between label quality
and the number of labeled samples due to limited resources. The sec-
ond approach involves identifying and removing mislabeled samples,
but this may result in the removal of correctly labeled instances and
oversimplification of the model, especially in low-budget annotation
scenarios or imbalanced datasets. Therefore, in this work, we focus
on the label unification algorithms to improve label accuracy without
sacrificing important details about complex data instances.

In this paper, we propose two algorithms based on the Expectation-
Maximization (EM) technique and an intuitive idea to augment ev-
ery expert using a machine learning model. A detailed description
of our approach is available in Section 3. The proposed algorithms
do not have the major drawback of requiring many annotations per
sample to achieve high-quality labels. We compare our methods with
baseline reference, i.e., the majority voting and commonly used EM-
based algorithm, in experiments on four datasets. Our experiments
are described in Section 5. Since two of the datasets used in ex-
periments are highly imbalanced, applying the most commonly used
probability cut-off of 0.5 to assign labels leads to poor performance
of models according to metrics adjusted for the imbalanced classifi-
cation, such as the balanced accuracy (BAC). To address this issue, a
novel cut-off computation method is proposed in Section 4. The pro-
posed method can be used even without prior knowledge about class
distribution, which is suitable for typical active learning scenarios.

2 Related Work

Reaching a consensus among labelers is one of the fundamental is-
sues for active learning research [17]. In this setting, the main ob-
jective is to iteratively select the most informative unlabeled samples
and request their labels from an oracle, e.g., human annotators or
other labeling sources. This approach has been successfully applied

ECAI 2023
K. Gal et al. (Eds.)
© 2023 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA230397

1207



to various classification tasks such as text analysis and classifica-
tion [19], image classification [3, 18], and medical diagnosis [1, 22].
The most popular approach to the active selection of training in-
stances is the so-called pool-based uncertainty sampling [13]. It as-
sumes that there is an unlabelled pool of data available, from which
an active learning algorithm can select the next batch of samples to be
annotated by the oracle in the next labeling iteration. Data instances
are chosen for labeling based on some estimation of the prediction
uncertainty that can be computed using various approaches [4, 21].

Active learning has also been applied to many other types of pre-
diction tasks, such as multi-label classification, where each sample
may belong to multiple classes simultaneously [11]. In this case, the
annotation process becomes even more complex, since multiple la-
bels must be assigned to each sample. Approaches that have been
proposed to address this issue include models investigating correla-
tions between label occurrences or methods that select samples based
on the uncertainty of the entire label set. These methods have been
shown to be effective in reducing labeling costs and improving the
performance of multi-label classification models [15]. However, ac-
tive learning has also been successful for regression problems [7] and
many other ML tasks. A comprehensive survey of active learning ap-
plications and sample selection techniques can be found in [17].

In practice, annotations provided by human labelers quite often
contain errors or inconsistencies which can negatively impact the
performance of active learning algorithms. A number of research pa-
pers have addressed this issue by proposing annotation aggregation
methods that can improve the quality of labels. For example, there
are methods that combine multiple annotations using majority vot-
ing [20] or EM-based algorithms [16]. Some of the recent approaches
include learning-based methods that incorporate information about
annotator expertise to improve annotation quality [9]. An example
of such an approach is the multi-label consensus maximization for
ranking (MLCM-r) algorithm proposed by [23]. Another example is
the Dawid-Skene model [2]. It assumes that annotators have different
error rates for different decision classes and models the probability
of a correct label for each sample, given the annotations provided
by multiple annotators. Additionally, it uses the EM algorithm to es-
timate the true labels of the samples and the reliability of each an-
notator. Several studies have demonstrated the effectiveness of these
approaches in reducing the impact of noisy annotations on the per-
formance of active learning algorithms [5] and in scenarios where
federated learning techniques were applied [24].

3 Annotations Unification Algorithms

In this section, we delve into the details of proposed algorithms de-
noted as inferred consensus and simulated consensus algorithms. We
consider simulated consensus as a more stable and refined version
of the inferred consensus algorithm, however, we present both to
comprehensively describe the intuition behind them. Both proposed
algorithms have been developed to overcome a major drawback of
consensus algorithms, i.e., degradation of performance if many sam-
ples are not labeled by multiple experts. We have developed them as
extensions of the EM algorithm, as it is the most well-known con-
sensus algorithm, tested in many production implementations. Actu-
ally, proposed extensions are independent of the EM itself and can
be viewed as metatechniques. We are convinced that they might also
be used with other annotation unification algorithms and lead to a
refined performance in many circumstances. However, as our exper-
iments cover only the case when they are used together with EM, we
will describe them in that context in the rest of this section.

3.1 Expectation-maximization

The application of the EM algorithm to the task of estimation of the
labels based on multiple noisy annotations has been originally pro-
posed by Raykar et al. [16]. It was shown to be a robust solution when
labels are abundant. Here we briefly paraphrase the theory for binary
classification, but it can also be easily used for multi-label scenarios
which can be modeled as multiple binary classifications or extended
to multi-class problems as shown in the original paper.

Let us denote a true label of the sample i as yi, a label assigned
to this sample by expert j as yj

i , the representation of this sample as
xi, the number of all samples as N , and the number of all experts as
R. As this work focuses on sparse annotations, we denote indices of
samples annotated by the expert j as Sj ⊆ {1, . . . , N}, and the set
of experts that labeled the sample i as Ei ⊆ {1, . . . , R}.

This probabilistic algorithm makes the following simplifications:

• Each expert j is modeled by two latent variables measuring exper-
tise for the given class, namely specificity (true negative rate) βj

and sensitivity (true positive rate) αj .
• Probability that an expert assigns a specific class to the sample

depends only on the true hidden label of this sample and latent
variables of this expert. In other words, they do not depend on the
representation of this sample given the true label. I.e.:

P (yj
i = 1|xi, yi) = P (yji = 1|yi).

• Each expert annotates samples independently from other annota-
tors, thus assigned classes are independent given the true labels.

P (yj
i = 1|yi, yk

i ) = P (yj
i = 1|yi) if j �= k.

The EM algorithm starts by initializing the first estimated probabil-
ity of true labels with majority voting and then iteratively repeats E
and M steps until convergence to stable parameters and probability
estimation of true labels.

3.1.1 E-step

We will denote the set of all learned parameters of the algorithm
as Θ, containing α, β, and the parameters of the machine learn-
ing model if one is used for posterior probability estimation. Then,
based on the independence of the annotators given a true label and
Bayes’ theorem, the probability of a positive class μi = P (yi =
1|y1

i , ...y
R
i ,Θ, xi) can be written as:

μi =
P (y1

i , ...y
R
i |yi = 1,Θ) · P (yi = 1|Θ, xi)

P (y1i , ...y
R
i |Θ, xi)

(1)

∝ P (y1
i , ...y

R
i |yi = 1,Θ) · P (yi = 1|Θ, xi). (2)

Where P (yi = 1|Θ, xi) is posterior probability and can be
modeled with a machine learning model. We denote it as pi.
P (y1i , ...y

R
i |Θ, xi) does not depend on the label, thus it is of no inter-

est to us and can be handled by normalization of scores to a proper
probability distribution. If we define ai = P (y1i , ...y

R
i |yi = 1, α)

and bi = P (y1i , ...y
R
i |yi = 0, β), we can rewrite equation for μi as:

μi =
aipi

aipi + bi(1− pi)
, (3)

ai =
∏

j∈Ei

[αj ]y
j
i [1− αj ](1−y

j
i ), (4)

bi =
∏

j∈Ei

[βj ](1−y
j
i )[1− βj

i ]
y
j
i . (5)

The last set of equations can be used to efficiently compute the
expected probability for the positive class.
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3.1.2 M-step

The maximization step is used to update the parameters Θ of the
algorithm. The equations resulting from computing the gradient of
log-likelihood of estimated labels over the parameters α, β are:

αj =

∑
i∈Sj μiy

j
i∑

i∈Sj μi
(6)

βj =

∑
i∈Sj (1− μi)(1− yji )∑

i∈Sj (1− μi)
. (7)

An update of the parameters of a machine learning model used for
the posterior probability prediction can be done using the regular gra-
dient descent method.

3.2 Inferred consensus

As the performance of the EM algorithm degrades with smaller num-
bers of annotations for each sample, the main idea of inferred consen-
sus algorithm is to propagate the annotations to unlabelled samples,
using the knowledge from the samples that an expert has labeled.
The intuition behind this idea is expressed by the following ques-
tion: "What label do we expect annotator j would have given sample
i, which hasn’t been annotated by him?" To be able to answer this
question and infer the predictions, for every expert a machine learn-
ing model is trained on annotations given by this expert.

More formally, for expert j we create a model f j trained on sam-
ples < xi, y

j
i >i∈Sj . Then, this model is used to infer predictions

for the whole dataset obtaining new annotations, y′j
i = f j(xi) for

i ∈ {1, ..., N} and every expert j ∈ {1, ..., R}. As the majority of
machine learning models return not only a label but also a probabil-
ity distribution of classes, we utilize the returned distribution as soft
annotations, e.g., an artificial expert says that from its perspective
there is a 10% chance that the object has the positive class and 90%
chance it belongs to the negative class. Finally, the EM algorithm can
be run on inferred annotations y′ for all of the samples, potentially
leading to a better estimation of the hidden true labels, as we have a
full inferred annotation set of size R for every sample.

The algorithm can be presented as the following set of steps:

1. Train the model f j for each expert using < xi, y
j
i >i∈Sj .

2. Infer predictions y′j
i = f j(xi) for i ∈ {1, ..., N}

3. Call EM algorithm using y′ instead of original annotations.

This algorithm can be viewed as the creation of a new labeling
task, that was annotated by artificial experts derived from the original
annotators. The advantage of this task is that it is fully labeled by
each annotator, therefore it is more suitable for the EM algorithm,
and the downside is that artificially created annotators usually have
worse quality than original experts, as they are trained only on the
small subset of samples, and dependant on the used machine learning
model. Moreover, since we associate real experts with models trained
on samples annotated by them, we obtain unreliable estimations of
experts’ reliability, which changes during the annotation process, as
the model usually gets better with the increasing number of samples
annotated by the expert.

3.3 Simulated consensus

To fix downsides of the inferred consensus algorithm we have pre-
pared a more mature and refined version called simulated consensus.
The schematic illustration of the algorithm can be seen on Figure 1.

Once again we start by training a machine learning model for each
expert, but now we infer predictions only on samples that has not
been annotated by this expert, i.e. were not used in training of this
model. Then, we use the predictions (in form of probability distri-
butions) as annotations from a new expert fully separate from the
original one. In this way we obtain 2R annotators, when first R of
them are human experts, and second R are simulated. Finally, the EM
algorithm is used on the combined, partially soft, annotations set.

The algorithm works as follows:

1. Train the model f j for each expert using < xi, y
j
i >i∈Sj .

2. Infer predictions y′ji = f j(xi) for i /∈ Sj

3. Create new annotations ŷ as concatenation of yj |j∈{1,...,R} and y′

4. Call EM algorithm using ŷ instead of original annotations.

This algorithm also leads to performing consensus on a set of R
annotations for each sample, therefore tackling the major drawback
of the original EM in the case of sparse annotations. Moreover, it has
several advantages over the inferred consensus algorithm from the
theoretical point of view. First of all, it uses the original annotations
of the experts and, as they are fully separated from the artificially cre-
ated annotators, reliably evaluates their quality. We also believe that
the quality of the experts might be better evaluated as there is always
a quorum of R annotators participating in voting for each sample. Be-
sides, the algorithm is less prone to errors caused by the poor quality
of the created models, because their quality is also separately evalu-
ated in EM (this evaluation is reliable as none of the artificial experts
make predictions on their training samples) and if they achieve poor
performance, their influence in the voting diminishes.

Intuitively, this algorithm also can be viewed as a new labeling
task in the following mind experiment. Let us imagine that we have a
joint set of original experts’ annotations and another group of slightly
worse artificial annotators. In the real world, there might exist a per-
son who would return the same annotations as our artificial annota-
tor. Therefore, those should be perfectly fine annotations from the
perspective of an annotation unification algorithm, and if they are of
poor quality, the algorithm should evaluate them as such and be only
slightly influenced by them.

4 Prediction for imbalanced data

The Expectation-Maximization algorithm results in the estimation
of a probability distribution of class labels for each sample. Un-
fortunately, many models cannot be trained using such soft labels.
Moreover, we usually expect a definitive answer on whether a sam-
ple should be considered as belonging to a particular class or not. If
the considered machine learning task corresponds to a balanced dis-
tribution, a standard 0.5 cut-off for binary classification or 1

K
, where

K is the number of classes, is a sound solution. However, if we are
dealing with an imbalanced classification task and try to optimize
metric which assigns the same importance to the recognition of each
class, such as balanced accuracy, it is not a good threshold.

In some active learning scenarios with noisy annotations, even an
approximated class distribution might not be known a priori, e.g. cy-
bersecurity attacks detection. In such cases, threshold tuning is infea-
sible, as we do not have a reliable validation set to efficiently evaluate
various thresholds. Therefore, a reliable method that does not require
prior knowledge or true labels is needed. This is why we propose the
following method for approximating the class distribution:

1. Compute a probability distribution from the perspective of the
model for all samples available during training, let us call distribu-
tion for sample i a ỹi and probability of class c for this sample ỹi,c.
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Figure 1. Visualization of Simulated consensus algorithm steps. Algorithm outputs are denoted with green, annotations data yellow and algorithm steps are
shown as blue.

2. Compute the average probability for each class across all of the
samples. This value will become a threshold adjustment. Let us
call it tc for class c. Formally:

tc =
1

N

N∑

i=1

ỹi,c.

3. For the multi-label classification, we assign class c to the sample i
if ỹi,c ≥ tc.

4. For the single-label classification, we choose class c′ from the set
of all classes C in the following way:

c′ = argmax
c∈C

ỹi,c − tc.

This method allows us to determine the cut-off without any prior
knowledge about the problem. In particular, it can be combined with
any EM-based algorithm. In such a case, the considered soft labels
correspond to the estimated class probability distributions for each
sample. Moreover, it can also be used to choose a threshold for ML
models trained using the estimated labels. The probability tc is com-
puted on all available pool data, using the probabilities predicted by
the model. Therefore, no additional computations are needed and the
adjustment is independent of the dataset for which predictions are
made. When we use this procedure on an unbiased model, it leads
to an unbiased estimator of the true class distribution. Moreover, for
balanced datasets, it converges with the increasing number of train-
ing samples to the regular 1

K
threshold.

5 Experiments

To properly evaluate proposed algorithms, we have created an exper-
imental setup similar to a real-life active learning scenario. As data
labeling by human experts only for the purpose of experiments is too
expensive and in real-life scenarios with annotators you usually do
not have access to the hidden true labels, we have prepared a ran-
domized procedure for creating annotations based on true labels of
known public datasets. The procedure generates a set of binary an-
notations for a specified number of experts, which is a parameter of
the method, in the following way:

1. Number of labeled samples differs for each expert. We model the
probability that expert j annotates a sample, denoted as rj , as a
Beta distribution with parameters α̃ = 1, β̃ = 20, therefore aver-
age probability is equal to 1

21
≈ 0.048. Intuitively, we can think

of it that experts will on average label one per every 21 samples.

2. The fact that an expert j has annotated a sample i is decided by
drawing from Bernoulli distribution with a success ratio equal rj .

3. The hidden true positive and true negative rates of each expert j,
denoted as α̂j and β̂j , are drawn from the Beta distribution with
parameters α̃ = 4, β̃ = 1, that have the expected value equal 0.8.

4. Classes assigned by the expert j to annotated sample i are drawn
from Bernoulli distribution with the probability of success α̂j if
the true label of this sample is positive or is equal to 1− v, where
v is drawn from Bernoulli with the probability of success equal to
β̂j when the true label of the sample i is negative.

We set the number of experts to 15 for our experiments because the
randomization of samples annotated by each expert might lead to ex-
perts labeling only a few samples (which is consistent with a real-life
scenario when somebody leaves a company after a few days of anno-
tation). Using the above procedure, we obtained annotations assigned
by diverse artificial experts. Thanks to the fact that it is based on pub-
lic datasets, we had true labels for all of the samples and the hidden
quality of each expert to properly evaluate tested algorithms. As the
proposed annotation generation procedure assumes the binary clas-
sification task and works in an independent manner for each class,
we used one-hot encoded labels of every problem as in a multi-label
setting. The evaluation for each dataset was performed five times to
obtain the statistical significance of the experiments, each time with
a fixed seed creating a different set of expert annotations. The evalu-
ation procedure was as follows:

1. Create expert annotations for a given random seed.
2. Use each consensus method to generate label probabilities and ex-

perts’ quality estimations.
3. Generate labels using all tested cut-off techniques.
4. Train a machine learning model on the obtained labels.
5. Make predictions with the obtained model on the separate test set.

Use the cut-off techniques again to assign labels to test cases.
6. Compute evaluation metrics, both on the consensus results and the

model predictions.

We have included a quality assessment of resulting machine learn-
ing models, trained on the obtained labels, as this is usually the ul-
timate result of an active learning system. If a sophisticated consen-
sus method led to a better estimation of labels but would not lead
to a better machine learning model, there would be no advantage in
using this method in a production environment. To reduce the com-
putational complexity, a machine learning model used for posterior
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probability distribution prediction inside EM-based algorithms (that
has to be retrained with every iteration) was a dummy model pre-
dicting always the class prior probability estimated on the training
set regardless of the passed sample. Nevertheless, a regular machine
learning model chosen for each task was trained on top of computed
labels for the evaluation.

5.1 Evaluation metrics

The evaluation metrics used in our experiments can be divided into
three groups. In the first group, there are metrics computed on the
probabilities from the annotations unification algorithms. All of these
metrics are computed on the set of samples that were annotated by at
least one expert in the experiment. We considered the following mea-
sures: area under the receiver operating characteristic curve (AUC)
with the macro average on the probabilities returned by the algo-
rithms, and balanced accuracy (BAC) on the labels generated by each
of the cut-off methods.

The second group contains evaluations of the estimated quality of
experts by the compared algorithms. Metrics used in the comparison:
the mean absolute error of the true positive rate estimation (MAE),
Pearson correlation, and the Spearman rank correlation between the
estimated true positive rates and the hidden true positive rates.

The third group contains evaluations of the machine learning mod-
els trained on estimated labels. A separate model is trained for each
consensus method and each cut-off technique. For each model, BAC
score on the test set is reported. As BAC requires labels and the
considered models return probability distributions, the same cut-off
method as the one used to generate training labels is applied.

5.2 Datasets

We have used four datasets for the purpose of evaluation.

• MNIST [10] - A dataset of handwritten digits, one of the most
widely used benchmark datasets in machine learning research.

• firefighters [12] - A dataset with measurements from wearable in-
ertial sensors placed on fire-fighters during various fire and rescue-
related activities from the AAIA’15 Data Mining Competition:
Tagging Firefighter Activities at a Fire Scene organized at the
KnowledgePit.ai platform.

• cybersec [6] - A dataset describing cybersecurity network logs
with a prediction task to identify events that should be notified as
suspicious. This dataset was originally published in a competition
IEEE BigData 2019 Cup: Suspicious Network Event Recognition
on the KnowledgePit.ai platform.

• credit-fraud [14] - A public dataset of transactions made by Euro-
pean credit card holders, fully anonymized via PCA transforma-
tion. The dataset is publicly available both in the OpenML reposi-
tory and on the Kaggle competition platform. The prediction task
is to detect fraudulent transactions.

Those datasets were chosen to diversify both, domains and class
distributions used to evaluate our methods. MNIST is a balanced
dataset with ten classes, firefighters data have five classes with
slightly imbalanced distribution, cybersec is a binary classification
task and has imbalanced distribution with less than 6% of positive
samples, and credit-fraud is a binary and highly imbalanced dataset
with less than 1% fraud examples. Moreover, all of these datasets
required human annotations at some point to create the labels for
the corresponding tasks. We cannot be sure whether there are errors

in the labels, but such investigation remains outside of the scope of
this study. For both MNIST and credit-fraud, test sets for evaluation
were created by a stratified split with 40% of all available samples,
whereas for cybersec and firefighters, splits from the corresponding
data science competitions were used. Moreover, for the cybersec and
firefighters datasets, the same preprocessing as described in the refer-
enced competition papers was performed. Additionally, each dataset
was min-max scaled.

Model architectures with hyper-parameters used for evaluation are
shown in Table 1. For MNIST and firefighters, a logistic regression
model with default parameters was used. For cybersec and credit-
fraud, the XGBoost classifier was used. Since those are highly imbal-
anced datasets, an appropriate scaling parameter with a value equal
to the ratio of negative and positive samples was used for training the
models.

5.3 Consensus methods and cut-off threshold

In our experiments we have evaluated the following consensus meth-
ods:

• Simulated consensus - a refined version of the proposed algorithm
generating additional annotations for each sample with machine
learning models described in Section 3.3.

• Inferred consensus - the first revision of the proposed algorithm,
substituting expert annotations with machine learning models de-
scribed in detail in Section 3.2.

• EM - the original expectation-maximization algorithm.
• Majority voting - the regular majority voting algorithm with a

slight modification to make it more comparable with other meth-
ods. The modification is as follows - it returns a distribution of
votes for individual classes instead of just indicating the class with
the highest number of votes.

In both, inferred consensus and simulated consensus, models rep-
resenting experts had exactly the same architecture and hyperparam-
eters as the final model used in the evaluation. The parameter values
are given in Table 1.

Table 1. Machine learning models and their relevant hyperparameters used
for each of the machine learning tasks. Default hyperparameters have been
omitted, XGBoost library in version 1.6.2 and scikit-learn 0.24.2 were used

to train the models.
Dataset Model Hyperparameters
MNIST Logistic Regression max_iter=500, n_jobs=10

firefighters Logistic Regression max_iter=500, n_jobs=10
cybersec XGBClassifier neg_pos_ratio=#neg

#pos
,

n_estimators=300, max_depth=3,
learning_rate=0.05, n_jobs=10

credit-fraud XGBClassifier neg_pos_ratio=#neg
#pos

,
n_estimators=300, max_depth=3,

learning_rate=0.05, n_jobs=10

The following cut-off thresholding techniques were used:

• Default - Default 0.5 threshold used in the majority of machine
learning frameworks.

• GT-prior - A threshold computed using true labels from the train-
ing pool. This threshold represents the ratio of samples having a
particular class to all of the samples in the pool.

• Model-posterior - The proposed thresholding technique that uses
the probability distribution predicted for the whole available train-
ing data pool, as described in Section 4. Keep in mind that for each
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model, the prediction was done over all available samples from the
pool, not only those which were annotated by experts.

Those cut-off thresholds were used to generate labels in the same
way as described in Section 4. For the purpose of multi-label model
training, a probability distribution was compared with the corre-
sponding threshold to determine whether a class should be assigned
to the sample. For the BAC estimation, a difference between the max-
imal predicted probability and the threshold value was used.

6 Results

6.1 Annotations quality

A summary of annotation quality results can be found in Table 2.
The simulated consensus algorithm has obtained significantly better
results than all other methods on all datasets but firefighters in both
ROC AUC and BAC metrics. On the firefighters dataset, the inferred
consensus obtained slightly better ROC AUC than the simulated con-
sensus, which turned out to be the second for this metric. Moreover,
we computed the one-sided Wilcoxon signed rank test to check the
statistical significance of these results. Scores obtained by the simu-
lated consensus turned out to be significantly greater than the scores
of the EM algorithm for all of the datasets in terms of both AUC
and BAC-model-posterior with a p-value of 0.03125, which we con-
sider a good result taking into account the limited expressiveness of
Wilcoxon test. These results show the robustness and superiority of
the proposed annotation unification algorithm.

Noteworthy are also the results of the BAC-model-posterior
cut-off, which obtained comparable performance for the balanced
datasets and better results than the default threshold for most of the
consensus methods on imbalanced dataset combinations. For some
imbalanced cases (cybersec and credit-fraud for the inferred consen-
sus and the EM method), it led to good quality labels even when all
other cut-off strategies failed. Tested using the one-sided Wilcoxon
singed rank test against the default cut-off method, it obtained p-
values: 0.026, and 0.001 for the cybersec and credit-fraud datasets,
respectively. It suggests that this technique, which does not require a
priori knowledge about label distribution, is the safest choice for new
active learning scenarios.

6.2 Expert’s reliability estimation

Results of experts’ true positive rate estimations are shown in Ta-
ble 3. As suspected, the proposed inferred consensus method leads
to distortion of expert reliability estimation. Therefore, it obtains
larger mean absolute errors than the regular EM algorithm. Inter-
estingly, the inferred consensus still results in greater correlations for
the MNIST and firefighters datasets, which might be caused by better
estimation of actual labels.

Nevertheless, the refined version of our algorithm, i.e. simulated
consensus, achieves highly superior scores in all three metrics for all
of the datasets. The p-values of the one-sided Wilcoxon rank test
were: 0.03125, 0.06250, 0.31250, and 0.03125 for MNIST, fire-
fighters, cybersec, and credit-fraud, respectively. The same p-values
were obtained for both correlation metrics. Similar results were ob-
tained for MAE: 0.03125, 0.03125, 0.09375, and 0.03125 for the
corresponding datasets. Therefore, leading to statistically significant
differences in two datasets for correlations and for three datasets for
MAE. Noteworthy is the fact that due to the relatively small num-
ber of experiment repetitions, the expressiveness of the statistical
test was severely limited. However, it still shows the potential of

our method considering the fact that the MAE metric on MNIST
and credit-fraud datasets was two times smaller on average than for
other methods.

6.3 Quality of trained models

Results of model-related metrics can be found in the supplementary
materials Appendix A, available in the pre-print version of our paper1.
Our methods led to better machine learning models on the MNIST
and firefighters datasets. The simulated consensus model achieved
BAC of 0.878(±0.003) with model-posterior cut-offs technique on
the MNIST dataset and the inferred consensus model achieved BAC
of 0.791(±0.012), also with model-posterior cut-offs, on the fire-
fighters dataset. This finding is consistent with the label quality re-
sults. Surprisingly, on both imbalanced datasets classical majority
voting with the default 0.5 threshold achieved better performance
than any other model, i.e., 0.773(±0.015), and 0.758(±0.019) for
the cybersec and credit-fraud datasets, respectively. This result is in-
teresting, as other methods have obtained distinctively better label
quality estimations on those datasets. The 0.5 threshold on model
predictions looks sound from our perspective, as those models were
trained with scaled weights for each class to balance the training data,
however, we do not have a good explanation for why this threshold
is also good for assigning labels for the majority voting algorithm.
Therefore, as there is no clear correlation between labels and the re-
sulting model’s quality for the imbalanced datasets, this remains a
topic for future research.

7 Conclusions

In this paper, we have addressed the issue of faulty data annota-
tions in the context of active learning for classification. We proposed
two novel annotation unification algorithms based on Expectation-
Maximization (EM) and machine learning models, which require lit-
tle to no intersection between samples annotated by different experts.
Our experiments on four public datasets showed that the proposed
methods outperform the state-of-the-art algorithms and simple ma-
jority voting, both in terms of the estimation of annotator reliability
and the assignment of actual labels. We also proposed a novel cut-
off method to tackle the challenge of imbalanced datasets, which can
be used even without prior knowledge about class distribution. This
approach can be useful in many active learning scenarios where the
distribution of classes is unknown or changes over time.

In conclusion, our proposed methods offer an effective solution
to the issue of faulty data annotations. By utilizing unlabeled parts of
the sample space and incorporating machine learning models, we can
improve the quality of labeled datasets and ultimately enhance the
performance of supervised classification algorithms. We hope that
our work will contribute to further advancements in this field and
encourage more research on consensus algorithms for data labeling.

Moreover, our research opens new, as far as we know, yet unex-
plored topics. Namely, one may ask why for some datasets labels
quality does not clearly correlate with the quality of trained machine
learning models. As this has a strong influence on all actively an-
notated machine learning tasks, it requires additional investigation in
the future. Of course, this observation might be a result of a relatively
small number of experiments, therefore to properly confirm the find-
ings of this paper additional experiment repetitions and validation on
new datasets are needed.

1 https://arxiv.org/abs/2307.14380
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Table 2. Results of annotation quality metrics, each dataset has a separate subsection. Each row features the results of one annotation unification method for
the corresponding dataset. The first column named AUC denotes the area under the ROC curve computed between obtained probabilities and true labels for

annotated samples. The rest of the columns denote the balanced accuracy between labels obtained with the thresholding method indicated in the column name
and true labels for annotated samples. Standard deviations across the experiments are shown in brackets next to each value. Bold values indicate the largest

value in the AUC column and across all BAC columns for each of the datasets.
Method AUC BAC-default BAC-GT-prior BAC-model-posterior

MNIST
Simulated consensus 0.988(±0.002) 0.911(±0.010) 0.908(±0.010) 0.907(±0.011)
Inferred consensus 0.978(±0.001) 0.870(±0.004) 0.868(±0.004) 0.867(±0.005)

EM 0.882(±0.018) 0.588(±0.033) 0.589(±0.034) 0.590(±0.034)
Majority Voting 0.801(±0.008) 0.405(±0.030) 0.419(±0.020) 0.459(±0.024)

firefighters
Simulated consensus 0.979(±0.009) 0.872(±0.046) 0.874(±0.042) 0.875(±0.042)
Inferred consensus 0.985(±0.003) 0.845(±0.051) 0.840(±0.047) 0.842(±0.047)

EM 0.875(±0.027) 0.647(±0.053) 0.681(±0.040) 0.687(±0.036)
Majority Voting 0.798(±0.016) 0.581(±0.034) 0.569(±0.041) 0.573(±0.037)

cybersec
Simulated consensus 0.909(±0.022) 0.635(±0.054) 0.887(±0.020) 0.873(±0.019)
Inferred consensus 0.784(±0.131) 0.500(±0.001) 0.556(±0.073) 0.729(±0.022)

EM 0.876(±0.021) 0.821(±0.027) 0.515(±0.029) 0.827(±0.022)
Majority Voting 0.797(±0.023) 0.805(±0.025) 0.789(±0.041) 0.789(±0.041)

credit-fraud
Simulated consensus 0.869(±0.045) 0.538(±0.035) 0.683(±0.178) 0.838(±0.057)
Inferred consensus 0.747(±0.151) 0.500(±0.000) 0.628(±0.159) 0.769(±0.145)

EM 0.801(±0.061) 0.616(±0.059) 0.500(±0.000) 0.781(±0.052)
Majority Voting 0.807(±0.045) 0.810(±0.041) 0.804(±0.051) 0.804(±0.051)

Table 3. Results of experts’ quality estimation metrics. Each dataset has a separate subsection. Each row features results for one annotation unification
method for the corresponding dataset. The first column, named MAE, denotes the mean absolute error across estimations of true positive rates for experts.

Pearson and Spearman indicate values of the corresponding correlation coefficients between the estimated true positive rates and the ground truths assigned
during the experiment setup. Standard deviations across the experiments are shown in brackets next to each value. Bold values indicate the smallest MAE or the

largest correlation for each of the datasets.

Method MAE Pearson Spearman
MNIST

Simulated consensus 0.045(±0.009) 0.902(±0.044) 0.894(±0.051)
Inferred consensus 0.175(±0.009) 0.775(±0.063) 0.763(±0.065)

EM 0.090(±0.020) 0.757(±0.077) 0.671(±0.114)
Majority Voting NA NA NA

firefighters
Simulated consensus 0.083(±0.013) 0.689(±0.109) 0.700(±0.096)
Inferred consensus 0.179(±0.012) 0.608(±0.088) 0.677(±0.056)

EM 0.122(±0.028) 0.567(±0.149) 0.566(±0.190)
Majority Voting NA NA NA

cybersec
Simulated consensus 0.065(±0.015) 0.756(±0.129) 0.713(±0.220)
Inferred consensus 0.275(±0.073) 0.358(±0.230) 0.408(±0.280)

EM 0.101(±0.032) 0.689(±0.226) 0.634(±0.175)
Majority Voting NA NA NA

credit-fraud
Simulated consensus 0.126(±0.053) 0.456(±0.261) 0.448(±0.199)
Inferred consensus 0.268(±0.053) 0.164(±0.178) 0.221(±0.147)

EM 0.250(±0.025) 0.211(±0.162) 0.253(±0.122)
Majority Voting NA NA NA
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