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Abstract. In many situations, several agents need to make a se-
quence of decisions. For example, a group of workers that needs to
decide where their weekly meeting should take place. In such situa-
tions, a decision-making mechanism must consider fairness notions.
In this paper, we analyze the fairness of three known mechanisms:
round-robin, maximum Nash welfare, and leximin. We consider both
offline and online settings, and concentrate on the fairness notion
of proportionality and its relaxations. Specifically, in the offline set-
ting, we show that the three mechanisms fail to find a proportional or
approximate-proportional outcome, even if such an outcome exists.
We thus introduce a new fairness property that captures this require-
ment, and show that a variant of the leximin mechanism satisfies the
new fairness property. In the online setting, we show that it is impos-
sible to guarantee proportionality or its relaxations. We thus consider
a natural restriction on the agents’ preferences, and show that the lex-
imin mechanism guarantees the best possible additive approximation
to proportionality and satisfies all the relaxations of proportionality.

1 Introduction

In many situations, a group of agents needs to reach a collective de-
cision, thus needing a collective decision-making mechanism. For
example, friends choosing a restaurant may utilize a voting proce-
dure for deciding where to go. Several voting procedures, as well as
other collective decision-making mechanisms, have been developed
for reaching a one-time, single decision, but there are many situations
in which there is a sequence of decisions. For example, consider a
city council that needs to decide, each month, which activity to sub-
side. It can choose to organize a family activity in the public park,
hold a concert in the community center, or operate an overnight bus,
but only one activity can be subsided each month. A senior citizen
may benefit the most from a concert, but she may also benefit, to a
lesser extent, from the overnight bus. A parent with young kids may
benefit the most from an activity in the park, but she may also benefit
from a concert. In summary, every activity benefits all the agents, but
they may evaluate the activities differently. Clearly, the city coun-
cil would like to choose activities that satisfy all of the citizens, and
it may take advantage of the fact that the decision situation is re-
peated every month. As another example, consider friends that study
together for an exam, and they need to choose a restaurant every day.
Clearly, if most of them prefer a pizza, then it is reasonable that they
will go together to a pizzeria on many days, even though one of the
friends, say Bob, prefers sushi. However, since there is a sequence of
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decisions, it is also reasonable to consider fairness, i.e., an outcome
in which the group of friends goes to a pizzeria every day may not be
fair for Bob.

Arguably, one of the most fundamental notions of fairness is pro-
portionality (Prop). That is, assume there is a sequence of decisions,
and we call each decision situation a round. There are n agents, and
each agent evaluates the candidates in each round. We would like
that each one of the agents will get at least a 1/n fraction of the
utility she would get if she could solely decide on the outcome in
each round. Unfortunately, there are instances in which a propor-
tional outcome does not exist, and thus it is reasonable to consider
a multiplicative approximation of proportionality, namely, α-Prop.
Alternatively, Conitzer et al. [11] have suggested two relaxations of
proportionality, namely, Prop1 and RRS (see Section 3 for the for-
mal definitions).

When dealing with a sequence of decisions, it is important to dis-
tinguish between offline and online settings. In the offline setting,
the decision-making mechanism gets as input all the valuations of
the agents in all the rounds, and it needs to choose an outcome for
every round. In the online setting, at each round, the mechanism gets
as an input only the information up to this round, and it thus needs to
choose one outcome (for this round). Unfortunately, fairness consid-
erations have been largely neglected in the online setting, and only
a few works have analyzed fairness in such a setting. Indeed, it is
hard to guarantee fairness in the online setting if the valuations of
the agents are unrestricted [6]. One possible restriction to the agents’
valuations is based on the Borda scoring rule. Specifically, if there
are m candidates, it is assumed that, for each agent, the valuation
of her most preferred candidate is m − 1, the valuation of her sec-
ond preferred candidate is m − 2, and so on; the valuation of her
least preferred candidate is 0. We denote such valuations as Borda
valuations. Indeed, the restriction to Borda valuations is also use-
ful in the offline setting, for translating ordinal preference orders to
cardinal preferences. That is, there are settings in which it is easier
for the agents to express their preferences using ordinal preference
orders, in which each agent reports a total order over the set of can-
didates (i.e., a ranking) for every round. In these settings, several
works [26, 5, 13, 12] suggested to translate any ordinal preference
order to numerical values according to the Borda scoring rule: the
valuation of the highest-ranked candidate is m − 1, the valuation of
the second-ranked candidate is m− 2, and so on.

In this paper, we study collective decision-making mechanisms for
a sequence of decisions, both in the offline and online setting, and
we analyze three common mechanisms: round-robin (RR), maxi-
mum Nash welfare (MNW ), and leximin (LMin). We first claim
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that an outcome that satisfies the relaxations of proportionality that
were previously suggested (i.e., Prop1 and RRS) might be “far”
from being proportional. Specifically, in the offline setting, we show
that even though the RR and MNW mechanisms satisfy Prop1
and the LMin mechanism satisfies RRS (with an RRS-based nor-
malization), the three mechanisms might fail to find a proportional
outcome, even if such an outcome exists. We thus introduce a new
natural fairness property, Max-Possible-Prop (MPP ). According to
this property, a mechanism should return an outcome that is as pro-
portional as possible. For example, if an instance admits an outcome
that satisfies Prop, then the mechanism should return an outcome
that satisfies Prop. In addition, if an instance does not admit an out-
come that satisfies Prop but admits an outcome that satisfies 1/2-
Prop, then the mechanism should return an outcome that satisfies
1/2-Prop. Generally, a mechanism that satisfies MPP returns an
outcome that is α-proportional, with the maximum possible α for
the given instance.

We show that there is an unavoidable trade-off between MPP
and Prop1, and between MPP and RRS when there are at least
3 agents. That is, a mechanism that satisfies MPP does not guar-
antee any constant factor approximation of RRS or Prop1. How-
ever, we show that a leximin mechanism, in which the valuations are
normalized with the proportional value of each agent (i.e., a Prop-
based normalization), satisfies MPP . Moreover, with two agents,
this mechanism satisfies MPP , RRS, and 1/2-Prop1.

We then analyze the restricted setting of Borda valuations. In this
setting, an outcome that satisfies Prop1 is “far” from being propor-
tional by an additive factor of at most m−1, and we thus consider an
additive approximation of Prop. We show that, unfortunately, both
RR and MNW do not guarantee an additive constant-factor approx-
imation of Prop. On the other hand, the leximin mechanism satisfies
MPP , RRS, Prop1, and it guarantees a 1-additive approximation
of Prop, which is the best possible constant factor additive approx-
imation of Prop. We note that Conitzer et al. [11] have raised an
open question: is there a mechanism that satisfies PO, Prop1 and
RRS simultaneously? We partially solve this question- if we restrict
the valuations to Borda valuations, then LMin is such a mechanism,
since we show that it satisfies PO, Prop1, and RRS.

In the online setting, we show that it is impossible to achieve pro-
portionality and even the weaker fairness properties (i.e., Prop1,
RRS, and MPP ). We thus consider the restriction to Borda val-
uations, and show that the online leximin mechanism guarantees a 1-
additive approximation of Prop. Moreover, the online leximin mech-
anism satisfies Prop1 and RRS. However, we show that there is no
online mechanism that satisfies MPP , even with Borda valuations.

The main contributions of this paper are threefold. We introduce
a natural fairness property, which is (arguably) a better relaxation
of proportionality than RRS and Prop1, and show that a variant
of the offline leximin mechanism satisfies it. We also partially solve
an open question of Conitzer et al. [11], by using the restriction to
Borda valuations. Finally, in the online setting with Borda valuations,
we show that the leximin mechanism guarantees the best possible
constant factor additive approximation of Prop.

Tables 1, and 2 summarize our results. Note that the full proofs
of some of the theorems are deferred to the full version of the paper
[19].

2 Related Works

The analysis of collective decision-making mechanisms for a se-
quence of decisions has been studied both in the domain of fair di-

PO Prop Prop1 MPP RRS

LMinProp
off n = 2 � � 1/2 � �

LMinProp
off n > 2 � � � � �

LMinRRS
off � � 1/2 � �

RRoff � � � � �

MNW off � � � � 1/n

Table 1. Summary of results for the offline setting, where there are no re-
strictions on the valuation. The results in gray are due to [11].

PO Prop Prop1 MPP RRS

LMinoff � 1-additive � � �

RRoff � m-1-additive � � �

MNW off � x-additive
m-1 ≥ x
x ≥ m−3

2

� � �

LMinon � 1-additive � � �

RRon � m-1-additive � � �

MNW on � x-additive
x ≥ m−3

2

? � �

Table 2. Summary of results with Borda valuations. The results in gray are
due to [11].

vision, in which it is commonly called public decision-making [11],
and in the domain of voting, in which it is commonly called per-
petual voting [21]. Specifically, Conitzer et al. [11] introduce the
problem of public decision-making in the offline setting. They pro-
pose RRS and Prop1 as relaxations of proportionality, and provide
a comprehensive analysis of the RR, MNW , and LMin mecha-
nisms. We note that their analysis of the LMin mechanism uses an
RRS-based normalization, while we propose a Prop-based normal-
ization. In addition, we provide an alternative relaxation of propor-
tionality, MPP , analyze the restricted setting of Borda valuations,
and the online setting. Freeman et al. [16] study the online version of
public decision-making. They concentrate on maximizing the Nash
welfare, and present two greedy mechanisms. However, they do not
analyze their mechanisms with regard to proportionality or its relax-
ations.

In the domain of voting, Lackner [21] suggests several online vot-
ing rules when there is a sequence of decisions, and analyzes them
via three axiomatic properties, as well as a quantitative evaluation by
computer simulations. In a subsequent paper, Lackner and Maly [22]
define two classes of voting rules that are particularly easy to ex-
plain to voters, and define specific proportionality axioms. Bulteau
et al. [10] study the offline setting, and analyze the fairness for sub-
groups of voters by adapting the well-established Justified Represen-
tation (JR) and Proportional Justified Representation (PJR) axioms.
Skowron and Górecki [28] also study the offline setting, and pro-
pose a proportionality notion that ensures guarantees to all groups of
voters. All of these works assume that the voters express approval
preferences, while we study cardinal preferences (or ordinal prefer-
ences that are translated to cardinal preferences with the Borda scor-
ing rule).

Our model of public decision-making generalizes the framework
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of fair division of private goods, which has been extensively studied
[2]. Indeed, fairness considerations have not received much attention
in the online setting. Kash, Procaccia, and Shah [20] study online
fair division of resources, in which agents arrive at different times.
However, unlike in our setting, in their model the agents’ preferences
do not change over time. Aleksandrov et al. [1] investigate an online
fair division problem where items are presented one at a time, and the
agents may declare either yes or no for each item. In our setting, there
are multiple candidates per round, and agents can express more gen-
eral utilities. Benade et al. [6] consider indivisible items that arrive
online, and assume additive utility, like in our setting. They show that
it is impossible to achieve the fairness notion of envy-free up to one
item (EF1), and design an algorithm that minimizes the maximum
envy over time. We strengthen the impossibility result, as we show
that with no restriction on the valuations, there is no online mech-
anism that satisfies even the relaxed fairness properties (i.e., RRS
or Prop1). He et al. [18] show that it is possible to circumvent the
impossibility result of [6] by allowing the reallocation of previously
allocated items.

Our model is closely related to other frameworks that have been
studied in computational social choice. Specifically, the model of
voting in combinatorial domains studies the problem of making de-
cisions on several issues [25]. However, the main focus is on the rep-
resentation of the agents’ preferences, since it is assumed that there
is a dependency between decisions on different issues. The frame-
work of multi-winner voting [15, 24] considers fairness properties,
and the outcome consists of several winning candidates, as in our
setting. However, in multi-winner voting, a candidate cannot be usu-
ally elected multiple times, as in our setting (but see an exception in
[9]). Notably, Bredereck et al. [8] study a sequence of multi-winner
elections, in which the difference between the winners in consecu-
tive rounds is upper-bounded. The framework of participatory bud-
geting [3, 27], which generalizes multi-winner voting, utilizes voting
systems for deciding on the funding of public projects. Lackner et
al. [23] study a sequence of participatory budgeting problems, and
introduce a theory of fairness for this setting. Our setting can also be
applied for modeling a sequence of voting on the funding of public
projects, but there is no budget constraint. The model of fair allo-
cation of indivisible public goods [14] generalizes participatory bud-
geting as well as our model of public decision-making. In this model,
there is a set of public goods and feasibility constraints on what sub-
sets of goods can be chosen. In the offline setting, Fain et al. [14]
provide an additive approximation to the core, which is a fairness
notion for groups of agents. Garg et al. [17] consider the simple con-
straint in which the number of public goods is bounded, and analyze
the maximum Nash welfare and leximin objectives with regard to
the RRS and Prop1 fairness properties. Banerjee et al. [4] study
an online version of fair allocation of public goods, but they analyze
fractional outcomes, i.e., the outcome of each round is a mixture of
the candidates.

3 Definitions

Consider a set of agents N = {1, 2, . . . , n}, and a set of candidates
C = {c1, c2, . . . , cm} 1. For every round t = 1, . . . , T , every agent
i reports her valuation vti(cj) ∈ R≥0 for every candidate cj . We
assume that every agent i has at least one positive valuation (overall).
For a given round t, we can write the valuations of all the agents in a

1 For the clarity of presentation, we assume that the set of candidates is static.
All of our results are easily adapted to the setting in which the set of candi-
dates changes from round to round.

matrix, denoted by V t, where V t = (vti(cj))ij . We denote by vt(cj)
the vector of valuations that all the agents assign to candidate cj . We
investigate mechanisms that choose an outcome o = (o1, . . . , oT ),
ot ∈ C, which is a choice of a candidate for every round. We assume
that the agents have additive utility functions. Therefore, we define
the accumulated utility of an agent i from outcome o, denoted by
ui(o), as ui(o) =

∑T
t=1 v

t
i(o

t). The accumulated utility vector of
all the agents, denoted by u(o), is a vector in which the i-th entry is
ui(o).

In the offline setting, the mechanism gets as input all of the agents’
valuations in all the rounds, i.e., it gets the vector (V 1, . . . , V T ), and
chooses the outcome o. In the online setting, the mechanism deter-
mines the outcome o sequentially, i.e., the mechanism determines
each ot at round t, since the mechanism does not get the entire input
upfront. Indeed, at each round t, the mechanism gets as an input only
the information up to this round, i.e., the vector (V 1, . . . , V t), and
the vector of chosen candidates ot−1 = (o1, . . . , ot−1). We slightly
abuse notation and define the accumulated utility of agent i up to
round t from outcome ot−1 as ui(o

t−1) =
∑t−1

k=1 v
k
i (o

k). Simi-
larly, the accumulated utility vector of all the agents up to round t is
u(ot−1). Clearly, at the first round, the utility of every agent i is zero
(i.e., ui(o

0) = 0).
There are settings in which it is easier for the agents to express

their preferences using ordinal preference orders. That is, each agent
reports for every round a total order over C. In these settings, we
translate the ordinal preference orders to cardinal preferences with
the Borda scoring rule. That is, for each agent, the valuation of a
candidate c is the number of candidates ranked below c. We denote
such valuations as Borda valuations.

4 Efficiency and Fairness

When analyzing offline or online mechanisms, we focus on popu-
lar notions of efficiency and fairness. Specifically, for efficiency, we
consider the notion of Pareto optimality, which is defined as follows:

Definition 1. An outcome o is Pareto Optimal (PO) if there does not
exist another outcome o′ such that for every agent i, (1) ui(o

′) ≥
ui(o) and (2) there exists an agent j such that uj(o

′) > uj(o).

A mechanism satisfies PO if it always chooses an outcome that is
PO. Generally, we say that a mechanism satisfies a given efficiency
or fairness property if it always chooses an outcome that satisfies this
property.

For fairness, we concentrate on proportionality, which requires
that each agent will receive at least 1

n
fraction of the utility she

would receive if she could choose the outcome. Given an agent i,
let cMaxt

i be a candidate with the highest valuation at round t, i.e.,
cMaxt

i ∈ argmaxc∈C vti(c).

Definition 2. Let Propi = 1
n

∑T
t=1 v

t
i(cMaxt

i). For α ∈ (0, 1],
we say that an outcome o satisfies α-proportionality (α-Prop) if for
every agent i, ui(o) ≥ α · Propi.

We denote 1-Prop by Prop. Unfortunately, there are instances in
which there is no outcome that satisfies α-Prop, for any constant α
(i.e., an α that does not depend on the given instance). Therefore,
Conitzer et al. [11] propose a relaxation of α-Prop, which is propor-
tionality up to one round.

Definition 3. An outcome o satisfies α-Prop1 if for every agent
i ∈ N there exists a round t such that changing ot to cMaxt

i ensures
that agent i receives a utility of at least α-Propi, i.e., ∀i∈N∃t such
that ui(o)− vti(o

t) + vti(cMaxt
i) ≥ α · Propi.
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We denote 1-Prop1 by Prop1. Indeed, a mechanism may satisfy
α-Prop1, but it may still choose an outcome that does not satisfy α-
Prop, even though such an outcome exists. We thus propose a new
fairness property, Max-Possible-Prop (MPP ).

Definition 4. An outcome o satisfies Max-Possible-Prop (MPP ) if
for each α with which there is an outcome that satisfies α-Prop, o
also satisfies α-Prop.

That is, an outcome that satisfies the MPP property satisfies α-
Prop with the maximum possible α for the given instance.

We also propose to consider an additive approximation of Prop.
Formally, an outcome o satisfies a β-additive approximation of Prop
if for every agent i, ui(o) + β ≥ Propi, for β > 0.

Another notion of fairness is round-robin share (RRS) [11]. For
an agent i, let cMaxi be a vector that contains all the values
vti(cMaxt

i), 1 ≤ t ≤ T , sorted in a non-ascending order. We de-
note by cMaxi(t) the element in the t-th entry of cMaxi.

Definition 5. Let RRSi =
∑

1≤t≤�T/n� cMaxi(t · n). For α ∈
(0, 1] we say that an outcome o satisfies α-round-robin share (α-
RRS) if for every agent i, ui(o) ≥ α ·RRSi.

We denote 1-RRS by RRS.

5 Mechanisms

We concentrate on three families of mechanisms, where each family
consists of offline and online mechanisms.

Round-robin (RR) In this mechanism there is a given order over
the agents, and they take turns according to this order. In the of-
fline RR, when an agent’s turn arrives she chooses a round (that has
not been chosen yet), and determines the winning outcome for this
round. The agent chooses a round that yields her the highest utility
[11]. The online RR chooses a single outcome at each round t, and
the order over the agents associates the rounds with the agents. Thus,
when an agent’s turn arrives, she only determines the winning out-
come for the associated round t. Formally, let π be a permutation
over N . The offline RR, denoted by RRoff , chooses an outcome
o = (o1, . . . , oT ) according to Algorithm 1.

Algorithm 1 Round-robin offline
1: rounds ← {1, . . . , T}
2: k ← 1
3: while |rounds| > 0 do

4: i ← π(1 + (k − 1) (mod n))
5: t ← argmaxr∈rounds v

r
i (cMaxr

i )
6: ot ← cMaxt

i

7: rounds ← rounds \ {t}
8: k ← k + 1
9: end while

Given a permutation π, let turnt(π) be a function that associates
a round t with an agent, according to the order π, turnt(π) = π(1+
(t− 1) (mod n)). The online RR is defined as follows.

Definition 6. Given a permutation π over N , the online RR (RRon)
chooses an outcome ot for round t such that ot = cMaxt

turnt(π).

Maximum Nash welfare (MNW) The Nash welfare of an out-
come is the product of the utilities of all the agents. The offline
MNW mechanism (MNWoff ) chooses an outcome that maximizes
the Nash welfare. The online MNW mechanism (MNWon) chooses
an outcome ot for round t that maximizes the Nash welfare up to
round t. Formally,

Definition 7. MNWoff chooses an outcome o such that o ∈
argmaxo′

∏
i∈N ui(o

′).

Definition 8. MNWon chooses an outcome ot for round t such that
ot ∈ argmaxcj∈C

∏
i∈N (ui(o

t−1) + vti(cj)).

When all outcomes have a Nash welfare of 0, MNWoff and
MNWon find the largest set of agents that there is an outcome that
gives them positive utilities, and choose an outcome that maximizes
the product of the agents’ utilities. Note that both RR and MNW
mechanisms are scale-free. That is, the units of measurement used
by the agents for expressing their valuations do not affect the out-
come.

Leximin Generally, the motivation behind the mechanisms in this
family is to maximize the utility of the agent that has the minimum
utility, i.e., the worst-off agent. However, since there might be sev-
eral such outcomes, a leximin mechanism chooses an outcome that
also maximizes the utility of the second worst-off agent, and then
the third, and so forth. This idea is formalized by the leximin order-
ing. Given a vector u, let ũ be the vector u when the elements are
ordered in a non-descending order.

Definition 9. The leximin ordering, �, is a total preorder, in which
for any two vectors with the same number of elements, x,y, x � y if
there exists an index i such that x̃i > ỹi and x̃j = ỹj for all j < i.

The offline leximin mechanism chooses an outcome such that the
vector of accumulated utilities is maximal according to the leximin
ordering. Formally, let argmax	 be the maximum elements under
the leximin ordering.

Definition 10. The offline leximin, denoted by LMinoff , chooses
an outcome such that o ∈ argmax	

o′ u(o′).

The offline leximin mechanism is not scale-free, and thus a very
high (or low) valuation might bias the mechanism. Therefore, we
consider two normalization methods, using either the RRSi or
Propi values. The normalization using the RRSi values is sug-
gested by [16], but it does not make the offline leximin mechanism
scale-free. We thus consider also a normalization with the Propi
values, which makes the offline leximin mechanism scale-free. Let
uRRS(o) be the vector of utilities u(o), in which each ui(o) is di-
vided by RRSi

2. Similarly, uProp(o) is the vector of utilities in
which each ui(o) is divided by Propi.

Definition 11. The offline leximin RRS, denoted by LMinRRS
off ,

chooses an outcome such that o ∈ argmax	
o′ uRRS(o′).

Definition 12. The offline leximin Prop, denoted by LMinProp
off ,

chooses an outcome such that o ∈ argmax	
o′ uProp(o′).

In the online setting, since the mechanism does not get the entire
input upfront, normalizing the input up to a specific round is mean-
ingless. Moreover, since we show that it is impossible to satisfy pro-
portionality or its relaxations with unrestricted valuations (Theorems
12 and 13), we study the online setting only with Borda valuations.
Therefore, the online leximin is defined without normalization.
2 If RRSi = 0, we replace it with an infinitesimal quantity ε [16].
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Definition 13. The online leximin, denoted by LMinon, chooses an
outcome ot for round t such that ot ∈ argmax	

cj∈C (u(ot−1) +

vt(cj)).

Note that the outcome of RRoff can be computed efficiently.
However, it is intractable to compute the outcomes of MNWoff

and LMinRRS
off , due to [11]. It is also intractable to compute the

outcomes of LMinProp
off , since LMinProp

off satisfies MPP (Theo-
rem 5), and it can thus decide whether a proportional outcome exists,
which is a computationally hard problem [7]. Clearly, the outcome
of all of the online mechanisms can be computed efficiently.

6 Connections between Fairness Properties

Before analyzing the mechanisms, we show the connections between
the various fairness properties of a given outcome, as can be shown
in Figure 1.

Prop

MPP

1-additive

RRSProp1

(m-1)-additive

(1/2)-Prop1

Figure 1. A graph depicting the connections between the fairness proper-
ties. x-additive means x-additive approximation of Prop. The dashed edges
are only valid with Borda valuations. The blue edges are due to [11]. The red
edges are proved in the full version of the paper [19].

Specifically, Conitzer et al. [11] show that Prop entails RRS, and
RRS entails 1/2-Prop1. Clearly, an outcome that satisfies a fairness
property satisfies all of its relaxations and approximations. We show
additional connections when the valuations are Borda valuations, and
we begin with MPP . Note that with Borda valuations, RRSi =
	T
n

(m− 1) and Propi =

T (m−1)
n

, for every agent i.

Theorem 1. With Borda valuations, MPP entails 1-additive ap-
proximation of Prop.

Proof. Suppose that o satisfies MPP . Clearly, if Propi ≤ 1, then
o satisfies a 1-additive approximation of Prop. If Propi > 1, let
o′ be an outcome that satisfies a 1-additive approximation of Prop.
Note that such an outcome always exists due to Theorem 14. By
definition, ui(o

′) + 1 ≥ Propi for any agent i. That is, ui(o
′) ≥

Propi−1
Propi

· Propi. Since Propi > 1, Propi−1
Propi

> 0. In addition,

Propi = T (m−1)
n

for any agent i, and we can thus write that o′

satisfies Propi−1
Propi

-Prop. Now, since o satisfies MPP , it must also
satisfy Propi−1

Propi
-Prop. Therefore, ui(o) ≥ Propi−1

Propi
·Propi, which

implies that ui(o) + 1 ≥ Propi. That is, o satisfies a 1-additive
approximation of Prop.

Theorem 2. With Borda valuations, 1-additive approximation of
Prop entails Prop1.

Proof. Suppose that o satisfies a 1-additive approximation of Prop.
Clearly, if o satisfies Prop, it also satisfies Prop1. If o does not

satisfy Prop, then for any agent i in which ui(o) < Propi there
exists a round t such that vti(o

t) < vti(cMaxt
i). Since we use Borda

valuations, vti(cMaxt
i)− vti(o

t) ≥ 1. In addition, since o satisfies a
1-additive approximation of Prop, then ui(o) + 1 ≥ Propi. Com-
bining the two inequalities, we get that (ui(o)+1)+(vti(cMaxt

i)−
vti(o

t)) ≥ Propi + 1. That is, o satisfies Prop1.

Theorem 3. With Borda valuations, Prop1 entails (m−1)-additive
approximation of Prop.

Proof. Suppose that o satisfies Prop1. That is, for each agent
i ∈ N , there exists a round t such that ui(o) − vti(o

t) +
vti(cMaxt

i) ≥ Propi. With Borda valuations, for any agent i
and round t, vti(cMaxt

i) = m − 1 and vti(o
t) ≥ 0. Therefore,

ui(o) + (m − 1) ≥ Propi. That is, o satisfies (m − 1)-additive
approximation of Prop.

7 Offline Setting

We begin by showing that RRoff , MNWoff , and LMinRRS
off

might not find a proportional outcome, even if such an outcome ex-
ists. Specifically, consider the following examples.

Example 1. Let m = 6, n = 2, T = 1, and

V 1 =

(
5 4 3 2 1 0
2 1 3 0 4 5

)
.

The only outcome that satisfies Prop is o = (c3). However,
MNWoff chooses (c1), and RRoff chooses either (c1) or (c6).

Example 2. Let m = 3, n = 2, T = 2, and

V 1 =

(
32 16 8
2 4 8

)
, V 2 =

(
0 1 0
0 1 0

)
.

The only outcome that satisfies Prop is o = (c2, c2). However, since
RRS1 = RRS2 = 1, then LMinRRS

off chooses the candidate c3 in
the first round.

It is not a coincidence that RRoff , MNWoff , and LMinRRS
off

might fail to find a proportional outcome. We claim that, in general,
these mechanisms might output an outcome that is “far” from being
proportional, as formally captured by the MPP property. Moreover,
note that RRoff and LMinRRS

off satisfy RRS, and MNWoff satis-
fies Prop1 [11]. We show unavoidable tradeoffs between MPP and
α-RRS, for any constant α, and between MPP and α-Prop1, for
any constant α.

The proof is based on the intuition that both Prop1 and RRS
might fail to find a proportional outcome when there is a round t
in which an agent i assigns a relatively high valuation to one of
the candidates. In this case, Prop1 can be satisfied while ignoring
the valuations (of agent i) in the other rounds, which might result
in an unproportional outcome. RRSi, in this case, does not depend
on the valuation of i in round t (since the rounds are sorted in a
non-ascending order), which might also result in an unproportional
outcome. However, the MPP fairness property must consider the
valuations of all the agents, in all of the rounds.

Theorem 4. If n > 2, a mechanism that satisfies MPP does not
satisfy α-RRS, for any constant α, and it does not satisfy α-Prop1,
for any constant α.
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Proof sketch. We build a scenario with n agents, and three distinct
agents, i ,j, and k. In the first round, agents j and k assign very
high valuations to different candidates, while in all other rounds they
assign very low valuations to all the candidates. Note that it is im-
possible to satisfy both j and k in the first round, and assume that
the candidate favored by j is selected in the first round. A mecha-
nism that satisfies MPP must compensate k in the other rounds. As
a result, the utility of agent i is reduced, but still in a way that guar-
antees her some minimal utility, and overall, all three agents receive
this minimal utility. In contrast, a mechanism that satisfies Prop1 or
RRS ignores the first round due to the nature of these fairness prop-
erties and, as a result, agent i ends up with a utility that is not very
low, while agent k ends up with a much lower utility.

Since we showed that RRoff , MNWoff , and LMinRRS
off do not

satisfy MPP even with 2 agents, we introduce LMinProp
off , which

satisfies MPP .

Theorem 5. LMinProp
off satisfies MPP .

Proof. Suppose that there exists an α with which there is an out-
come o′ that satisfies α-Prop. That is, the minimal utility value in
uProp(o′) is at least α. By definition, the outcome o that is returned
by LMinProp

off satisfies uProp(o) � uProp(o′). Therefore, the
minimal utility value in uProp(o) is at least α. That is, o satisfies
α-Prop. Therefore, LMinProp

off satisfies MPP .

Clearly, LMinProp
off also satisfies Pareto optimality. However,

since LMinProp
off satisfies MPP , it does not satisfy α-RRS or α-

Prop1, for any constant α. Indeed, the proof of Theorem 4 assumes
that the number of agents, n, is at least 3. If there are only two agents,
LMinProp

off satisfies RRS and 1/2-Prop1.

Theorem 6. LMinProp
off with 2 agents satisfies RRS and 1/2-

Prop1.

Proof. Clearly, in RRoff , the first agent according to the turn’s or-
der, π, receives a utility that is at least his Prop value. That is, if
agent 1 is the first agent according to π, then RRoff returns an out-
come that guarantees a utility of at least Prop1 to agent 1, and a
utility of at least RRS2 to agent 2. Similarly, if agent 2 is the first
agent according to π, then RRoff returns an outcome that guarantees
a utility of at least Prop2 to agent 2, and a utility of at least RRS1 to
agent 1. Therefore, the outcome o that is returned by LMinProp

off sat-
isfies uProp(o) � (1, RRS2

Prop2
) and uProp(o) � ( RRS1

Prop1
, 1). Now,

since Propi ≥ RRSi [11], and there are exactly two agents, then
uProp(o) � (max( RRS2

Prop2
, RRS1
Prop1

),max( RRS2
Prop2

, RRS1
Prop1

)) Hence,
uPropi(o) ≥ max( RRS2

Prop2
, RRS1
Prop1

) ≥ RRSi
Propi

and thus ui(o) ≥
RRSi. That is, LMinProp

off with two agents satisfies RRS. Finally,
due to [11], RRS entails 1/2-Prop1.

That is, when there are only two agents, LMinProp
off is (arguably)

the “fairest” mechanism among the mechanisms that we study, since
it is the only one that satisfies PO, 1/2-Prop1, MPP , and RRS,
simultaneously.

7.1 Borda Valuations

Recall that with Borda valuations, RRSi is the same for all i. Sim-
ilarly, Propi is the same for all i. Thus, in this setting, LMinProp

off

and LMinRRS
off are equivalent to LMinoff . That is, there is effec-

tively a single leximin mechanism, LMinoff , with Borda valua-
tions.

Clearly, every mechanism that satisfies an efficiency or fairness
property without any restriction on the valuation, satisfies the prop-
erty with Borda valuations. We thus analyze the properties that are
not satisfied in the general case, and we begin with Prop.

Since LMinoff satisfies MPP (Theorem 5), then with Borda
valuations, LMinoff guarantees a 1-additive approximation of
Prop (Theorem 1). Moreover, we show that LMinoff guarantees
the best possible constant-factor approximation of Prop.

Theorem 7. Even with Borda valuations, there is no mechanism that
guarantees an additive constant-factor approximation of Prop bet-
ter than 1.

Proof. Assume by contradiction that there is a mechanism that guar-
antees an α-additive approximation of Prop, with α < 1. Since
α < 1, we can choose n such that n−1

n
> α. Let T = 1 and m = n.

In addition, assume that the agents use Borda valuations, and let
v1i (ci) = 0, for any agent i. Given any outcome o, there must be an
agent j that receives a utility of 0 from o. However, Propj = n−1

n
,

and thus the difference between Propj and uj(o) is strictly greater
than α. A contradiction.

We now show that both RRoff and MNWoff do not guaran-
tee an additive constant-factor approximation of Prop. Specifically,
RRoff does not guarantee an additive approximation that is better
than m− 1.

Theorem 8. With Borda valuations, RRoff does not guarantee an
additive approximation of Prop that is better than m− 1.

Proof. Assume by contradiction that RRoff guarantees an (m−1−
α)-additive approximation of Prop, with α > 0. Since α > 0, we
can choose n such that (n−1)(m−1)

n
> m − 1 − α. Let T = n − 1

and for every round t, and let

V t =

⎛
⎜⎜⎜⎝
m− 1 m− 2 . . . 0

...
m− 1 m− 2 . . . 0

0 1 . . . m− 1

⎞
⎟⎟⎟⎠ .

Assume that RRoff uses the identity permutation as the order over
the agents. Clearly, o = (c1, . . . , c1), and thus un(o) = 0. On the
other hand, Propn = (n−1)(m−1)

n
. That is, the difference between

Propn and un(o) is strictly greater than m−1−α. A contradiction.

Indeed, RRoff satisfies Prop1 [11], and this entails that RRoff

guarantees an (m − 1)-additive approximation of Prop, as we
show in Theorem 2. Similarly, since MNWoff satisfies Prop1,
MNWoff also guarantees an (m − 1)-additive approximation of
Prop. On the other hand, MNWoff does not guarantee an additive
approximation that is better than (m− 3)/2.

Theorem 9. Even with Borda valuations, MNWoff does not guar-
antee an additive approximation of Prop that is better than m−3

2
.

Proof sketch. Consider the following example. Let n = 4,m = 6,
T = 6, and for every t ≤ T ,

V t =

⎛
⎜⎜⎝
5 4 3 2 0 1
0 1 2 3 4 5
0 1 2 3 4 5
0 1 2 3 4 5

⎞
⎟⎟⎠ .
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MNWoff chooses o = (c6, . . . , c6), and u(o) = (6, 30, 30, 30).
In addition, Propi = 30

4
= 7.5. Therefore, o guarantees only a 3

2
-

additive approximation of Prop. Our proof generalizes this example,
and shows that MNWoff does not guarantee an additive approxima-
tion of Prop that is better than m−3

2
.

We now analyze Prop1. With Borda valuations, LMinoff guar-
antees a 1-additive approximation of Prop, and this entails that
LMinoff satisfies Prop1, as we showed in Theorem 2.

We note that Conitzer et al. [11] have raised an open question: is
there a mechanism that satisfies PO, Prop1, and RRS simultane-
ously? We partially solve this question- if we restrict the valuations
to Borda valuations, then LMinoff is such a mechanism, since we
showed that it satisfies PO, Prop1, and RRS.

Next, we consider MPP , and the negative results for MNWoff

and RRoff still hold. Indeed, Example 1 uses Borda valuations, and
it shows that MNWoff and RRoff do not satisfy MPP . In addi-
tion, MNWoff still does not satisfy RRS.

Theorem 10. Even With Borda valuations, MNWoff does not sat-
isfy RRS.

Proof. With Borda valuations, for any agent i, RRSi =∑
1≤t≤�T/n� cMaxi(t·n) = ∑

1≤t≤�T/n� m−1 = 	T
n

(m−1).

In addition, Propi = 1
n

∑T
t=1 v

t
i(cMaxt

i) = 1
n

∑T
t=1 m − 1 =

T
n
(m − 1). Therefore, if T (mod n) = 0, RRSi = Propi. Re-

call the setting in the proof of Theorem 9. The theorem shows that
MNWoff chooses an outcome, o, that does not satisfy Prop, for
any n > 2. If T = n, RRSi = Propi, and thus o does not satisfy
RRS.

Finally, we note that RRoff still does not satisfy PO.

Theorem 11. With Borda valuations, RRoff does not satisfy PO.

Overall, LMinoff with Borda valuations is the “fairest” mecha-
nism among the mechanisms we study, since it is the only one that
satisfies PO, Prop1, RRS, MPP , and guarantees a 1-additive ap-
proximation of Prop.

8 Online Setting

Clearly, all the mechanisms we study do not satisfy the PO effi-
ciency property in the online setting. Moreover, we show that it is
impossible to satisfy Prop1 or α-RRS for any constant α.

Theorem 12. There is no online mechanism that satisfies α-RRS,
for any constant α.

Proof. Assume by contradiction that there is an online mechanism
that satisfies α-RRS. Let m = 2, n = 2, T = 3, and

V 1 =

(
1 0
0 1

)
, X2 =

(
2
α

0
0 α

2

)
, Y 2 =

(
α
2

0
0 2

α

)

X3 =

(
4
α2 0
0 4

α2

)
, Y 3 =

(
0 0
0 0

)
.

We set V 2 and V 3 according to the decisions of the online mech-
anism. Specifically, if o1 = c1 we set V 2 = X2. Otherwise,
V 2 = Y 2. Next, if o1 �= o2 we set V 3 = X3. Otherwise, V 3 = Y 3.

Note that for any agent i, RRSi ≥ α
2

and thus α · RRSi > 0.
Since o satisfy α-RRS it must be the case that o1 �= o2. Otherwise,
V 3 = Y 3 and thus either u1(o) = 0 or u2(o) = 0, which is a

contradiction. Therefore, o1 �= o2 and V 3 = X3. In addition, since
0 < α ≤ 1, then α

2
< 1 < 2

α
< 4

α2 , and thus cMaxi equals
(1, 2

α
, 4
α2 ) or (α

2
, 1, 4

α2 ), for any agent i. That is, RRSi ∈ { 2
α
, 1},

and thus α-RRSi ∈ {2, α}, for any agent i.
Now, since o1 �= o2, there are only 4 possible outcomes:

1. If o = (c1, c2, c1), V 2 = X2. Thus, α · RRS1 = 2 and α ·
RRS2 = α. However, u(o) = (1 + 4

α2 ,
α
2
). That is, u2(o) <

α ·RRS2.
2. If o = (c2, c1, c2), V 2 = Y 2. Thus, α · RRS1 = α and α ·

RRS2 = 2. However, u(o) = (α
2
, 1 + 4

α2 ). That is, u1(o) <
α ·RRS1.

3. If o = (c1, c2, c2), V 2 = X2. Thus, α · RRS1 = 2 and α ·
RRS2 = α. However, u(o) = (1, α

2
+ 4

α2 ). That is, u1(o) <
α ·RRS1.

4. if o = (c2, c1, c1), V 2 = Y 2. Thus, α · RRS1 = α and α ·
RRS2 = 2. However, u(o) = (α

2
+ 4

α2 , 1). That is, u2(o) <
α ·RRS2.

Therefore, there is no online mechanism that satisfies α-
RRS.

Next, we show that it is impossible to satisfy Prop1.
Let Propti be the Prop value of agent i up to round

t, i.e., Propti =
∑k=t

k=1

vk
i (cMaxk

i )

n
. Let vProp1ti =

argmaxk∈{1,...,t}(v
k
i (cMaxk

i ) − vki (o
k)). It is thus possible

to rephrase the definition of Prop1: an outcome o satisfies Prop1
if for every agent i, ui(o) + vProp1Ti ≥ PropTi . Now, let
dProp1ti = ui(o

t) + vProp1ti − Propti . That is, if dProp1ti ≥ 0
for any i, then ot satisfies Prop1 up to round t, and if dProp1ti < 0
for an agent i, then Prop1 is not satisfied up to round t. Therefore,
intuitively, dProp1ti represents the degree in which ot satisfies
Prop1.

Theorem 13. There is no online mechanism that satisfies Prop1.

Proof sketch. Assume by contradiction that there is an online mech-
anism that satisfies Prop1. We build a scenario with two agents, in
which for each even round t, the mechanism must choose an outcome
such that dPropt of one of the agents is the same as her dPropt−2,
but dPropt of the other agent is smaller than her dPropt−2 by a
constant factor. Therefore, after a constant number of rounds, one of
the agents has a negative dPropt, which entails that the mechanism
does not satisfy Prop1.

Note that the proofs of Theorems 12 and 13 essentially use the
setting of indivisible private goods. Therefore, they strengthen previ-
ous results on online fair division [6]. Overall, with no restriction on
the valuations, there is no online mechanism that satisfies even the
relaxed fairness properties (i.e., RRS or Prop1).

8.1 Borda Valuations

We begin with analyzing Prop. Our main result here is that LMinon

guarantees a 1-additive approximation of Prop. To prove this, we
first show a unique characteristic of Borda valuations.

Lemma 1. With Borda valuations, given a round t, and given any
vector of n elements, x, such that (1) every element of x is a non-
negative integer, and (2) the sum of the elements of x is m− 1, there
exists a candidate c ∈ C such that vti(c) ≥ xi for every agent i.
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Proof. Let x be a vector of n elements, such that (1) every element of
x is a non-negative integer, and (2) the sum of the elements is m−1.
For each agent i, let Bi be the set of candidates whose valuations
are less than xi, i.e., Bi = {c ∈ C | vti(c) < xi}. Let G be
a (possibly empty) set of candidates, G = C \ (B1

⋃
. . .

⋃
Bn).

Clearly, |G| ≥ m −∑ |Bi|. Since the agents use Borda valuations,
then |Bi| = xi, and thus |G| ≥ m − ∑

xi = m − (m − 1) = 1.
That is, a candidate c ∈ G exists such that vti(c) ≥ xi for every
agent i.

Intuitively, Lemma 1 shows that any mechanism can choose an
outcome such that the sum of all the agents’ valuations is at least
T (m − 1). Moreover, a mechanism is able to distribute the valua-
tions arbitrarily, and thus it can choose an outcome that guarantees a
utility of 	T (m−1)

n

 for each agent. Therefore, LMinoff must also

guarantee a utility of 	T (m−1)
n


 for each agent, which means that is
satisfies 1-additive approximation of Prop. The 1-additive approxi-
mation for the online setting is also based on Lemma 1. Intuitively,
the lemma shows that for each round, the vector of elements x can
be chosen without knowing the valuations of each agent. Therefore,
the vector x for each round can be chosen greedily, and it thus deter-
mines each ot in round t such that the utility of o is at least 	T (m−1)

n



for each agent.
Next, we show an important property of proportionality in the

online setting, i.e., when the candidates of the chosen outcome
are determined sequentially. The proof is essentially an extension
of Lemma 1 to the online setting. Recall that with Borda valua-
tions, Propi = T (m−1)

n
for every agent i. Let Propt = t(m−1)

n
,

qPropt = 	Propt
, and rPropt = (t(m− 1)) mod n.

Lemma 2. With Borda valuations, given a round t, if (1) for
every agent i, ui(o

t−1) ≥ qPropt−1 and (2) there are at
least rPropt−1 agents with a utility that is strictly greater than
qPropt−1, then there exists a candidate c such that (3) for every
agent i, ui((o

1, . . . , ot−1, c)) ≥ qPropt and (4) there are at least
rPropt agents with a utility that is strictly greater than qPropt.

We are now ready to prove the approximation result.

Theorem 14. LMinon guarantees a 1-additive approximation of
Prop.

Proof. Let ot−1 be the vector of chosen candidates by LMinon

up to round t. If ot−1 satisfies conditions (1) and (2) of Lemma 2,
then there exists a candidate c such that conditions (3) and (4) of
Lemma 2 hold. By definition, LMinon chooses a candidate ot such
that u(ot) � u((o1, . . . , ot−1, c)). That is, ot that is chosen by
LMinon satisfies conditions (3) and (4). In addition, in the first
round t = 1 and thus, obviously, rPropt−1 = qPropt−1 = 0.
That is, conditions (1) and (2) of Lemma 2 hold when t = 1.
Therefore, for any round t and agent i, ui(o

t) ≥ qPropt. Specif-
ically, when t = T , ui(o

T ) ≥ qPropT = 	Propi
. By definition,
	Propi
 > Propi − 1, and o = oT . That is, ui(o) + 1 > Propi,
for any agent i.

Similar to the offline setting, the other mechanisms do not guar-
antee an additive constant-factor approximation of Prop. Indeed,
RRon is essentially equivalent to RRoff when the valuations are
restricted to Borda valuations, since for every agent i and in every
round t, cMaxt

i are the same (i.e., m − 1). That is, RRon does not
guarantee an additive approximation that is better than m − 1. As
for MNWon, since the example in the proof of Theorem 9 holds
for any t ≤ T , MNWon chooses the same outcome as MNWoff

in this instance. That is, MNWon does not guarantee an additive
approximation of Prop that is better than m−3

2
.

We now analyze MPP . Unfortunately, MPP cannot be satisfied
in the online setting, even with Borda valuations.

Theorem 15. Even with Borda valuations, there is no online mech-
anism that satisfies MPP .

Proof. Assume by contradiction that there is an online mechanism
that satisfies MPP . Let m = 2, n = 4, T = 2, and

V 1 =

⎛
⎜⎜⎝
1 0
1 0
0 1
0 1

⎞
⎟⎟⎠ , X =

⎛
⎜⎜⎝
1 0
0 1
0 1
0 1

⎞
⎟⎟⎠ , Y =

⎛
⎜⎜⎝
1 0
1 0
1 0
0 1

⎞
⎟⎟⎠ .

If V 2 = X , the only outcome that satisfies Prop is (c1, c2). There-
fore, the mechanism must choose the candidate c1 in the first round.
On the other hand, if V 2 = Y , the only outcome that satisfies Prop
is (c2, c1), and thus the mechanism must choose c2 in the first round,
which is a contradiction.

Next, we analyze RRS.

Theorem 16. With Borda valuations, LMinon satisfies RRS.

Proof. Let o be the outcome chosen by LMinon. Recall that for any
agent i, RRSi = 	T

n

 · (m − 1) with Borda valuations. According

to the proof of Theorem 14, for any agent i, ui(o) ≥ qPropT =

	T ·(m−1)
n


. Clearly, 	T
n
(m− 1)
 ≥ 	T

n

 · (m− 1). We thus get that

for any agent i, ui(o) ≥ RRSi. That is, LMinon satisfies RRS.

As for MNWon, since the example in the proof of Theorem 10
holds for t ≤ T , MNWon chooses the same outcome as MNWoff

in this instance. That is, MNWon does not satisfy RRS.
Finally, we consider PO. Recall that LMinoff and MNWoff

satisfy PO. In the online setting, even with Borda valuations, they
do not satisfy PO anymore.

Theorem 17. Even with Borda valuations, LMinon and MNWon

do not satisfy PO.

9 Conclusions and Future Work

In this paper, we study collective decision-making mechanisms for a
sequence of decisions, when the preferences of the agents are cardi-
nal. However, since we also concentrate on the restriction to Borda
valuations, our results are also applicable when the preferences of the
agents are ordinal. Overall, we claim that the leximin mechanism, in
which the valuations are normalized with the proportional value of
each agent, has a significant advantage over the other known mech-
anisms: in the offline setting, it satisfies PO and MPP , and when
there are only two agents it also satisfies 1/2-Prop1 and RRS. With
Borda valuations, the leximin mechanism satisfies Prop1 and RRS,
and guarantees the best possible constant-factor approximation of
Prop. Moreover, these results hold both for the offline and online
settings.

For future work, we would like to consider other restrictions on the
agents’ valuations, e.g., valuations that are based on a (given) general
scoring rule. We would also like to study what happens when there
are many rounds. Specifically, we conjecture that given any n and m,
there is a t such that the leximin mechanism with Borda valuations
satisfies Prop for any T ≥ t. Finally, since it is impossible to achieve
proportionality or its relaxations in the online setting, we would like
to extend our framework and analyze probabilistic mechanisms.
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