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Abstract. Graph-restricted weighted voting games generalize
weighted voting games, a well-studied class of succinct simple
games, by embedding them into a communication structure: a graph
whose vertices are the players some of which are connected by edges.
In such games, only connected coalitions are taken into consider-
ation for calculating the players’ power indices. We focus on the
probabilistic Penrose–Banzhaf index [5] and the Shapley–Shubik in-
dex [18] and study the computational complexity of manipulating
these games by an external agent who can add edges to or delete
edges from the graph. For the problems modeling such scenarios, we
raise some of the lower bounds obtained by Kaczmarek and Rothe [9]
from NP- or DP-hardness to PP-hardness, where PP is probabilis-
tic polynomial time. We also solve one of their open problems by
showing that it is a coNP-hard problem to maintain the Shapley–
Shubik index of a given player in a graph-restricted weighted voting
game when edges are deleted.

1 Introduction

Weighted voting games naturally model settings in which, e.g., the
members of some committee have certain voting weights, and for a
decision to pass some quota needs to be reached. To measure the in-
fluence of players in weighted voting games, power indices like the
probabilistic Penrose–Banzhaf index [5] and the Shapley–Shubik in-
dex [18] are used. Following the observation that voting weight does
not equal political influence, these power indices formalize the no-
tion of “king makers” by identifying influence with the frequency by
which a committee member may be the decisive vote in a coalition.
A quite recent example for the difference between voting weight and
political power is in the 36th Israeli government that was formed in
2021: Out of 61 members of parliament, coming from seven parties,
Naftali Bennett, the leader of a party with only seven members, suc-
ceeded in being the prime minister showing that his political power
was exceeding that of his relative voting weight.

Graph-restricted weighted voting games generalize weighted vot-
ing games by assuming some communication structure among the
players. Myerson [11] introduced graph-restricted games, i.e., co-
operative games with undirected graphs that describe which sets of
players, together, can form a coalition. Using the model of Myerson,
Napel et al. [12] defined graph-restricted weighted voting games and
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Skibski et al. [19] studied the players’ power in these games in terms
of their computational complexity.

Israeli politics may serve as an example of the relevance of topo-
logical structures in the context of weighted voting games. For exam-
ple, the 36th Israeli government that was mentioned above contained
quite a diverse set of political parties, spanning from the political left
through the political center and to the political right. It is quite unrea-
sonable that a coalition of only political left and right could have been
formed, due to the political divide between the left and right; how-
ever, the inclusion of the political center may have helped in bridging
the ideological gaps between them, thus making the coalition struc-
turally connected and therefore viable. Generally speaking, one may
imagine either a graph containing a vertex for each party and a miss-
ing edge between pairs of parties that may not sit together in the
same coalition (due to ideological gaps and/or personal disputes) or
perhaps a graph with three cliques: one for the left, one for the center,
one for the right parties; and with some edges between the cliques.
This naturally raises the question of how the influence (or power) of
given player may change, depending on which topological structure
is used.

For both the probabilistic Penrose–Banzhaf and the Shapley–
Shubik index, we study the complexity of manipulating the power
of a given player in a graph-restricted weighted voting game via an
alteration of the underlying graph. Kaczmarek and Rothe [9] de-
fined control by adding edges and by deleting edges with the goal
of increasing, decreasing, or maintaining a given player’s power in
such games, and they established the first hardness results. We im-
prove some of their lower bounds for these control problems by rais-
ing their NP- or DP-hardness results to PP-hardness for control by
adding and by deleting edges when the goal is to increase or to de-
crease a given player’s power.1 Note that a PP-hardness lower bound
was also achieved by Rey and Rothe [16] for the different scenario
of merging and splitting players in weighted voting games (the lat-
ter is a.k.a. false-name manipulation), as introduced and first studied
by Aziz et al. [1]. Indeed, we will reduce from problems that Rey
and Rothe [16] showed to be PP-complete and will apply their proof
technique to our setting. This proof technique has also been applied

1 Gill [8] introduced PP as the class of problems solvable by probabilistic
Turing machines. The complexity class DP, introduced by Papadimitriou
and Yannakakis [13], is the class of problems that can be written as the
difference of two NP sets; this class is is also known as the second level of
the boolean hierarchy over NP, first studied by Cai et al. [3].
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in the context of control by adding players to or deleting players from
weighted voting games (which are not graph-restricted) by Rey and
Rothe [17] and Kaczmarek and Rothe [10].

For the goal of maintaining a given player’s power in graph-
restricted weighted voting games, Kaczmarek and Rothe [9] showed
that control by adding edges is coNP-hard for both power indices
and control by deleting edges is coNP-hard for the Penrose–Banzhaf
index, leaving this question open for the Shapley–Shubik index. We
solve this open question by showing that this problem is coNP-hard
as well. Our complexity results for lower bounds are summarized in
Table 1. As also shown by Kaczmarek and Rothe [9], the best known
upper bound for all our problems is NPPP, the class of problems
solvable by an NP oracle Turing machine accessing a PP oracle.

Table 1. Overview of complexity results for control problems in graph-
restricted weighted voting games with respect to the Shapley–Shubik (ϕ) and
the probabilistic Penrose–Banzhaf index (β).

Goal Control by adding edges Control by deleting edges

Decrease β PP-hard (Theorem 5) PP-hard (Theorem 6)
ϕ PP-hard (Theorem 5) PP-hard (Theorem 6)

Increase β PP-hard (Theorem 3) PP-hard (Theorem 6)
ϕ PP-hard (Theorem 4) PP-hard (Theorem 6)

Maintain β coNP-hard [9] coNP-hard [9]
ϕ coNP-hard [9] coNP-hard (Theorem 7)

In Section 2, we provide the needed definitions and notation. In
Sections 3 and 4, we present our results regarding control by adding
edges and by deleting edges, respectively, with the goal to increase,
decrease, or maintain the Shapley–Shubik or the Penrose–Banzhaf
power index of a distinguished player. We conclude in Section 5.

2 Preliminaries

We discuss the needed notions from cooperative game theory and
computational complexity. We assume the reader to be familiar with
the basic concepts of graph theory. For an undirected graph G =
(V,E), we denote the set of nonedges ofG byE = {{x, y} | x, y ∈
V ∧x �= y∧{x, y} /∈ E}. Further, for a subsetE′ ⊆ E of nonedges
of G, we denote by G∪E′ = (V,E ∪E′) the graph that results from
G by adding the elements of E′ as new edges to it. Similarly, for a
subset E′′ ⊆ E of edges of G, we denote by G\E′′ = (V,E \ E′′)
the graph that results from G by deleting the edges of E′′ from it.

LetN = {1, . . . , n} denote a set of players. A coalitional game is
a pair (N, v), where v : 2N → R≥0 assigns a nonnegative real value
to each coalition (i.e., subset) of players; it is said to be simple if it is
monotonic (i.e., v(A) ≤ v(B)wheneverA ⊆ B) and v(C) ∈ {0, 1}
for each C ⊆ N (where v(C) = 1 means that coalition C wins,
and v(C) = 0 means that C loses). A weighted voting game G =
(w1, . . . , wn; q) is a simple coalitional game with players N that
consists of a quota q ∈ N (i.e., a given threshold) and nonnegative
integer weights, where wi is the weight of player i ∈ N . For each
coalition S ⊆ N , letting wS =

∑
i∈S wi, S wins if wS ≥ q, and

otherwise it loses.
The players’ significance in a given game is usually measured by

so-called power indices, which take into consideration how many
coalitions a player is pivotal for (i.e., how many coalitions S ⊆ N \
{i} a player i can make win: v(S ∪{i})− v(S) = 1). We study two
of the most popular power indices:

• the probabilistic Penrose–Banzhaf power index, defined by

β(G, i) =
∑

S⊆N\{i}(v(S ∪ {i})− v(S))

2n−1
,

which Dubey and Shapley [5] introduced as an alternative to the
original normalized Penrose–Banzhaf index [14, 2], and

• the Shapley–Shubik power index, introduced by Shapley and Shu-
bik [18] as

ϕ(G, i) =
∑

S⊆N\{i} |S|!(n− 1− |S|)!(v(S ∪ {i})− v(S))

n!
.

A graph-restricted weighted voting game is a weighted voting
game G = (w1, . . . , wn; q) with players N = {1, . . . , n} together
with a graph G = (N,E), where

v(S) =

{
1 if S has a connected part S′ with wS′ ≥ q,
0 otherwise.

Graph-restricted weighted voting games are a generalization of
weighted voting games, where weighted voting games are the special
cases with a complete graph as their communication structure. In this
situation, only the total weight of a coalition determines whether it
wins or loses. However, if we limit the possibilities in communica-
tion among players, a coalition’s weight alone is not enough.

Before we present the way, due to Skibski et al. [19], for how to
define appropriate power indices in graph-restricted weighted vot-
ing games (also used mainly in our proofs), let us first define a few
useful notions referring to coalitions in the sense of graph restric-
tions. For S ⊆ N , we denote a maximal connected subset of S in
G as S/G. The set of all winning connected coalitions is defined as
WC = {S ⊆ N | wS ≥ q and S is connected} and the set of win-
ning connected coalitions with player i is denoted by WCi. The set
of all pivotal winning connected coalitions of player i is defined as
PWCi = {S ∈ WCi | ((S \ {i})/G) ∩ WC = ∅}. Further, let
N (i) = {j ∈ N | {i, j} ∈ E} denote the neighborhood of vertex i
in graph G = (N,E), and let N (S) =

(⋃
i∈S N (i)

) \ S be the set
of neighbors of a subset S ⊆ N of vertices.

Skibski et al. [19] presented the following formulas for computing
the Penrose–Banzhaf power index and the Shapley–Shubik power
index in graph-restricted weighted voting games using only the set
of all pivotal winning connected coalitions of a player.

Theorem 1 (Skibski et al. [19]) Let (G, G) be a graph-restricted
weighted voting game with players N . The Penrose–Banzhaf index
of player i ∈ N in (G, G) satisfies

β((G, G), i) =
∑

S∈PWCi

1

2|S|+|N (S)|−1
.

The Shapley–Shubik index of player i in (G, G) satisfies

ϕ((G, G), i) =
∑

S∈PWCi

(|S| − 1)!|N (S)|!
(|S|+ |N (S)|)! .

We assume familiarity with the basic concepts of computational
complexity theory, such as the well-known complexity classes P
(deterministic polynomial time), NP (nondeterministic polynomial
time), and coNP (the class of problems that are complements of NP
sets); also, recallPP (probabilistic polynomial time [8]) and the class
DP that contains the differences of two NP sets [13] from Foot-
note 1. Note that P ⊆ NP ⊆ DP ⊆ PP and P ⊆ coNP ⊆ DP.
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We will use the notions of completeness and hardness for a com-
plexity class based on the polynomial-time many-one reducibility: A
problemX (polynomial-time many-one) reduces to a problem Y (for
short, X ≤p

m Y ) if there exists a polynomial-time computable func-
tion ρ such that for each input x, x ∈ X if and only if ρ(x) ∈ Y ; Y
is hard for a complexity class C if C ≤p

m Y for each C ∈ C; and Y is
hard for C if Y is C-hard and Y ∈ C.

We recall some well-knownNP-complete problems [7] the count-
ing versions of which will be used later on to provide reductions in
our hardness proofs:

• SUBSETSUM: Given a sequence (a1, . . . , an) of positive integers
and an integer q, does there exist a subset A ⊆ {1, . . . , n} such
that

∑
i∈A ai = q?

• X3C: Given a set B, with |B| = 3k for some k ∈ N, and a
family S of three-element subsets of B, does there exist an exact
cover, i.e., a subfamily S∗ ⊆ S such that each element from B is
contained in exactly one set in S∗?

Valiant [21] introduced #P as the class of functions that give the
number of solutions of NP problems. Deng and Papadimitriou [4]
showed that computing the Shapley–Shubik index of a player in
a given weighted voting game is complete for #P via functional
polynomial-time many-one reductions. Prasad and Kelly [15] proved
that computing the probabilistic Penrose–Banzhaf index is parsimo-
niously complete for#P, i.e.,#P-hardness is shown by a functional
polynomial-time many-one reduction that preserves the number of
solutions. Skibski et. al. [19] observed that computing the Shapley–
Shubik index and the probabilistic Penrose–Banzhaf index in graph-
restricted weighted voting games is #P-complete as well.

#P and PP, even though the former is a class of functions and
the latter a class of decision problems, are closely related by the
well-known result that PPP = P#P; note that PPP contains the en-
tire polynomial hierarchy by Toda’s celebrated result [20]. We also
use in our PP-hardness proofs the following two problems that were
shown to be PP-complete by Rey and Rothe [16]:

COMPARE-#SUBSETSUM-RR

Given: A sequence (a1, . . . , an) of positive integers, where
α =

∑n
i=1 ai.

Question: Is it true that #SUBSETSUM((a1, . . . , an),
α
2
− 2) >

#SUBSETSUM((a1, . . . , an),
α
2
− 1)?

The problem COMPARE-#SUBSETSUM- RR is defined analo-
gously, except that the inequality is inverted in the question, i.e., “>”
is replaced by “<.”

Finally, we will use the following lemma in some of our proofs.
The result regarding X3C instances in it is due to Faliszewski and
Hemaspaandra [6] and Rey and Rothe [16] observed that it can also
be transferred to instances of SUBSETSUM since #X3C parsimo-
niously reduces to #SUBSETSUM.

Lemma 2 Every X3C instance (B′,S ′) can be transformed into an
X3C instance (B,S), where |B| = 3k and |S| = n, such that
k
n
= 2

3
without changing the number of solutions. Consequently, we

can assume that the size of each solution in a SUBSETSUM instance
is 2n

3
, that is, each subsequence summing up to the given quota con-

tains the same number of elements.

3 Adding Edges to a Communication Structure

Before we delve into the computational complexity of control by
adding edges in graph-restricted weighted voting games, we con-

sider an example that shows that if we add new edges to the commu-
nication structure, connecting players other than the distinguished
player i with each other, all situations are possible to happen: i’s
power can increase, decrease, or be maintained by such a control ac-
tion.

Example 1 Consider the graph-restricted weighted voting game
(G, G) with players N = {a, b, . . . , f}, G = (1, 2, 4, 2, 2, 2; 7) (i.e.,
player a has weight 1, player c has weight 4, all other players have
weight 2, and the quota is 7), and the following communication struc-
ture G:

d

b c a

ef

For player a, PWCa = {{a, b, c}, {a, c, d}, {a, b, c, d}}. After
adding an edge between players e and f , the set PWCa does not
change. If we add an edge between the players e and d, player a
will become pivotal for the coalitions {a, b, d, e} and {a, c, d, e}.
Finally, if an edge between c and d is added, player a will not be piv-
otal for the coalition {a, b, c, d} anymore. Indeed, it is even possible
that adding edges among other players can reduce the distinguished
player’s power indices even to 0.

We begin our technical treatment by considering the impact of
adding new edges to the communication structure of a given graph-
restricted weighted voting game. By this structural change to the
game, we allow some players to communicate with each other for
whom this was impossible before.

Let us define the decision problem in which we ask whether some
power index PI can be increased:

CONTROL BY ADDING EDGES TO INCREASE PI

Given: A graph-restricted weighted voting game (G, G) with
players N = {1, . . . , n}, a communication structure
G = (N,E), |E| < (

n
2

)
, a distinguished player p ∈

N , and a nonnegative integer k.
Question: Is it sufficient to add k or fewer edgesE′ ⊆ E,E′ �= ∅,

to G to obtain a new graph-restricted weighted voting
game (G, G∪E′) for which it holds that

PI((G, G∪E′), p) > PI((G, G), p)?

Analogously, we define the decision problems for decreasing and
maintaining a distinguished player’s power (by replacing “>” in the
question by “<” or “=”).

Kaczmarek and Rothe [9] showed that control by adding edges to
increase a given player’s Penrose–Banzhaf index isDP-hard and that
this problem is NP-hard for the Shapley–Shubik index. We improve
these lower bounds to PP-hardness for both power indices, starting
with the Penrose–Banzhaf index.

Theorem 3 Control by adding edges between players to increase a
distinguished player’s Penrose–Banzhaf index in a graph-restricted
weighted voting game is PP-hard.

Proof. To prove PP-hardness, we reduce from the PP-
hard problem COMPARE-#SUBSETSUM-RR. Given an instance
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A = (a1, . . . , an) of COMPARE-#SUBSETSUM-RR, where α =∑n
i=1 ai, we define

ξ1 = #SUBSETSUM
(
A,

α

2
− 1

)
,

ξ2 = #SUBSETSUM
(
A,

α

2
− 2

)
and construct an instance of our control problem as follows. Let z1 =
· · · = zn = 1 and choose r1, r2, q, and � such that

10r1 > n+
n∑

j=1

(aj · 10r2) ,

10r2 > n,

q = 2
n∑

j=1

aj · 10r1 + 1, and

10� > 2q + n+
n∑

j=1

(aj · 10r1 + aj · 10r2) + 1.

Construct the following graph-restricted weighted voting game
(G, G):

G =
(
1, 10�, q −

(α
2
− 1

)
· 10r1 , a1 · 10r1 , . . . , an · 10r1 ,

q −
(α
2
− 2

)
· 10r2 , a1 · 10r2 , . . . , an · 10r2 ,

z1, . . . , zn; 10
� + q + 1

)
with 3n + 4 players in N , distinguished player 1, and the following
communication graphG = (N,E), displayed in Figure 1: The play-
ers 1, 2, 3, and all players with weights z1, . . . , zn form a complete
subgraph, the players 4, . . . , n+3 are connected with each other and
with all previous players except the players 1 and 2, and the players
n + 4, . . . , 2n + 4 form another complete component without any
edges to the remaining players. Call the first component X and the
other component Y . So, the only edges that can possibly be added
are edges between the componentsX and Y , and withinX , between
the players from {1, 2} and those from {4, . . . , n+ 3}.

1

10�

q1

z1

...

zn

a′
1

...

a′
n

q2

a′′
1

...

a′′
n

X

Y

Figure 1. Communication structure of the game (G, G) from the proof of
Theorem 3. The weights of the players are used instead of the player names,
where q1 = q−

(
α
2
−1

)
·10r1 , q2 = q−

(
α
2
−2

)
·10r2 , a′i = ai ·10r1 ,

and a′′i = ai · 10r2 for i ∈ {1, . . . , n}. The double circle indicates the
distinguished player. The dashed rectangles represent connected components
and regular rectangles represent complete subgraphs of G.

Player 1’s Penrose–Banzhaf index in this game is

β((G, G), 1) =
ξ1

22n+2
.

Let the addition limit be k = 1. We will show that

(∃e ∈ E) [β((G, G∪{e}), 1)− β((G, G), 1) > 0] ⇐⇒ ξ1 < ξ2.

From right to left, assume that ξ1 < ξ2. Add an edge e between
the distinguished player 1 and, for example, player n+4with weight
q− (α

2
− 2) · 10r2 . Then 1’s Penrose–Banzhaf index will increase to

β((G, G∪{e}), 1) =
ξ1

22n+3
+

ξ2
22n+3

>
ξ1 + ξ1
22n+3

=
ξ1

22n+2
= β((G, G), 1).

From left to right, assume now that ξ1 ≥ ξ2. Adding any of the
edges inside of the component X will not change the distinguished
player’s Penrose–Banzhaf index. Let us focus on edges connecting
the components X and Y with each other. Let e be an added edge,
and consider the following possibilities which players are connected
by e:

Case 1: e connects either player 1 or player 2 with player n + 4.
Then

β((G, G∪{e}), 1) =
ξ1

22n+3
+

ξ2
22n+3

≤ ξ1 + ξ1
22n+3

= β((G, G), 1).

Case 2: e connects either player 1 or 2 with one of the players
from Y \ {n+ 4}, say i, and let ξ′2 ≤ ξ2 be the number of coali-
tions containing i for which player 1 is pivotal. Then

β((G, G∪{e}), 1) =
ξ1

22n+3
+

ξ′2
22n+3

≤ ξ1 + ξ2
22n+3

≤ ξ1 + ξ1
22n+3

= β((G, G), 1).

Case 3: e connects any player from Y with one of the players from
{3, . . . , n + 3}. This will only add a neighbor to those coalitions
counted in the old Penrose–Banzhaf index of player 1 and will not
make player 1 pivotal for any other coalition, so 1’s new Penrose–
Banzhaf index will not be greater.

Case 4: e connects the component Y with any player from {2n +
5, . . . , 3n + 4}. In this case, the Penrose–Banzhaf index of
player 1 will not change, since the latter players are only neigh-
bors of the set counted in player 1’s old Penrose–Banzhaf index
and they cannot be contained in any coalition for which 1 could
be pivotal in a game with the given set of players and weights and
the given quota.

Therefore, it is impossible for the distinguished player’s Penrose–
Banzhaf index to increase by adding any edge. �

By slightly modifying the reduction provided in the previous
proof, we obtain the same result for the Shapley–Shubik index. The
proof of Theorem 4 is omitted due to space limitations.

Theorem 4 Control by adding edges between players to increase
a distinguished player’s Shapley–Shubik index in a graph-restricted
weighted voting game is PP-hard.

For the goal of decreasing a given player’s power, Kaczmarek and
Rothe [9] established NP-hardness for control by adding edges with
respect to both power indices. We again improve their results by
showing PP-hardness, using the same reduction for both problems.

Theorem 5 Control by adding edges between players to decrease a
distinguished player’s Penrose–Banzhaf or Shapley–Shubik index in
a graph-restricted weighted voting game is PP-hard.
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Proof. Again, we prove PP-hardness of our two con-
trol problems by reducing from the PP-hard problem
COMPARE-#SUBSETSUM-RR. Let A = (a1, . . . , an) with
α =

∑n
i=1 ai be a given instance of COMPARE-#SUBSETSUM-RR.

Define

ξ1 = #SUBSETSUM
(
A,

α

2
− 1

)
and

ξ2 = #SUBSETSUM
(
A,

α

2
− 2

)
and construct an instance of our control problem (for either the
Penrose–Banzhaf or the Shapley–Shubik index) as follows.

Let z = 1 and r2 = 1 and choose r1, q, and � such that

10r1 > 2z +
n∑

j=1

aj · 10r2 ,

q = 2

n∑
j=1

aj · 10r1 + 1, and

10� > 2q + 2z + 2
n∑

j=1

(aj · 10r1 + aj · 10r2) + 1.

Consider the following graph-restricted weighted voting game
(G, G):

G =
(
1, 10l, z, z,

q −
(α
2
− 2

)
· 10r1 − z, a1 · 10r1 , . . . , an · 10r1 ,

q −
(α
2
− 1

)
· 10r2 − 2z, a1 · 10r2 , . . . , an · 10r2 ;

10l + q + 1
)

with 2n + 6 players, distinguished player 1 and the following com-
munication graphG = (N,E): All players but player 4 form a com-
plete subgraph, whereas player 4 is an isolated vertex. Thus we can
only add edges between player 4 and the large complete subgraph.

Due to space limitations, the proof of correctness of our reduc-
tion is omitted for the Penrose–Banzhaf index. Turning now to the
Shapley–Shubik power index, consider the above reduction between
the problem COMPARE-#SUBSETSUM-RR and our control problem.
By Lemma 2, we may assume that every set counted in ξ1 and in ξ2
has the same size t. Our distinguished player’s Shapley–Shubik in-
dex in the constructed game (G, G) is

ϕ((G, G), 1) = ξ2
(t+ 3)!(2n− t+ 1)!

(2n+ 5)!
.

Let the addition limit be k = 1. We will show that

(∃e ∈ E) [ϕ((G, G∪{e}), 1)− ϕ((G, G), 1) < 0] ⇐⇒ ξ1 < ξ2.

From right to left, assume that ξ1 < ξ2. After adding an edge e
between players 3 and 4, the Shapley–Shubik index of our distin-
guished player will decrease to

ϕ((G,G∪{e}), 1)

= ξ2
(t+ 3)!(2n− t+ 2)!

(2n+ 6)!
+ ξ1

(t+ 4)!(2n− t+ 1)!

(2n+ 6)!

< ξ2
(t+ 3)!(2n− t+ 2)!

(2n+ 6)!
+ ξ2

(t+ 4)!(2n− t+ 1)!

(2n+ 6)!

= ξ2
(t+ 3)!(2n− t+ 1)!

(2n+ 5)!

= ϕ((G, G), 1).

From left to right, assume now that ξ1 ≥ ξ2. Let e be an added
edge (which, recall, can only connect player 4 with any of the other
players). Consider the following cases.

Case 1: e connects player 4 with either player 1 or player 2. Then

ϕ((G,G∪{e}), 1)

= 2ξ2
(t+ 3)!(2n− t+ 2)!

(2n+ 6)!
+ ξ1

(t+ 4)!(2n− t+ 1)!

(2n+ 6)!

≥ 2ξ2
(t+ 3)!(2n− t+ 2)!

(2n+ 6)!
+ ξ2

(t+ 4)!(2n− t+ 1)!

(2n+ 6)!

≥ ϕ((G, G), 1).

Case 2: e connects player 4 with player 3. Then

ϕ((G,G∪{e}), 1)

= ξ2
(t+ 3)!(2n− t+ 2)!

(2n+ 6)!
+ ξ1

(t+ 4)!(2n− t+ 1)!

(2n+ 6)!

≥ ξ2
(t+ 3)!(2n− t+ 2)!

(2n+ 6)!
+ ξ2

(t+ 4)!(2n− t+ 1)!

(2n+ 6)!

= ϕ((G, G), 1).

Case 3: e connects player 4 with player 5. Then

ϕ((G, G∪{e}), 1) = 2ξ2
(t+ 3)!(2n− t+ 2)!

(2n+ 6)!

= ξ2
(t+ 3)!(2n− t+ 2)!

(2n+ 6)!

+
2n− t+ 2

t+ 4
ξ2

(t+ 4)!(2n− t+ 1)!

(2n+ 6)!

≥ ϕ((G, G), 1),

since 2n−t+2
t+4

≥ 1 due to the fact that t < n.
Case 4: e connects player 4 with one of the players from

{6, . . . , n + 5}, say with player j. Let ξ′2 ≤ ξ2 be the number
of coalitions containing j for which our distinguished player 1 is
pivotal. Then

ϕ((G, G∪{e}), 1)

= (ξ2 − ξ′2)
(t+ 3)!(2n− t+ 1)!

(2n+ 5)!
+ 2ξ′2

(t+ 3)!(2n− t+ 2)!

(2n+ 6)!

= (ξ2 − ξ′2)
(t+ 3)!(2n− t+ 1)!

(2n+ 5)!

+ 2
2n− t+ 2

2n+ 6
ξ′2

(t+ 3)!(2n− t+ 1)!

(2n+ 5)!

= (ξ2 − ξ′2)
(t+ 3)!(2n− t+ 1)!

(2n+ 5)!

+ 2

(
1− t+ 4

2n+ 6

)
ξ′2

(t+ 3)!(2n− t+ 1)!

(2n+ 5)!

≥ (ξ2 − ξ′2)
(t+ 3)!(2n− t+ 1)!

(2n+ 5)!
+ ξ′2

(t+ 3)!(2n− t+ 1)!

(2n+ 5)!

= ϕ((G, G), 1).

Case 5: e connects player 4 with player n+ 6. Then

ϕ((G,G∪{e}), 1)

= ξ2
(t+ 3)!(2n− t+ 1)!

(2n+ 5)!
+ ξ1

(t+ 4)!(2n− t+ 1)!

(2n+ 6)!

= ϕ((G, G), 1) + ξ1
(t+ 4)!(2n− t+ 1)!

(2n+ 6)!

≥ ϕ((G, G), 1).
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Case 6: Finally, e connects player 4 with one of the players from
{n+7, . . . , 2n+6}, say with player j. Let ξ′1 ≤ ξ1 be the number
of coalitions containing j for which our distinguished player 1 is
pivotal. Then

ϕ((G,G∪{e}), 1)

= ξ2
(t+ 3)!(2n− t+ 1)!

(2n+ 5)!
+ ξ′1

(t+ 4)!(2n− t+ 1)!

(2n+ 6)!

= ϕ((G, G), 1) + ξ′1
(t+ 4)!(2n− t+ 1)!

(2n+ 6)!

≥ ϕ((G, G), 1).

Therefore, in each case, also the distinguished player’s Shapley–
Shubik index does not decrease. �

4 Deleting Edges from a Communication Structure

We now turn to control by deleting edges and study how limiting the
communication among players can change their power in a graph-
restricted weighted voting game. Again, we start with an example.

Example 2 Let us consider again the graph-restricted weighted vot-
ing game (G, G) from Example 1 and let us modify this game’s com-
munication graph creating a new game (G, H) with the following
graph H:

d

b c a

ef

Let us consider player a again. In the new game, PWCa =
{{a, b, c}, {a, c, d}}. If we delete the edge between a and c, player
a will stop being pivotal for the coalition {a, b, c}. If we remove the
edge between the players a and d, a will stay pivotal for the same
coalitions as before. If we delete the edge between c and d, we will
get the game (G, G), so player a will be pivotal for one coalition
more than before our manipulation.

As in the previous section, we define the problem of control by
deleting edges to increase a power index PI; the other two definitions
(where the goal is to decrease or to maintain an index) are again
analogous.

CONTROL BY DELETING EDGES TO INCREASE PI

Given: A graph-restricted weighted voting game (G, G) with
players N = {1, . . . , n}, a communication structure
G = (N,E), a distinguished player p ∈ N , and a
positive integer k ≤ |E|.

Question: Can at most k edges E′ ⊆ E, E′ �= ∅, be deleted from
G such that for the new game (G, G\E′), it holds that
PI((G, G\E′), p) > PI((G, G), p)?

For control by deleting edges to increase or to decrease a given
player’s power, Kaczmarek and Rothe [9] established DP-hardness
for the Penrose–Banzhaf index and NP-hardness for the Shapley–
Shubik index. Our results in Theorem 6 again improve all four lower
bounds toPP-hardness (as summarized in Table 1 in Section 1). Note
that these problems are PP-hard to solve even if we delete only a
single edge from the given communication graph.

Theorem 6 Control by deleting edges between players to increase
or to decrease a distinguished player’s Penrose–Banzhaf or Shapley–
Shubik index in a graph-restricted weighted voting game is PP-hard.

Proof. We show PP-hardness of control by deleting edges
to decrease the distinguished player’s Penrose–Banzhaf or
Shapley–Shubik index by means of a reduction from the
COMPARE-#SUBSETSUM-RR problem. PP-hardness of con-
trol by deleting edges to increase the distinguished player’s
Penrose–Banzhaf or Shapley–Shubik index can be proven
analogously with the same reduction when starting from the
COMPARE-#SUBSETSUM- RR problem.

Let A = (a1, . . . , an) be a given instance of
COMPARE-#SUBSETSUM-RR with α =

∑n
i=1 ai. Let

ξ1 = #SUBSETSUM
(
A,

α

2
− 1

)
,

ξ2 = #SUBSETSUM
(
A,

α

2
− 2

)

and construct the control problem instance consisting of a graph-
restricted weighted voting game

G =
(
1, a1, . . . , an, 2α, 1;

5α

2

)

with n + 3 players, distinguished player 1, and the following com-
munication graph G = (N,E): All players except n + 3 form a
complete subgraph and player n + 3 is connected with the distin-
guished player 1 by an edge called x.

Let t be the size of each solution according to Lemma 2. Player 1’s
Penrose–Banzhaf index in this game is

β((G, G), 1) =
ξ1 + ξ2
2n+2

,

and player 1’s Shapley–Shubik index in it is

ϕ((G, G), 1) = ξ1
(t+ 1)!(n+ 1− t)!

(n+ 3)!
+ ξ2

(t+ 2)!(n− t)!

(n+ 3)!
.

Let the deletion limit be k = 1. We will first show that for the
distinguished player’s Penrose–Banzhaf index, we have

(∃e ∈ E) [β((G, G\{e}), 1)− β((G, G), 1) < 0] ⇐⇒ ξ1 < ξ2.

From right to left, assume that ξ1 < ξ2. Then, after deleting the
edge x, the Penrose–Banzhaf index of player 1 will decrease to

β((G, G\{x}), 1) =
ξ1

2n+1
=

2ξ1
2n+2

<
ξ1 + ξ2
2n+2

= β(G, 1).

From left to right, assume that ξ1 ≥ ξ2. We have

β((G, G\{x}), 1) =
ξ1

2n+1
=

2ξ1
2n+2

≥ ξ1 + ξ2
2n+2

= β(G, 1),

so the Penrose–Banzhaf index of player 1 does not decrease by delet-
ing x. If we remove any other edge, 1’s Penrose–Banzhaf index will
not change at all.

Similarly, we now show that for the distinguished player’s
Shapley–Shubik index, we have

(∃e ∈ E) ϕ((G, G), 1)− ϕ((G, G\{e}), 1) > 0 ⇐⇒ ξ1 < ξ2.
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From right to left, assume that ξ1 < ξ2. After deleting the edge x,
the Shapley–Shubik index of the distinguished player will decrease
to

ϕ((G, G\{x}), 1) = ξ1
(t+ 1)!(n− t)!

(n+ 2)!

= ξ1
(t+ 1)!(n+ 1− t)!

(n+ 3)!

n+ 3

n+ 1− t

= ξ1
(t+ 1)!(n+ 1− t)!

(n+ 3)!
+ ξ1

(t+ 2)!(n− t)!

(n+ 3)!

< ϕ((G, G), 1).

From left to right, assume that ξ1 ≥ ξ2. We have

ϕ((G, G\{x}), 1) = ξ1
(t+ 1)!(n+ 1− t)!

(n+ 3)!
+ ξ1

(t+ 2)!(n− t)!

(n+ 3)!

≥ ϕ((G, G), 1),

so the distinguished player’s Shapley–Shubik index does not de-
crease. If we remove any other edge, the distinguished player’s
Shapley–Shubik index will not change at all. �

Finally, we consider the goal of maintaining a player’s Shapley–
Shubik index in a graph-restricted weighted voting game when edges
are deleted from the communication graph. The complexity of this
problem was left open by Kaczmarek and Rothe [9] (who showed
coNP-hardness only for the Penrose–Banzhaf index).

We solve this open question by showing coNP-hardness also for
the Shapley–Shubik index—the same lower bound, but obtained via
a completely different construction the proof of correctness of which
will be rather involved and is omitted due to space limitations.

Theorem 7 Control by deleting edges to maintain a distinguished
player’s Shapley–Shubik index in a graph-restricted weighted voting
game is coNP-hard.

Proof Sketch. We can show coNP-hardness of our control
problem by providing a reduction from the complement of the
SUBSETSUM problem.

Let ((a1, . . . , an), q) be an instance of SUBSETSUM and let α =∑n
i=1 ai. From this instance, we construct our control problem in-

stance as follows.
Set the values y1, y2, and z as follows:

y1 = n+ 1,

y2 = 2n+ 2, and

z = 2 · (α · 10� + n+ y1 + y2) + 1,

where the positive integer � is chosen such that

10� > n+ y1 + y2 = 4n+ 3.

Further, let a′
i = ai · 10� and a′′

i = z − ai · 10� − �n
2
� for i ∈

{1, . . . , n}, and let b1 = z− q · 10� − y1 and b2 = z− q · 10� − y2.
Define the following graph-restricted weighted voting game (G, G):

G =
(
1, a′

1, . . . , a
′
n, a

′′
1 , . . . , a

′′
n,

1, . . . , 1︸ ︷︷ ︸
n

, b1, y1, b2, y2, 10
t; 10t + z + 1

)

with 3n+ 6 players the last of which is heavier than the total weight
of all other players (i.e., if wi is the weight of player i, then t is

110t

a′
1

... a′
n

a′′
1 a′′

n

1

...

1

b2

b1

y2

y1

e1

e2

e3

e4 e5

e6

Figure 2. Communication structure of the game (G, G) from the proof of
Theorem 7. The double circle indicates the distinguished player.

chosen such that w3n+6 = 10t >
∑3n+5

i=1 wi). Our distinguished
player is 1, and we define the communication structure G = (N,E)
as shown in Figure 2 (again labeling the vertices with the weights of
the players instead of their names to enhance readability).

Set the deletion limit k = 1 and let ξ be the number of
SUBSETSUM ((a1, . . . , an), q)’s solutions. We can show that

(∃e ∈ E) [ϕ((G, G\{e}), 1)− ϕ((G, G), 1) = 0] ⇐⇒ ξ = 0,

again omitting the full proof due to space limitations. Specifically, if
ξ = 0, we can show that after removing an edge between the players
of weights b1 and y1 or between the players of weights b2 and y2, the
Shapley–Shubik index of player 1 remains unchanged. Otherwise, if
ξ > 0, removing any edge will cause either increasing or decreasing
the index. Therefore, the control problem of deleting edges from a
communication graph to maintain a given player’s Shapley–Shubik
power index is coNP-hard. �

5 Conclusions

We have analyzed structural manipulation of communication struc-
tures in graph-restricted weighted voting games by adding or delet-
ing edges in the graphs. We have studied the computational com-
plexity of the problems of whether such a manipulation can in-
crease, decrease, or maintain the (probabilistic) Penrose–Banzhaf or
the Shapley–Shubik power index of a given player. Specifically, we
have improved the known lower bounds for these problems due to
Kaczmarek and Rothe [9] for the goals of increasing and decreasing
these power indices from NP- orDP-hardness to PP-hardness. Fur-
ther, we have shown coNP-hardness for control by deleting edges
to maintain a given player’s Shapley–Shubik index, thus providing
a first lower bound for this problem and solving an open question
raised by Kaczmarek and Rothe [9].

Interesting tasks for future research include the question of
whether our complexity lower bounds can be raised even further and
whether we can pinpoint the complexity of these problems exactly,
as well as considering further power indices such as the normalized
Penrose–Banzhaf index [2, 14].
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