
SMT-Based Satisfiability Checking of Strategic Metric
Temporal Logic

Magdalena Kacprzaka, Artur Niewiadomskib;*, Wojciech Penczekc and Andrzej Zbrzeznyd

aFaculty of Computer Science, Bialystok University of Technology, Bialystok, Poland
bSiedlce University, Faculty of Exact and Natural Sciences, Siedlce, Poland

cInstitute of Computer Science, Polish Academy of Sciences, Warsaw, Poland
dFaculty of Science and Technology, Jan Dlugosz University in Czestochowa, Czestochowa, Poland

ORCiD ID: Magdalena Kacprzak https://orcid.org/0000-0002-9464-7686,
Artur Niewiadomski https://orcid.org/0000-0002-9652-5092,
Wojciech Penczek https://orcid.org/0000-0001-6477-4863,
Andrzej Zbrzezny https://orcid.org/0000-0003-2771-9683

Abstract. The paper presents a novel SMT-based method for test-
ing the satisfiability of formulae that express strategic properties of
timed multi-agent systems represented by networks of timed au-
tomata. Strategic Metric Temporal Logic (SMTL) is introduced,
which extends Metric Temporal Logic (MTL) with strategy oper-
ators. SMTL is interpreted over maximal continuous time runs of
timed automata. We define a procedure that synthesises a model for
a given SMTL formula if such a model exists. The method exploits
Satisfiability Modulo Theories (SMT) techniques and Parametric
Bounded Model Checking algorithms. The presented approach en-
ables bounded satisfiability checking, where the model is partially
given and needs to be completed in line with the given specification.
Our method has been implemented, and its application is demon-
strated through an example of the well-known dining philosophers
problem extended with clocks and strategies. The experimental re-
sults are quite encouraging.

1 Introduction

Artificial Intelligence (AI) has made significant strides in driving
cars, playing games, composing music, and creating art [16]. How-
ever, will software engineering also become fully automated? While
AI can certainly provide support [33], building a correct model for a
system is still a difficult and complex task that requires human exper-
tise. Although fully automatic model building may be computation-
ally expensive or impossible, a practical compromise is to combine
the engineer’s work with the capabilities of a computer. For example,
when designing a safe road intersection, the vehicles and their pos-
sible activities can be modelled, and the challenge is to synthesise
a traffic controller or traffic lights automatically. This paper focuses
on the problem of satisfiability (SAT) checking for a strategic logic.
Our solution involves synthesising a model for a given formula, but
the model does not need to be built from scratch. By leveraging ex-
isting data on selected attributes of the system, it is only necessary to
complete a (finite) candidate model to satisfy the desired property.

∗ Emails: artur.niewiadomski@uph.edu.pl (corresponding author),
m.kacprzak@pb.edu.pl, penczek@ipipan.waw.pl, a.zbrzezny@ujd.edu.pl

The primary objective of this paper is to introduce a new method
for implementing bounded satisfiability (BSAT) for Metric Tempo-
ral Logic (MTL) [28, 7] and its extension with strategic operators,
called Strategic Metric Temporal Logic (SMTL). Our BSAT pro-
cedure for SMTL combines Bounded Model Checking (BMC) with
Satisfiability Modulo Theories (SMT) solvers. The basic idea behind
our method is to synthesise the model as the product of agents repre-
sented by a "fully" parametric Network of Timed Automata (NTA),
given an SMTL formula expressing the desired property. In addition
to standard parameters used in guards and invariants, we can also
specify constraints on parameters representing the number of agents
and the numbers of their locations, transitions, and actions. Option-
ally, if we have additional knowledge about the system’s structure,
we can replace some parameters with fixed values. Next, we encode
the SMTL formula and the runs of the parametric timed automata
network, unfolded to a given depth k, as an SMT problem instance,
which is then checked for satisfiability by an SMT-solver. If the
answer is SAT, we obtain all the parameter values from a model
returned by the SMT-solver. Otherwise, we increase the unfolding
depth to k + 1 and possibly adjust the values of some parameters
such as the number of agents, locations, and transitions.

We also present some preliminary experimental results generated
by our prototype tool SMT4SMTL, applied to a parametric timed
version of the Dining Philosophers benchmark. Among these results,
we demonstrate an automatic synthesis of a lackey agent. Other po-
tential applications of SMTL include the specification of proper-
ties related to the existence of strategies for reaching specific states
within a given time period (time-bounded (un)reachability, (non-)
response properties). Our tool helps to build or enhance systems
to meet these properties, with applications in timed games, earliest
deadline first (EDF) schedulability, and unmanned vehicle protocols.

1.1 Contribution and Outline

The main contributions of the paper are as follows:
• A definition of Strategic Metric Temporal Logic (SMTL);
• A method for solving BSAT for (S)MTL;
• A parametric encoding of networks of timed automata;

ECAI 2023
K. Gal et al. (Eds.)

© 2023 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA230394

1180

https://orcid.org/0000-0002-9464-7686
https://orcid.org/0000-0002-9652-5092
https://orcid.org/0000-0001-6477-4863
https://orcid.org/0000-0003-2771-9683

• Parametric Bounded Model Checking (PBMC) for (S)MTL;
• The tool SMT4SMTL using PBMC and SMT-solvers.
The rest of the paper is organised as follows. The related work is
discussed in Section 2. Next in Section 3, timed automata and their
models are defined. The logic SMTL is introduced in Section 4. In
Section 5 the SMT encoding of the SAT problem for SMTL is dis-
cussed. Section 6 presents our implementation and experimental re-
sults. Finally the summary is provided in Section 7.

2 Related Work

While there are only a few implemented approaches to the sat-
isfiability problem for (timed) strategic logics (discussed below),
there have been a lot of approaches to the model checking prob-
lem of such logics [24, 25, 29, 21, 18, 38, 20, 26]. The reason
of this unbalanced situation is twofold. Firstly, the model check-
ing problem (MC) is typically of lower complexity than the satis-
fiability problem (SAT) for the same logic. For example: for ATL
the complexity of MC is PTIME-complete [6], while the complex-
ity of SAT is EXPTIME-complete [44], for ATL*, the complexity
of MC is PSPACE-complete [19], while the complexity of SAT is
2EXPTIME-complete [42, 14], for SL (strategy logic), the complex-
ity of MC is non-elementarily decidable [31], while SAT is unde-
cidable [31], and for TCTL the complexity of MC is PSPACE-
complete [1, 39], while SAT is undecidable [1]. However, for MTL
interpreted over real-time, without any restrictions, both MC and
SAT are undecidable [12, 7]. Secondly, model checking is consid-
ered to be more practice oriented as it is applied directly to the system
verification while satisfiability checking is exploited for the system
synthesis, which is frequently less feasible.

In [27] a lazy SMT-solver for Boolean monotonic theories
(SMMT) was applied to model synthesis for Computation Tree Logic
(CTL [9, 49]). This method was then extended in [22, 34] to deciding
the satisfiability of Alternating-time Temporal Logic (ATL [5, 6]),
and in [23] to deciding Simple-Goal Strategy Logic (SL[SG] [10]).
Another approach to checking satisfiability of ATL� was developed
in [14], using a tableau-based decision procedure.

In this paper, we present a different approach to the satisfiabil-
ity checking and synthesis. First of all, we consider the logic MTL
over real-time, and its extension with strategic operators (SMTL), re-
gardless of their undecidability in general. Secondly, we combine the
SMT-based parametric model checking with bounded model check-
ing, both approaches known for their efficiency. Thirdly, while syn-
thesising a model based on NTA for SMTL we do not need to start
from scratch, but we can start with a model partially built by a (hu-
man) designer. Our method builds upon the MTL formula transla-
tion and encoding of the transition relation of [48], but we introduce
parameters that require additional constraints to ensure the meaning-
fulness of the resulting NTA.

SMTL resembles STCTL [8], where subformulae of TCTL [1]
are replaced with subformulae of MTL, so SMTL and STCTL are
of incomparable expressiveness like in case of TCTL and MTL.

With the exception of our work, the only tool for deciding the sat-
isfiability of variants of real-time MTL is reported in [11], where a
translation of MITL and MTL(0,∞) into CLTLoc and further a re-
duction to SMT for QF-EUF and QF-LRA is described. Similarly to
our approach the authors consider BSAT and apply SMT-solvers,
but they do not consider a strategic extension of MTL and do not
deal with synthesis of NTA satisfying SMTL specifications. The pa-
per [11] is focused on finding clock values and yes/no answer for
the SAT problem, while our paper applies the parametric BMC to

construct a NTA, whose paths satisfy the tested formula.
In order to regain decidability of MTL, certain semantic and syn-

tactic restrictions are introduced [37]. Semantic restrictions include
adopting an integer-time model [7, 17, 15] or a bounded-variation
dense-time model [45] for which SAT is decidable. Syntactic re-
strictions concern: punctuality or non-singularity [4], boundedness
and safety [13, 35, 36]. Then, the SAT problem becomes decidable
and is EXPSPACE-complete.

3 Timed Automata and Their Models

In this section we define Timed Automata [2] with asynchronous,
strongly monotonic semantics and continuous time.

3.1 Timed Automata

Hereafter, N = {0, 1, 2, . . . } denotes the set of natural numbers, R+

denotes the set of positive real numbers, and R≥ denotes the set of
non-negative real numbers. Let X = {x1, . . . , xn} be a finite set of
variables, called clocks. A clock valuation is a function v : X →
R≥, assigning to each clock x a non-negative value v(x). The set
of all the valuations is denoted by (R≥)X . For a subset X of X by
v[X := 0] we mean the valuation v′ such that ∀x ∈ X , v′(x) = 0
and ∀x ∈ X\X , v′(x) = v(x). For δ ∈ R+, v + δ denotes the
valuation v′′ such that ∀x ∈ X , v′′(x) = v(x) + δ.

The set C(X) of clock constraints over the set of clocks X is de-
fined inductively as follows: cc := x ∼ c | cc ∧ cc, where x ∈ X ,
∼∈ {≤, <,=, >,≥}, and c ∈ R≥.
A clock valuation v satisfies the clock constraint cc ∈ C(X):

v |= x ∼ c iff v(x) ∼ c,
v |= cc ∧ cc′ iff v |= cc and v |= cc′.

For each cc ∈ C(X) by v(cc) we denote the set of all the clock
valuations satisfying cc, i.e., v(cc) = {v ∈ (R≥)X | v |= cc}.
Similarly, v(C(X)) = {v(cc) ⊆ (R≥)X | cc ∈ C(X)}. Now, we are
ready to define Timed Automata.

Definition 1. A timed automaton (TA for short) is a 8-tuple

A = (Act, Loc, �0,X , T, Inv,AP,V), where

• Act is a finite set of actions,
• Loc is a finite set of locations,
• �0 ∈ Loc is an initial location,
• X is a finite set of clocks,
• T ⊆ Loc × Act × C(X)× 2X × Loc is a transition relation,
• Inv : Loc → C(X) is a state invariant function,
• AP is a finite set of atomic propositions, and
• V : Loc → 2AP is a valuation function assigning to each location

a set of atomic propositions true in this location.

Each t ∈ T, denoted by �
α,cc,X−−−−→ �′, represents a transition from �

to �′ on the action α. X ⊆ X is the set of the clocks to be reset upon
this transition, and cc ∈ C(X) is the enabling condition for t.

Given a transition t, we write source(t), target(t), guard(t) for
�, �′, and cc, respectively. The clocks of a timed automaton allow to
express the timing properties. An enabling condition constrains the
execution of a transition without forcing it to be taken. An invariant
condition allows an automaton to stay at some location only as long
as the constraint is satisfied.

M. Kacprzak et al. / SMT-Based Satisfiability Checking of Strategic Metric Temporal Logic 1181

3.2 Product of a Network of Timed Automata

A network of timed automata (NTA) can be composed into a global
(product) timed automaton [39] in the following way. The transitions
of the timed automata that do not correspond to a shared action are
interleaved, whereas the transitions labelled with a shared action, are
synchronised. Let n ∈ N, Id = {1, . . . , n} be a non-empty and finite
set of indices, F = {Ai | i ∈ Id} be a network of timed automata
Ai = (Acti, Loci, �0i ,Xi, Ti, Invi,APi,Vi) such that Xi ∩ Xj = ∅
and APi ∩ APj = ∅ for each i �= j. Moreover, let Id(α) = {i ∈
Id | α ∈ Acti}.

Definition 2. The product of the network F = {Ai | i ∈ Id} of
timed automata is the timed automaton

A = (Act, Loc, �0,X , T, Inv,AP,V), where

• Act =
⋃

i∈Id Acti,
• Loc =

∏
i∈Id Loci,

• �0 = (�01, . . . , �
0
n),

• X =
⋃

i∈Id Xi,
• Inv(�1, . . . , �n) =

∧n
i=1 Invi(�i),

• AP =
⋃

i∈Id APi,
• V(�1, . . . , �n) =

⋃
i∈Id Vi(�i)

and the transition relation T is defined as follows:
((�1, . . . , �n), α,

∧
i∈I cci,

⋃
i∈I Xi, (�

′
1, . . . , �

′
n)) ∈ T iff

(∀i ∈ Id(α))(�i, α, cci, Xi, �
′
i) ∈ Ti and (∀i ∈ Id\ Id(α))(�′i = �i).

3.3 Concrete Model

We define the semantics of a timed automaton A.

Definition 3. Let A = (Act, Loc, �0,X , T, Inv,AP,V) be a TA,
and v0 be a clock valuation such that ∀x ∈ X , v0(x) = 0. The
concrete model for A is a 4-tuple MA = (Q, qι,−→,V), where

• Q = Loc × (R≥)X is the set of the concrete states,
• qι = (�0, v0) is the initial state,
• V : Q → 2AP is a valuation function defined as V((�, v)) = V(�)

for each state (�, v) ∈ Q,
• −→ ⊆ Q×(Act∪R+)×Q is a transition relation on Q defined by

action and time transitions as follows. For α ∈ Act and δ ∈ R+:

1. Action transition: (�, v)
α−→ (�′, v′) if there is a transition

�
α,cc,X−−−−→ �′ ∈ T such that v |= cc∧ Inv(�) and v′ = v[X := 0]

and v′ |= Inv(�′),

2. Time transition: (�, v) δ−→ (�, v+δ) iff v |= Inv(�) and v+δ |=
Inv(�).

Let q ∈ Q and k ∈ N. A (q−)path ρ of A is a maximal1 sequence

of concrete states and action and time labels: q0
δ0−→ q0 + δ0

α0−−→
q1

δ1−→ q1 + δ1
α1−−→ q2

δ2−→ . . . , where q0 = q, αi ∈ Act, and δi ∈
R+ for each i ≥ 0. We may sometimes omit the labels for brevity.
The paths of length k we call k-paths. For a path ρ = q0, q1, q2, . . .,
let ρ(m) denote the state qm and for a state q = ((�1, . . . , �n), v) let
qi denote �i. Moreover, let ΠMA(q) be the set of all q-paths in the
model MA, and each qι-path is called initial.

1 It is not a strict prefix of another path.

4 Strategic Metric Temporal Logic

Metric Temporal Logic (MTL) [28, 12] extends Linear Temporal
Logic (LTL) [40] by subscribing the temporal operators with time
intervals. This allows for specifying time-dependent properties of
systems. Strategic Metric Temporal Logic (SMTL) extends MTL
by strategy operators 〈〈A〉〉∃ and 〈〈A〉〉∀ (preceding MTL formulae)
for specifying existential and universal (resp.) strategic properties.

4.1 Syntax

Let p ∈ AP be an atomic proposition and J the set of all the inter-
vals in R+ of the form [a, a], (a, b), [a, b), (a, b], [a, b], (a,∞), or
[a,∞), where a, b ∈ N and a < b, and let I ∈ J . The syntax of
SMTL (MTL) is defined by the formulae φ (ψ, resp.) as follows:
φ := p | ¬φ | φ ∧ φ | φ ∨ φ | 〈〈A〉〉∃ψ | 〈〈A〉〉∀ψ,
ψ := p | ¬p | ψ ∧ ψ | ψ ∨ ψ | ψUIψ | GIψ,

where A ⊆ Id.
The operators UI and GI are called bounded until and bounded al-
ways, respectively, and they are read as “until in the interval I” and
“always in the interval I”. The operator FI is defined in the standard

way: FIψ
df
= trueUI ψ, where true := p ∨ ¬p, for some p ∈ AP .

Intuitively, 〈〈A〉〉∃ψ means that the agents of A have a strategy s.t.
it is possible to ensure ψ, while 〈〈A〉〉∀ψ means that the agents of A
have a strategy to inevitably ensure ψ.
The fragment of SMTL is called existential if it does not contain the
subformulas 〈〈A〉〉∀ψ and the negation is applied to the propositions
only.

4.2 Continuous Time Asynchronous MAS

To give the semantics of SMTL we combine the formal definitions
of timed systems [3] with interpreted systems [30] and define asyn-
chronous continuous-time multi-agent systems (CMAS) [8].

Let A be a TA and MA the concrete model of A. For a path

ρ = q0, q1, . . ., let Γρ(j) = {i < j | ∃δi ∈ R+ : qi
δi−→ qi+1},

i.e., Γρ(j) is the set of the indices of the time transitions up to the
state qj . Now, we define a function ζρ : N → R≥ such that, for all
j ≥ 0, ζρ(j) =

∑
i∈Γρ(j)

δi, i.e., ζρ(j) is the sum of all the time
delays along the path ρ till the position j. For all j ≥ 0, the function
ζρ(j) returns the value of the global time (called “duration” in [12]).

Definition 4. A continuous-time multi-agent system (CMAS)
consists of n agents (components) Agt = {1, 2, . . . , n} each
associated with a tuple AGi = (Ai, Pi), where Ai =(
Acti, Loci, �0i ,Xi, Ti, Invi,APi,Vi

)
is a TA, Pi : Loci → 2Acti \

{∅} is an i-local protocol s.t. (∀�i, �′i ∈ Loci, αi ∈ Acti, cci ∈
C(Xi), Xi ⊆ Xi) if (�i, αi, cci, Xi, �

′
i) ∈ Ti, then αi ∈ Pi(�i).

Next, we define the model of CMAS.

Definition 5 (Model of CMAS). The model of CMAS is a tuple
M = (Agt,A, {Pi}ni=1), where A is the product of timed automata
Ai for i ∈ Agt = {1, . . . , n}.

SMTL is interpreted over the concrete model of a CMAS model.

Definition 6 (CTS). The concrete model of a CMAS model M =
(Agt,A, {Pi}ni=1) is given by (Agt,MA, {Pi}ni=1), where MA is
the concrete model of A.

M. Kacprzak et al. / SMT-Based Satisfiability Checking of Strategic Metric Temporal Logic1182

4.3 Strategies

We focus on imperfect information and imperfect recall (memory-
less) strategies [43], denoted with ir. Intuitively, the agents take de-
cisions based only on their own locations. Formally, an (ir-)strategy
for i ∈ Agt is a function σi : Loci → Acti s.t. σi(�i) ∈ Pi(�i) for
each �i ∈ Loci. A notion of strategy is generalised to an agent coali-
tion A, whose joint strategy σA is a tuple of strategies, one for each
i ∈ A. The outcome of a strategy σA represents the possible path of
the system, where A adopts this strategy, i.e., the coalition agents ex-
ecute actions in line with their strategy, while the other agents freely
choose from actions permitted by their protocols.

Definition 7 (Outcome). The outcome of a joint strategy σA in a
state q of the concrete model MA, is the set of q-paths out(q, σA),
such that ρ = q0, δ0, q

′
0, α0, · · · ∈ out(q, σA) iff q0 = q and for

each i ∈ Id(αm) ∩A we have αm = σi(q
′i
m), for each m ≥ 0.

4.4 Semantics of SMTL

Definition 8. The satisfaction relation |= of an SMTL formula in
the concrete model MA at state q, is defined inductively:

• q |= p iff p ∈ V(q),
• q |= ¬φ iff q �|= φ,
• q |= φ ∧ ϕ iff q |= φ and q |= ϕ,
• q |= φ ∨ ϕ iff q |= φ or q |= ϕ,
• q |= 〈〈A〉〉∃ψ iff there is a joint strategy σA s.t. for some ρ ∈

out(q, σA) we have (ρ, 0) |= ψ,
• q |= 〈〈A〉〉∀ψ iff there is a joint strategy σA s.t. for all ρ ∈

out(q, σA) we have (ρ, 0) |= ψ, where for each m ≥ 0:
• (ρ,m) |= p iff p ∈ V(ρ(m)),
• (ρ,m) |= ¬p iff p �∈ V(ρ(m)),
• (ρ,m) |= ψ ∧ ϕ iff (ρ,m) |= ψ and (ρ,m) |= ϕ,
• (ρ,m) |= ψ ∨ ϕ iff (ρ,m) |= ψ or (ρ,m) |= ϕ,
• (ρ,m) |= ψUIϕ iff (∃j ≥ m)((ζρ(j) − ζρ(m)) ∈ I and

(ρ, j) |= ϕ and (∀m �j′<j)(ρ, j′) |= ψ),
• (ρ,m) |= GIψ iff (∀j ≥ m)((ζρ(j)−ζρ(m))∈ I⇒ (ρ, j) |=ψ).

An SMTL formula ϕ is valid in MA, denoted by MA |= ϕ, iff
MA, qι |= ϕ, where qι is the initial state of MA. An SMTL for-
mula ϕ is satisfiable if there is a model MA s.t. MA |= ϕ. Deciding
whether ϕ is satisfiable is called the SMTL satisfiability problem. In
our setting validity and satisfiability for MTL is defined slightly dif-
ferently. An MTL formula ψ is valid in MA iff MA, qι |= 〈〈∅〉〉∀ψ,
i.e., ψ holds on all the initial paths of MA. An MTL formula ψ is
satisfiable if there is a model MA s.t. MA, qι |= 〈〈∅〉〉∃ψ, i.e., ψ
holds on some initial path of MA. When certain bounds are put on
a model, such as the number of transitions, agents, locations, or ac-
tions, then we deal with the bounded (S)MTL satisfiability problem.

5 Satisfiability checking for MTL and SMTL

We start with a SAT procedure for MTL and then extend it to
SMTL.

5.1 Satisfiability checking for MTL

Let ψ be a formula of MTL. Our aim is to test ψ for satisfiability. To
this end, we show how to synthesise a model for 〈〈∅〉〉∃ψ, if it exists.
The idea is to parametrically encode all the possible models under
given restrictions and ask an SMT-solver to find a valuation of the

parameters to get a model for 〈〈∅〉〉∃ψ. Next, we show three SMT for-
mulae: Spcμ, P thk and Trk(ψ), where Spcμ constrains the param-
eters, Pthk encodes the unfolding of a transition relation to a given
depth k = 0, 1, 2, . . . in a model for a network of (parametrically de-
scribed) timed automata extended with protocols (CMAS, see Def.
4), and Trk(ψ) encodes ψ on the symbolic k-path. We show that if
the formula Hk

μ(ψ) := Spcμ ∧ Pthk ∧ Trk(ψ) is satisfiable, then
an SMT-solver returns values of the parameters and thus a model for
〈〈∅〉〉∃ψ is synthesised. If the SMT-solver does not find a satisfying
valuation for Hk

μ(ψ), then k is increased and the search is repeated
for Hk+1

μ (ψ). Optionally, the values of other fixed constraints can be
increased.

Let A be the product automaton in the model for CMAS (see Def.
5). To define a parametric encoding of the transition relation for A,
we assume that there are given: n – the number of components (timed
automata), components are numbered from 1 to n; lj – the number
of locations in j-th component, for j = 1, . . . , n; m – the number
of local transitions in CMAS (by a local transition we mean any
transition in a given component); and r – the number of different
actions in CMAS, where r ≤ m. We also assume that there is at
most one clock in each component and that clocks only occur in the
components numbered from 1 to nc, where nc ≤ n. Although not
every CMAS can be expressed with one clock in each component,
most timed systems considered meet this condition. We have there-
fore made this assumption to improve efficiency. However, relaxing
this condition is possible within our approach. Moreover, we assume
that every location has a unique atomic proposition assigned, which
is true in that location.

Let μ = [n, l1, ...ln, nc,m, r]. We call the elements of μ the meta-
parameters.

5.2 Parameters

The following parameters, for 0 ≤ i < m, are used in the encoding
of the transition relation: the component variables Yi ranging from
1 to n; the location variables Li and Ki for the transition source
and target, resp., ranging from 0 to lj (depending on the value of
Yi); the action variables Ai ranging from 1 to r; the variables Ci

occurring in transition guards, ranging over N; the Boolean variables
Ri determining the occurrence of a reset on a transition. The 6-tuple
(Yi, Li,Ki, Ai, Ci, Ri) specifies the transition in the component Yi,
from location Li to location Ki, at action Ai.

We also use parametric Boolean variables that define the occur-
rence of actions in components: Bj

a, for 1 ≤ a ≤ r and 1 ≤ j ≤ n,
defined as follows: Bj

a = true if and only if action a occurs in com-
ponent j. Moreover, we use parametric variables, which specify con-
stants that occur in the invariants: Dl

j , for 1 ≤ j ≤ n, 0 ≤ l < lj ,
where Dl

j = −1 means that there is no invariant in the location.

5.3 Constraints imposed on the parameters

To encode a model the parameters are constrained as follows:

• The components are numbered from 1 to n:∧m−1
i=0

(
1 ≤ Yi ≤ n

)
• Each component is exploited:∧n

j=1

∨m−1
i=0

(
Yi = j

)
• Each action is exploited:∧r

a=1

∨m−1
i=0

(
Ai = a

)
• The j−th component locations are numbered from 0 to lj − 1:

M. Kacprzak et al. / SMT-Based Satisfiability Checking of Strategic Metric Temporal Logic 1183

∧m−1
i=0

∧n
j=1

(
Yi �= j ∨ (0 ≤ Li < lj ∧ 0 ≤ Ki < lj)

)
• Each action occurs in some component:∧r

a=1

∨n
j=1 B

j
a

• In each component there is an action:∧n
j=1

∨r
a=1 B

j
a

• In each component, an available action must be used:∧r
a=1

∧n
j=1

(
Bj

a =⇒ ∨m−1
i=0 (Yi = j ∧Ai = a)

)
• In each component, an unavailable action must not be used:∧r

a=1

∧n
j=1

(¬Bj
a =⇒ ∧m−1

i=0 (Yi = j =⇒ Ai �= a)
)

• In each component, from each location outgoes some transition:∧n
j=1

∧lj−1

k=0

∨m−1
i=0

(
Yi = j ∧ Li = k

)
• In each component, each location is a target of some transition:∧n

j=1

∧lj−1

k=0

∨m−1
i=0

(
Yi = j ∧Ki = k

)
• There is only one transition between two locations labelled by a

given action:

m−2∧
i=0

m−1∧
j>i

((
Yi = Yj ∧Ai = Aj

)
=⇒ (

Li �= Lj ∨Ki �= Kj

))

The above constraints are for eliminating degenerate NTAs and they
do not significantly constrain the class of NTAs under consideration.
The conjunction of the above SMT formulae is denoted by Spcμ.

5.4 Symbolic states and symbolic paths

We assume that the states of the model for A are encoded by symbolic
states w = ((l1, . . . , ln), (x1, . . . , xnc)), formed by symbolic lo-
cal states, (l1, . . . , ln) and symbolic clock valuations (x1, . . . , xnc).
Each symbolic local state lj (1 ≤ j ≤ n) is an individual variable
ranging over the non-negative integers, and each symbolic clock val-
uation xj (1 ≤ j ≤ nc) is an individual variable ranging over the
non-negative real numbers. Furthermore, we assume that actions are
encoded by symbolic actions a and time delays are encoded by sym-
bolic time delays d. Each symbolic action is an individual variable
ranging over positive integers and each symbolic delay is an indi-
vidual variable ranging over positive real numbers. In addition, each
symbolic state’s element is an individual variable called symbolic
global time, which encodes the global time on a given symbolic path.

5.4.1 Encoding of the action transitions

The execution of an action a in a network of automata means that
it is executed in every component in which it occurs (as long as it
is enabled in that component). In components where the action a
does not occur, the current location does not change. The encoding
of the above idea is made possible by the Boolean variables Bj

a. The
symbolic global state before execution of the action a is denoted by
w = ((l1, x1), . . . , (ln, xn)), and the symbolic global state after
execution of the action by w′ = ((l′1, x

′
1), . . . , (l

′
n, x

′
n)). For a sym-

bolic action a, the formula encoding the transition in component j at
action a, denoted by ATja(w, a, w

′), is defined as follows:

ATja(w, a, w
′) :=

∨m−1
i=0

(
Yi = j ∧Ai = a ∧ a = a ∧ lj =

Li ∧ l′j = Ki ∧Grd j
i (w) ∧Rstji (w, w

′) ∧ Inv j(w
′)
)
,

where, for 1 ≤ j ≤ nc,
Grd j

i (w) := xj ≥ Ci,

Rstji (w, w
′) := (¬Ri ∧ x′j = xj) ∨ (Ri ∧ x′j = 0)

Inv j(w) :=
∨lj−1

l=0

(
lj = l ∧ (

Dl
j = −1 ∨(Dl

j ≥ 0 ∧ xj ≤ Dl
j)
))

Grdji (w) defines the enabling condition of the local action tran-
sition with number i in component j, and Rstji (w,w′) determines
whether the clock of component j is reset at the local transition with
number i, and Invj(w

′) defines the invariant in the target location in
the local transition with number i. For j, such that nc < j ≤ n, the
formulae Grd , Rst , and Inv are defined as the formula true. Now,
the formula ATa(w, a, w

′), encoding the transition in the network of
timed automata at action a, is defined as follows:

ATa(w, a, w
′) :=

∧n
j=1

((
Bj

a ∧ ATja(w, a, w
′)
)

∨(¬Bj
a ∧ lj = l′j ∧ xj = x′j

))

Finally, AT(w, a, w′) encodes the action transition relation:
AT(w, a, w′) :=

∨r
a=1 ATa(w, a, w

′)

5.4.2 Encoding of the time transitions

The encoding of the time transitions is partly based on that of [46].
The formula TT(w, d, w′) that encodes the time transition relation is
defined as follows:

TT(w, d, w′) := d > 0 ∧∧n
j=1

(
lj = l′j

)
∧∧nc

j=1

(
x′i = xi + d

) ∧ Inv(w′)
The above conjunction ensures that each time transition does not
change the current locations, each clock is incremented by a real
number greater than zero, and all the invariants associated with cur-
rent locations remain satisfied.

5.4.3 Encoding of the symbolic paths

Let πk = (w0, . . . , wk) be a sequence of symbolic states,
(a1, . . . , ak) a sequence of symbolic actions, and (d1, . . . , dk) a se-
quence of symbolic time delays. The sequence πk is called a sym-
bolic k-path. In order to encode the unfolding of the transition re-
lation for the model of A up to depth k we define the formula
T(wj , (dj+1, aj+1), w

j+1) as follows: For each 0 ≤ j < k:

- if j is even, then T(wj , (dj+1, aj+1), w
j+1) :=

aj+1 = 0 ∧ TT(wj , dj+1, w
j+1),

- if j is odd, then T(wj , (dj+1, aj+1), w
j+1) :=

dj+1 = 0 ∧ AT(wj , aj+1, w
j+1).

The conditions imposed on the formula T(wj , (dj+1, aj+1), w
j+1)

define all k-paths that start with a time transition and where any time
transition is followed by an action transition and vice versa. The con-
dition aj+1 = 0 ensures that a transition from wj to wj+1 is a time
transition, while the condition dj+1 = 0 ensures that a transition
from wj to wj+1 is an action transition.

Next, let I(w0) := (
∧n

j=1 lj = �0j) ∧ (
∧nc

j=1 xj = 0) be the
formula encoding the initial state of the model of A. The encoding
of all initial k−paths in the model is defined by the formula Pthk as
follows:

Pthk := I(w0) ∧∧k−1
j=0 T(w

j , (dj+1, aj+1), w
j+1)

5.4.4 Encoding of an MTL formula ψ

The encoding of an MTL formula ψ involves translating this for-
mula into SMT. The translation of ψ into SMT is carried out
in two steps. First, ψ is translated into the LTL formula tr(ψ),
in which each interval I is replaced by a new propositional vari-
able qI . Then the formula tr(ψ) is translated to a quantifier-free

M. Kacprzak et al. / SMT-Based Satisfiability Checking of Strategic Metric Temporal Logic1184

first-order formula [47]. More formally, the translation from MTL
to LTL of literals as well as of logical connectives is straightfor-
ward: tr(p) = p, tr(¬p) = ¬p, tr(ψ1 ∧ ψ2) = tr(ψ1) ∧ tr(ψ2),
tr(ψ1 ∨ ψ2) = tr(ψ1)∨ tr(ψ2). The translation of ψ1UIψ2 ensures
that ψ2 holds somewhere in the interval I and ψ1 holds always before
ψ2: tr(ψ1UIψ2) = tr(ψ1)U(qI∧ tr(ψ2)), Similarly, the translation
of GIψ ensures that ψ always holds in the interval I: tr(GIψ) =
G(¬qI ∨ tr(ψ)).

The next step is the translation of tr(ψ) into the quantifier-free first
order formula. This translation is defined inductively. It is standard
for formulae without propositional variables qI. But, each variable
qI is translated to the formula that ensures that the difference of the
symbolic global time at a given depth and in a given starting point on
a given symbolic k-path π belongs to the interval I.

The details of the translation for MTL formulae for the discrete
semantics can be found in [48]. The translation for MTL formulae
for the continuous semantics is similar as the SMT formulae result-
ing from the translation have an identical structure for both seman-
tics. However, there are two differences in the resulting formulae.
Firstly, in the continuous semantics, the type of the variables for stor-
ing global time in the path states, is non-negative reals, while in the
discrete semantics, the type is non-negative integers. Secondly, in the
continuous semantics the encoding of the state equivalence relation
(used for identifying k-loops)2 refers to dependencies between both
the integer and fractional parts of the clock values, while in the dis-
crete semantics only to the integer parts of these values.

Now. let Trk(ψ) be the translation of the formula ψ into SMT
on the symbolic k-path. Finally, let the SMT formula Hk

μ(ψ) :=
Spcμ ∧ Pthk ∧ Trk(ψ).

Lemma 1. If Hk
μ(ψ) is satisfiable, then ψ is satisfiable.

Proof. If Spcμ is satisfiable, then the parameters get values s.t. all
constraints imposed on them are satisfied, so we get a concrete model
MA. If Pthk is satisfiable, then there is at least one initial k-path in
MA. It follows from the satisfiability of Trk(ψ) that ψ is true on
some initial k-path of MA. Since each k-path can be extended to a
maximal path, we have MA |= 〈〈∅〉〉∃ψ, so ψ is satisfiable.

Under some conditions we can also show the completeness of our
encoding.

Lemma 2. If there exists a CMASC with metaparameters specified
by μ and satisfying the constraints Spcμ, such that ψ is true at some
path of length k in C, then Hk

μ(ψ) is satisfiable.

Proof. Let C be a CMAS with metaparameters specified by μ and
satisfying the constraints Spcμ, such that ψ is true at some path of
length k in C. Since the formula Spcμ∧Pthk∧Trk(ψ) encodes the
above, it is clearly satisfiable. As Hk

μ(ψ) = Trk(ψ)∧Spcμ∧Pthk,
we have that Hk

μ(ψ) is satisfiable.

5.5 Satisfiability checking for SMTL

Now, let φ be a formula of the existential fragment of SMTL. As
before we deal with CMAS’s, where each component contains at
most one clock.

First we show how to encode formulas φ = 〈〈A〉〉∃ψ, where ψ
is an MTL formula. Then, we extend the encoding to their Boolean
combinations.

2 For the definition of k-loops the reader is referred to [48]

Intuitively, the encoding of the operator 〈〈A〉〉∃ restricts the sym-
bolic k-path for every agent i ∈ A such that at each two global states
sharing the same location of agent i the same action is executed by
agent i. This is expressed by the SMT formula:

S(i, j, j′) :=
(
(
∨r

a=1(aj = a ∧Bi
a)) ∧

(lji = l
j′
i) ∧ (

∨r
a=1(aj′ = a ∧Bi

a))
)

=⇒ (
aj = aj′

)
where 0 ≤ j, j′ ≤ k denote points at the symbolic k-path.

Then, the restriction imposed on the symbolic k-path by the oper-
ator 〈〈A〉〉∃ is as follows:

Stgkφ :=
∧

i∈A

∧k−1
j=0

∧k
j′=j+1 S(i, j, j

′)

Finally, the SMT formula Hk
μ(φ) := Spcμ ∧ Pthk ∧ Trk(ϕ) ∧

Stgkφ.

Lemma 3. If Hk
μ(φ) is satisfiable, then φ is satisfiable.

Proof. Follows from Lemma 1 and the fact that Stgkφ restricts the
symbolic k-path s.t. the agents of A follow some joint strategy.

Now, we show how to encode any formula φ, which may con-
tain more than one strategic operator. According to Sec. 4.1 φ =
φ1 �1 φ2 �2 . . . �s−1 φs, where �i ∈ {∧,∨}, s ∈ N is the num-
ber of the strategic operators in φ, and φi = 〈〈Ai〉〉∃ψi for some
ψi ∈ MTL. Since each strategic operator potentially introduces a
new strategy, each subformula φi needs to be interpreted over a sep-
arate path. Thus the translation into SMT requires as many as s sym-
bolic k-paths. So, the encoding of each subformula φi is equal to
Spcμ ∧Hk,i(φi), where Hk,i

μ (φi) := Pthk,i ∧Trk,i(φi)∧Stgk,iφi
,

for i ∈ P = {1, · · · , s}. Then, φ is encoded by Hk,P
μ (φ) :=

Spcμ ∧ (Hk,1(φ1)�1 H
k,2(φ2) . . .�s−1 H

k,s(φs)).

Lemma 4. If Hk,P
μ (φ) is satisfiable, then φ is satisfiable.

Proof. Follows from Lemma 3 by induction on the structure of φ.

Similarly to the MTL case we can easily show the completeness
of our encoding for SMTL.

Lemma 5. If there exists a CMASC with metaparameters specified
by μ and satisfying the constraints Spcμ, such that φ is true at s
paths of length k in C, then Hk,P

μ (φ) is satisfiable.

Proof. Let C be a CMAS with metaparameters specified by μ and
satisfying the constraints Spcμ, such that φ is true at s paths of length
k in C. Thus, the formula Spcμ is satisfiable and there are paths
P = {1, · · · , s} of C, where for each i ∈ P the subformula φi

is true at the depth k of the i-th path, what is encoded by the for-
mula Hk,i

μ (φi) := Pthk,i ∧ Trk,i(φi) ∧ Stgk,iφi
, which is clearly

satisfiable. Next, by induction on the structure of φ, we obtain that
Hk,1(φ1)�1H

k,2(φ2) . . .�s−1H
k,s(φs) is also satisfiable. Finally,

we have that Spcμ∧(Hk,1(φ1)�1H
k,2(φ2) . . .�s−1H

k,s(φs)) =
Hk,P

μ (φ) is satisfiable.

Our procedure is as a semi-decision one as if a given existential
SMTL formula is satisfiable in a network of n timed automata (with
m transitions), our procedure will eventually find a witness for its
satisfiability.

Let nt(ψ) be the highest degree of nesting of temporal operators
in an MTL formula ψ. Formally, nt(ψ) = 0 for ψ being a propo-
sitional formula, nt(ψ′UIψ

′′) = max{nt(ψ′), nt(ψ′′)} + 1, and
nt(GIψ

′) = nt(ψ′) + 1. For φ = φ1 �1 φ2 �2 . . . �s−1 φs of
SMTL, where φi = 〈〈Ai〉〉∃ψi for some ψi ∈ MTL, by nt(φ) we
mean the maximum over nt(ψi) for i ∈ P = {1, · · · , s}. Moreover,
let nl be the number of the locations in all components.

M. Kacprzak et al. / SMT-Based Satisfiability Checking of Strategic Metric Temporal Logic 1185

Theorem 1. Let φ be an existential SMTL formula and each com-
ponent of CMAS contain at most one clock. The complexity of
Hk,P

μ (φ) is in O(m2 ·n+s ·k · (n ·nl ·m+k2·nt(φ)−1+k ·n ·m)).

Proof. Notice that Hk,P
μ (φ) is the conjunction of Spcμ with s sub-

formulae Hk,i
μ (φi) connected by boolean operators ∧ and ∨. Each

subformula Hk,i
μ (φi) is the conjunction of three formulae Pthk,i,

Trk,i(φi), and Stgk,i(φi). So we will examine the complexity of
these formulae.

The formula Spcμ is the conjunction of eleven formulae. The
longest of them is of length O(max(n · r · m,n · nl · m)). Since
r ≤ m, we can assume r = m in the worst case, and we have
O(max(m2 · n, n · nl ·m)) = O(m2 · n) as nl ≤ m.

The formula Pthk,i is the conjunction of two formulae. The
longest of them is of length O(k ·n ·nl ·m), where k is the depth of
the unfolding of the transition relation for the model. Therefore, the
complexity of Pthk,i is in O(k · n · nl ·m).

The formula Trk,iψi
is the translation of the i-th MTL subformula

following the i-th strategic operator in the formula φi. To estimate
the length of the formula Trk,iψi

, one has to analyse the translation of
MTL formulae to SMT. This translation is analogous to the transla-
tion to SAT from [40]. First, the MTL formula is translated to LTL,
enriched with new propositional variables responsible for the inter-
pretation of intervals in temporal operators (Definition 9 of [40]).
This translation is linear with respect to the length of the MTL for-
mula to be translated. The resulting LTL formula is then translated to
SMT analogously to Definition 12 of [40].

We will show by induction on nt(ψ) that the length of Trkψ is in
O(k2·nt(ψ)).

Let us first consider the case where nt(ψ) = 1. The formula re-
sulting from the translation of the MTL formula ψ = ψ′UIψ

′′ is the
disjunction of two formulae. The analysis of these formulae under
the assumption that ψ′ and ψ′′ are propositional formulae leads to the
conclusion that the length of Trkψ is in O(k2 ·|Trkψ′ |+k2 ·|Trkψ′′ |) =
O(k2) = O(k2·nt(ψ)). The formula resulting from the translation of
the MTL formula ψ = GIψ

′ is the conjunction of three formulae.
The analysis of these formulae under the assumption that ψ′ is a
propositional formula leads to the conclusion that the length of Trkψ
is in O(k2 · |Trkψ′ |) = O(k2) = O(k2·nt(ψ)).

In the case that nt(ψ) > 1, we first consider the formula
ψ = ψ′UIψ

′′ and assume (by induction hypothesis) that |Trkψ′ |
and |Trkψ′′ | lie in O(k2·(nt(ψ)−1)). The analysis of the translation
of ψ leads to the conclusion that |Trkψ| is in O(k2 · g(ψ, k)), where
g(ψ, k) ∈ O(k2·(nt(ψ)−1)). Thus, |Trkψ| is in O(k2·k2·(nt(ψ)−1)) =

O(k2·nt(ψ)).
Let us now consider the formula ψ = GIψ

′ and assume (by in-
duction hypothesis) that |Trkψ′ | is in O(k2·(nt(ψ)−1)). The analy-
sis of the translation of ψ leads to the conclusion that |Trkψ| is in
O(k2 · g(ψ, k)), where g(ψ, k) ∈ O(k2·(nt(ψ)−1)). Thus, |Trkψ| is
in O(k2 · k2·(nt(ψ)−1)) = O(k2·nt(ψ)).

From this we can conclude that the length of the translation of the
MTL formula ψ such that nt(ψ) > 0 lies in O(k2·nt(ψ)) and is thus
polynomial with respect to k and exponential with respect to nt(ψ).

The complexity of Stgk,iφi
follows directly from its structure, and it

is strictly correlated with the formula length. The auxiliary formula
S(i, j, j′) (see Sec. 5.5 Satisfiability checking for SMTL), encoding
the strategic constraints on a symbolic k−path for a single agent is
of length O(r). The translation of the strategic operator 〈〈Ai〉〉∃ to
an SMT instance requires the iteration trough the set of agents in the
i-th coalition and the length of the symbolic path.

Thus, in the case of a single strategic operator 〈〈Ai〉〉∃ the com-
plexity of Stgk,iφi

is in O(k2 · |Ai| · r). As in the worst case the set Ai

includes all the agents, we can replace it by n, and, as before, replace
r by m, and we have the complexity of Stgk,iφi

is in O(k2 · n ·m).
In the general case, when the formula φ contains more than one

strategic operator, and needs to be encoded over a set of symbolic
paths P , where |P | = s, we have the complexity O(k2 · n ·m · s).

As mentioned above, we deal with a Boolean combination of s
subformulae. Thus, we conclude that the complexity of the formula
Hk,P

φ is in O(m2 · n+ s · (k · n · nl ·m+ k2·nt(φ) · s+ k2 · n ·m)

= O(m2 · n+ s · k · (n · nl ·m+ k2·nt(φ)−1 + k · n ·m)).

We showed above the complexity of the encoding of φ to an
SMT instance using quantifier free mixed linear and real arithmetic
(QF_LIRA) theory. The translation is exponential in nt(φ) and poly-
nomial in m and n. The complexity of the satisfiability checking of
the resulting QF_LIRA formula is exponential in its length.

However, the complexity of the SMTL satisfiability problem de-
pends on the adopted restrictions and varies from EXPSPACE -
complete to undecidable in the worst case (see Sec. 2).

������� 	
������

��������

�������
�

	
�������

	
�������

�
�����

���������

����
�����

����
�����

�����

�����

��������

���

�
��
��
���
�����
�

�����

�����

��������

�����

�����

�������

�����

����������

������������

�����

�����

����
����

����
��������

� ��������������

Figure 1: The TDPP system - the j-th philosopher automaton.

6 Experimental Results and Applications

Here, we present experimental results. First, we introduce a scalable
example and SMTL formulae checked for satisfiability. Next, we
discuss the methodology of the experiments and their results, ob-
tained with our tool SMT4SMTL3 which has been implemented in
C++. It makes use of bash and Python scripts, and communicates
with Z34 solver via files and command line. Our benchmark is the
well-known dining philosophers problem [41] and its extension with
clocks [48], slightly modified to give some agents a choice in select-
ing actions. The system consists of n = 2p + 1 agents given by
timed automata, where the agents from 1 to p model philosophers
(see Fig. 1), the subsequent p agents stand for the consecutive forks,
and the last agent is the lackey who coordinates the philosophers’
access to the dining room (see Fig. 2). We introduce four values de-
termining the time constraints on the system behaviour: T1, T2, E1,

3 Download the tool from http://smt4smtl.epizy.com
4 We observed that the Z3 solver was much more efficient than Yices2 here.

M. Kacprzak et al. / SMT-Based Satisfiability Checking of Strategic Metric Temporal Logic1186

http://smt4smtl.epizy.com

and E2. Each philosopher j has to think at least T2, and at most T1

time units which is enforced by the guard xj ≥ T2 and the invariant
xj ≤ T1, as well philosopher j is supposed to eat for at most E1

(xj ≤ E1), and at least E2 time units (xj ≥ E2). We tested the

����� ����

	�
���	�

�����������

��
�����

�����������

��
������

������

�����

!

�

����"�!��#��"����

��
!��#����
����

��$

���

��"�!��#��"����
��
!��#����
����

Figure 2: The TDPP system - the j-th fork and the lackey automata.

following properties:

• α = 〈〈Lck〉〉 ∃ (
F[1,E2)(

∧
j∈oddp

Eatingj) ∧ (
∧

j∈oddp
(F[0,∞)

Hungryj∧F[0,∞)Waitingj∧F[0,∞)Releasedj))
)

- the lackey
has a strategy s.t. it is possible that all odd philosophers but the
last one meet at the table at some point of time between 1 and E2

and eat, and additionally we require that all of the crucial philoso-
phers’ locations must be reachable, where oddp = {j | 1 ≤ j <
p ∧ j mod 2 = 1}.

• β =
∧p

j=1〈〈Lck〉〉∃F[1,E2)(Eatingj ∧ F[0,∞)(Thinkingj ∧
F[0,∞)Eatingj)) - For every philosopher, the Lackey has a strat-
egy that in the given time interval the philosopher can eat, then
think, and then eat again.

The aforementioned formulae were tested l given the necessary
values of n = 2p + 1, m = 2p2 + 13p, r = 7p, and nc = p, what
results from the structure of the TDPP system, with four variants of
the constraints imposed on the parameter values:

• All - everything is a parameter, no constraints imposed. This is to
show how our bounded satisfiability method works;

• Act - parameters Yi, Ai, and Bj
a set, for i = 0..m− 1, a = 1..r,

and j = 1..n. In this setting we assign concrete actions and tran-
sitions to components, as well as actions to particular transitions,
in order to decrease the search space for the SMT-solver;

• Lck - all agents but the last one (the lackey) are fully specified,
for the lackey only the values of parameters Bn

a and Yi are set,
for a = 1..r, and i ranges through the lackey’s transition set. The
expected result was to synthesise a lackey agent;

• Nop - no parameters, the system is fully specified, the time con-
straints are T1 = 2, T2 = 1, E1 = 1, E2 = 5. This is a BMC
case, given for reference and sanity check.

The preliminary experimental results are presented in Tab. 1 and
Tab. 2. The meaning of the columns, from left to right, is as fol-
lows: the tested formula, the parameter setting variant, the number
of philosophers, the total number of agents, the length of the shortest

path satisfying the formula, time (in sec.) and memory (in MB) con-
sumed by the BMC module and SMT-solver Z3 [32], respectively.

The experiments were performed on a server equipped with an
Intel Xeon Gold 6234 3.30GHz CPU and 192GB RAM running
Ubuntu Linux 20.04.5 and Z3-solver v4.8.7. Comparing the results
obtained for the formulae α and β one can observe that additional
requirements of reachability increase the length of the paths in the
former case. Moreover, the more constraints imposed, the longer the
path. In the case of β, additional symbolic k-paths increase the time
and memory consumption. An interesting observation results from
comparing the SMT-solver performance while testing satisfiability
of formula β in All and Act variants: assigning actions and transi-
tions to components greatly improves the satisfiability checking.

Figure 3: The NTA computed for β for 2 philosophers (Lck variant).
The bottom (purple) automaton is the synthesised Lackey.

While the structure of the computed model is not relevant for the
problem’s satisfiability, it is essential for system synthesis. The pre-
liminary results suggest that, in order to synthesise a realistic system,
we need to impose as many constraints as possible, either through
(strategic) formulae or by parameter constraints that partially de-
fine system components. Figure 3 illustrates this point, showing that
the synthesised lackey is similar to the correct one in the part cov-
ered by the constraints and formula. Conversely, the NTA consistent
with formula α, computed without any other constraints, is shown
in Figure 4. This proves that formula α is satisfiable, but the ob-
tained model differs from the one of Dining Philosophers problem.
For instance, the first philosopher (the blue one) can move directly
to the Eating location (labelled (5, x ≤ 0)) from the initial state
(Thinking, labelled (0, x ≤ 1)) without even obtaining a fork, and
many locations are unreachable from the initial state. However, it
is necessary to strike a balance between the solver’s degree of free-
dom and the expected path length. The former negatively impacts the
solver’s performance, while the latter impairs parametric BMC effi-
ciency. One of the most important advantages of our approach is that
the reachable parts of the resulting models are often minimal, i.e.,
they consist only of the necessary transitions and locations that meet
the given specification. Moreover, using the existential SMTL frag-
ment we can seek, e.g., for security flaws in a system by synthesising
a faulty/malicious agent which tries to reach a particular system state.

M. Kacprzak et al. / SMT-Based Satisfiability Checking of Strategic Metric Temporal Logic 1187

F Par p n k BMCt BMCm Z3t Z3m

α All 2 5 4 0.2 6.0 1.6 44.5
3 7 4 1.0 20.1 8.0 94.6
4 9 4 3.1 45.3 25.8 169.2
5 11 4 8.4 117.2 284.4 357.6
6 13 4 21.8 168.0 528.7 608.8
7 15 4 54.5 186.2 2077.1 923.6

Act 2 5 4 0.2 6.0 0.8 25.4
3 7 4 1.0 20.2 1.7 39.4
4 9 8 12.7 47.2 13.7 97.0
5 11 8 33.2 117.2 29.3 172.7
6 13 12 183.9 168.9 123.1 383.7
7 15 12 453.8 191.8 210.6 650.7

Lck 2 5 12 2.2 6.5 3.4 34.4
3 7 12 9.4 23.5 11.5 65.2
4 9 24 118.1 47.9 125.9 229.7
5 11 24 296.2 117.5 265.2 419.1
6 13 36 1684.6 168.1 1495.6 1116.1
7 15 36 4081.7 191.9 2413.5 1813.9

Nop 2 5 12 2.1 6.5 3.3 33.8
3 7 12 8.8 23.5 10.7 62.4
4 9 24 111.0 47.3 119.6 217.0
5 11 24 275.1 117.5 254.3 390.1
6 13 36 1510.6 168.9 1289.9 1023.3
7 15 36 3483.0 191.9 2112.0 1671.3

Table 1: Experimental results for formula α, 1 symbolic path

F Par p n k BMCt BMCm Z3t Z3m

β All 2 5 4 0.4 6.3 2.9 55.3
3 7 4 2.5 20.2 18.3 142.9
4 9 4 9.5 46.3 207.8 375.6
5 11 4 29.6 117.2 2086.5 937.7
6 13 4 82.2 168.8 7215.7 1637.1
7 15 4 216.4 186.3 59066.8 5365.8

Act 2 5 4 0.4 5.9 1.9 48.4
3 7 4 2.4 20.3 12.3 131.7
4 9 4 9.5 47.6 69.3 298.6
5 11 4 29.6 117.2 329.9 628.3
6 13 4 82.2 168.8 1437.7 1238.1
7 15 4 215.6 186.4 4585.0 2304.9

Lck 2 5 22 19.1 73.8 37.0 89.0
3 7 22 104.1 264.6 136.9 272.6
4 9 22 389.8 516.8 444.1 775.5
5 11 22 1163.5 983.2 1193.7 1763.2
6 13 22 3150.6 1677.1 2589.2 3577.6
7 15 22 8053.2 2629.4 5520.5 7049.1

Nop 2 5 22 19.2 80.6 34.8 86.8
3 7 22 103.6 270.5 137.2 261.5
4 9 22 389.8 516.8 428.4 732.4
5 11 22 1156.4 984.4 1092.0 1612.1
6 13 22 3144.4 1677.1 2413.7 3364.7
7 15 22 8053.0 2627.2 4770.2 6422.1

Table 2: Experimental results for formula β, p symbolic paths

Figure 4: The NTA computed for α for 2 philosophers (All variant).

7 Conclusions

The paper presents a novel method for solving the BSAT problem
and the synthesis problem for (S)MTL. The proposed method com-
bines parametric BMC techniques with a translation to SMT and
utilises the SMT-solver Z3. The method has been implemented and
is supported by the SMT4SMTL tool. The effectiveness of the ap-
plied procedures, despite the high computational complexity of the
problem, is a result of the adaptation of symbolic methods, efficient
encoding of parametric models, and the use of parametric BMC for
the existential fragment of SMTL.

Acknowledgments

The work of M. Kacprzak was supported by the Bialystok University
of Technology, as part of the research grant WZ/WI-IIT/2/2022 of the
Faculty of Computer Science and funded by Ministry of Science and
Higher Education, Poland. W. Penczek acknowledges support from
Luxembourg/Polish FNR/NCBiR project SpaceVote and CNRS/PAS
project MOSART.

References

[1] R. Alur, C. Courcoubetis, and D. Dill, ‘Model checking in dense real-
time’, Information and Computation, 104(1), 2–34, (1993).

[2] R. Alur and D. Dill, ‘The theory of timed automata’, in Real-Time:
Theory in Practice, pp. 45–73. Springer Berlin Heidelberg, (1992).

[3] R. Alur and D. L. Dill, ‘Automata for modeling real-time systems’, in
Proceedings of the 17th International Colloquium on Automata, Lan-
guages and Programming, ICALP90, volume 443 of Lecture Notes in
Computer Science, pp. 322–335. Springer, (1990).

[4] R. Alur, T. Feder, and T. A. Henzinger, ‘The benefits of relaxing punc-
tuality’, J. ACM, 43(1), 116–146, (1996).

[5] R. Alur, T. A. Henzinger, and O. Kupferman, ‘Alternating-time Tem-
poral Logic’, in Proceedings of the 38th Annual Symposium on Foun-
dations of Computer Science (FOCS), pp. 100–109. IEEE Computer
Society Press, (1997).

[6] R. Alur, T. A. Henzinger, and O. Kupferman, ‘Alternating-time Tem-
poral Logic’, Journal of the ACM, 49, 672–713, (2002).

[7] R. Alur and T.A. Henzinger, ‘Real-time logics: Complexity and expres-
siveness’, Information and Computation, 104(1), 35–77, (1993).

M. Kacprzak et al. / SMT-Based Satisfiability Checking of Strategic Metric Temporal Logic1188

[8] J. Arias, W. Jamroga, W. Penczek, L. Petrucci, and T. Sidoruk, ‘Strate-
gic (Timed) Computation Tree Logic’, in Proceedings of the 2023 In-
ternational Conference on Autonomous Agents and Multiagent Systems,
AAMAS 2023, pp. 382–390. ACM, (2023).

[9] C. Baier and J.-P. Katoen, Principles of Model Checking, MIT Press,
2008.

[10] F. Belardinelli, W. Jamroga, D. Kurpiewski, V. Malvone, and A. Mu-
rano, ‘Strategy Logic with Simple Goals: Tractable reasoning about
strategies’, in Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, IJCAI 2019, pp. 88–94. ijcai.org,
(2019).

[11] M. M. Bersani, M. Rossi, and S. P. Pietro, ‘A tool for deciding the sat-
isfiability of Continuous-time Metric Temporal Logic’, Acta Inf., 53(2),
171–206, (2016).

[12] P. Bouyer, ‘Model-checking timed temporal logics’, Electronic Notes
in Theoretical Computer Science, 231, 323–341, (2009).

[13] P. Bouyer, N. Markey, J. Ouaknine, and J. Worrell, ‘On expres-
siveness and complexity in real-time model checking’, in Automata,
Languages and Programming, 35th International Colloquium, ICALP
2008, volume 5126 of Lecture Notes in Computer Science, pp. 124–
135. Springer, (2008).

[14] A. David, ‘Deciding ATL* satisfiability by tableaux’, in International
Conference on Automated Deduction, pp. 214–228. Springer, (2015).

[15] C. A. Furia and P. Spoletini, ‘Tomorrow and all our yesterdays: MTL
satisfiability over the integers’, in Theoretical Aspects of Computing -
ICTAC 2008, volume 5160 of Lecture Notes in Computer Science, pp.
126–140. Springer, (2008).

[16] R. Gozalo-Brizuela and E. C. Garrido-Merchán, ‘ChatGPT is not all
you need. A state of the art review of large generative AI models’,
CoRR, abs/2301.04655, (2023).

[17] T. A. Henzinger, Z. Manna, and A. Pnueli, ‘What good are digital
clocks?’, in Automata, Languages and Programming, pp. 545–558.
Springer Berlin Heidelberg, (1992).

[18] X. Huang and R. van der Meyden, ‘Symbolic Model Checking Epis-
temic Strategy Logic’, in Proceedings of the 28th AAAI Conference on
Artificial Intelligence (AAAI14), pp. 1426–1432. AAAI Press, (2014).

[19] W. Jamroga, Logical Methods for Specification and Verification of
Multi-Agent Systems, ICS PAS Publishing House, 2015.

[20] W. Jamroga, M. Knapik, D. Kurpiewski, and L. Mikulski, ‘Approximate
verification of strategic abilities under imperfect information’, Artif. In-
tell., 277, (2019).

[21] W. Jamroga, B. Konikowska, and W. Penczek, ‘Multi-Valued Verifi-
cation of Strategic Ability’, in Proceedings of the 15th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS
2016), pp. 1180–1189. ACM, (2016).

[22] M. Kacprzak, A. Niewiadomski, and W. Penczek, ‘SAT-based ATL sat-
isfiability checking’, in Proceedings of the 17th International Confer-
ence on Principles of Knowledge Representation and Reasoning, KR
2020, pp. 539–549, (2020).

[23] M. Kacprzak, A. Niewiadomski, and W. Penczek, ‘Satisfiability check-
ing of Strategy Logic with Simple Goals’, in Proceedings of the 18th
International Conference on Principles of Knowledge Representation
and Reasoning, KR 2021, pp. 400–410, (2021).

[24] M. Kacprzak and W. Penczek, ‘Unbounded Model Checking for
Alternating-Time Temporal Logic’, in Proceedings of the 3rd Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2004), pp. 646–653. IEEE Computer Society, (2004).

[25] M. Kacprzak and W. Penczek, ‘Fully Symbolic Unbounded Model
Checking for Alternating-time Temporal Logic’, Autonomous Agents
and Multi-Agent Systems, 11(1), 69–89, (2005).

[26] M. Kanski, A. Niewiadomski, M. Kacprzak, W. Penczek, and W. Nabi-
alek, ‘SMT-Based Unbounded Model Checking for ATL’, in Verifi-
cation and Evaluation of Computer and Communication Systems -
15th International Conference, VECoS 2021, volume 13187 of Lecture
Notes in Computer Science, pp. 43–58. Springer, (2021).

[27] T. Klenze, S. Bayless, and A.J. Hu, ‘Fast, flexible, and minimal CTL
synthesis via SMT’, in Computer Aided Verification, pp. 136–156.
Springer International Publishing, (2016).

[28] R. Koymans, ‘Specifying real-time properties with Metric Temporal
Logic’, Real-Time Syst., 2(4), 255–299, (oct 1990).

[29] A. Lomuscio, H. Qu, and F. Raimondi, ‘MCMAS: An Open-Source
Model Checker for the Verification of Multi-Agent Systems’, Interna-
tional Journal on Software Tools for Technology Transfer, 24, 84–90,
(2015).

[30] A. Lomuscio and M. Ryan, ‘On the relation between interpreted sys-
tems and kripke models’, in Agents and Multi-Agent Systems For-
malisms, Methodologies, and Applications, volume 1441 of Lecture
Notes in Artificial Intelligence, 46–59, Springer, (1997).

[31] F. Mogavero, A. Murano, G. Perelli, and M. Y. Vardi, ‘Reasoning about
strategies: on the satisfiability problem’, Log. Methods Comput. Sci.,
13(1), (2017).

[32] L. De Moura and N. Bjørner, ‘Z3: an efficient SMT solver’, in Proceed-
ings of 14th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’2008), volume 4963 of
LNCS, pp. 337–340. Springer-Verlag, (2008).

[33] A. Nguyen-Duc, I. Sundbø, E. Nascimento, T. Conte, I. Ahmed, and
P. Abrahamsson, ‘A multiple case study of artificial intelligent system
development in industry’, in EASE ’20: Evaluation and Assessment in
Software Engineering, Trondheim, Norway, April 15-17, 2020, pp. 1–
10. ACM, (2020).

[34] A. Niewiadomski, M. Kacprzak, D. Kurpiewski, M. Knapik,
W. Penczek, and W. Jamroga, ‘MsATL: A tool for SAT-based ATL
satisfiability checking’, in Proceedings of the 19th International Con-
ference on Autonomous Agents and Multiagent Systems, AAMAS ’20,
pp. 2111–2113. International Foundation for Autonomous Agents and
Multiagent Systems, (2020).

[35] J. Ouaknine and J. Worrell, ‘Safety Metric Temporal Logic is fully de-
cidable’, in Tools and Algorithms for the Construction and Analysis of
Systems, pp. 411–425. Springer Berlin Heidelberg, (2006).

[36] J. Ouaknine and J. Worrell, ‘On the decidability and complexity of Met-
ric Temporal Logic over finite words’, Logical Methods in Computer
Science, Volume 3, Issue 1, (February 2007).

[37] J. Ouaknine and J. Worrell, ‘Some recent results in Metric Temporal
Logic’, in Formal Modeling and Analysis of Timed Systems, pp. 1–13.
Springer Berlin Heidelberg, (2008).

[38] W. Penczek, ‘Improving Efficiency of Model Checking for Variants of
Alternating-time Temporal Logic’, in Proceedings of the 27th Interna-
tional Workshop on Concurrency, Specification and Programming, vol-
ume 2240 of CEUR Workshop Proceedings. CEUR-WS.org, (2018).

[39] W. Penczek and A. Pólrola, Advances in Verification of Time Petri Nets
and Timed Automata: A Temporal Logic Approach, volume 20 of Stud-
ies in Computational Intelligence, Springer, 2006.

[40] A. Pnueli, ‘The temporal logic of programs’, in Proceedings of the 18th
Annual Symposium on Foundations of Computer Science, SFCS ’77,
pp. 46–57. IEEE Computer Society, (1977).

[41] D. K. Probst and H. F. Li, ‘Verifying timed behavior automata with
nonbinary delay constraints’, in Computer Aided Verification, pp. 123–
136. Springer Berlin Heidelberg, (1993).

[42] S. Schewe, ‘ATL* satisfiability is 2EXPTIME-complete’, in Automata,
Languages and Programming, 35th International Colloquium, ICALP
2008, Proceedings, Part II - Track B: Logic, Semantics, and Theory of
Programming & Track C: Security and Cryptography Foundations, pp.
373–385, (2008).

[43] P. Y. Schobbens, ‘Alternating-time Logic with Imperfect Recall’, in 1st
International Workshop on Logic and Communication in Multi-Agent
Systems (LCMAS 2003), volume 85 of Electronic Notes in Theoretical
Computer Science, pp. 1–12. Elsevier, (2004).

[44] G. van Drimmelen, ‘Satisfiability in Alternating-Time Temporal
Logic’, in 18th Annual IEEE Symposium of Logic in Computer Science,
2003. Proceedings., pp. 208–217. IEEE, (2003).

[45] T. Wilke, ‘Specifying timed state sequences in powerful decidable log-
ics and timed automata’, in Proceedings of the Third International Sym-
posium Organized Jointly with the Working Group Provably Correct
Systems on Formal Techniques in Real-Time and Fault-Tolerant Sys-
tems, ProCoS, pp. 694–715. Springer-Verlag, (1994).

[46] B. Woźna-Szcześniak, A. M. Zbrzezny, and A. Zbrzezny, ‘SMT-based
searching for k-quasi-optimal runs in weighted timed automata’, Fun-
dam. Informaticae, 152(4), 411–433, (2017).

[47] A. M. Zbrzezny and A. Zbrzezny, ‘Simple SMT-based bounded model
checking for timed interpreted systems’, in Rough Sets, pp. 487–504.
Springer International Publishing, (2017).

[48] A. M. Zbrzezny and A. Zbrzezny, ‘Bounded model checking for Met-
ric Temporal Logic properties of timed automata with digital clocks’,
Sensors, 22(23), 9552, (2022).

[49] Andrzej Zbrzezny, ‘Improving the Translation from ECTL to SAT’,
Fundam. Inf., 85(1-4), 513–531, (2008).

M. Kacprzak et al. / SMT-Based Satisfiability Checking of Strategic Metric Temporal Logic 1189

	Introduction
	Contribution and Outline

	Related Work
	Timed Automata and Their Models
	Timed Automata
	Product of a Network of Timed Automata
	Concrete Model

	Strategic Metric Temporal Logic
	Syntax
	Continuous Time Asynchronous MAS
	Strategies
	Semantics of

	Satisfiability checking for MTL and SMTL
	Satisfiability checking for
	Parameters
	Constraints imposed on the parameters
	Symbolic states and symbolic paths
	Encoding of the action transitions
	Encoding of the time transitions
	Encoding of the symbolic paths
	Encoding of an formula

	Satisfiability checking for

	Experimental Results and Applications
	Conclusions

