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Abstract. General language models have shown success in vari-
ous information retrieval (IR) tasks, but their effectiveness is lim-
ited in the biomedical domain due to the specialized and complex
nature of biomedical data. However, training domain-specific mod-
els is challenging and costly due to the limited availability of anno-
tated data. To address these issues, we propose the Diversified Prior
Knowledge Enhanced General Language Model (DPK-GLM) frame-
work, which integrates domain knowledge with general language
models for improved performance in biomedical IR. Our two-stage
retrieval framework comprises a Knowledge-based Query Expansion
method for enriching biomedical knowledge, an Aspect-based Fil-
ter for identifying highly-relevant documents, and a Diversity-based
Score Reweighting method for re-ranking retrieved documents. Ex-
perimental results on public biomedical IR datasets show significant
improvement, demonstrating the effectiveness of the proposed meth-
ods.

1 Introduction
General language models have demonstrated impressive capabili-
ties in various information retrieval (IR) tasks [30, 13]. A notable
example is the Bidirectional Encoder Representations from Trans-
formers (BERT) [3], which has emerged as a standard component
for developing task-specific IR models. Existing general models
predominantly focus on the web domain. For instance, the origi-
nal BERT model was trained on Wikipedia and BookCorpus, and
subsequent work has mainly focused on large-scale pre-training on
larger texts crawled from the internet. However, the efficacy of these
models in the biomedical domain is impeded by considerable chal-
lenges. Biomedical data is characterized by its specialized and in-
tricate nature, consisting of professional terminology and domain-
specific concepts that general language models cannot fully grasp.
Moreover, a biomedical IR system requires capturing the relation-
ships between a user’s query intent and the concepts in biomedical
documents, which poses a significant challenge for general models.
As a result, training domain-specific models is considered the pri-
mary method to improve the accuracy and relevance of search results
within the biomedical field.

Previous research indicates that pre-training on domain-specific
text can yield advantages over general language models [20, 10, 22].
However, their training process is often difficult and costly due to
the scarcity of high-quality annotated data, especially for niche sub-
domains or uncommon diseases. In addition, the capabilities of these
specialized models are still limited by their training datasets. If the
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user’s query concerns a rare disease, the IR system may fail to ac-
curately retrieve high-quality results, as the disease lies outside the
scope of the system’s learning. Therefore, a feasible alternative is to
choose a cheaper but effective strategy, combining domain knowl-
edge with general language models to enhance comprehension of
biomedical data.

To achieve this purpose, two challenges need to be addressed in the
biomedical IR system: diversity and accuracy. Consider a biomedi-
cal scientist searching the literature with a query such as “What is the
role of PrnP in mad cow disease?”. Ideally, the IR system should lo-
cate content that shares aspects with the query in documents, includ-
ing related topics, such as “PrnP” and “mad cow disease”. In reality,
however, the search may more likely retrieve documents where the
subjects partially align with the query aspects (e.g., the same gene
but a different disease). Such documents could still be relevant if the
matched aspects are deemed more critical than the unmatched ones,
as the scientist judges. In these scenarios, the relevance judgment cri-
teria can be characterized as diversity, meaning the IR system should
return documents featuring a diverse range of entities covering vari-
ous query-related aspects, such as genes, proteins, diseases, and mu-
tations. Diversity measures whether the retrieved documents offer a
comprehensive overview of the topic.

Additionally, the accuracy of the returned documents is vital, as
the user aims to extract all highly-relevant documents. The primary
issue with accuracy lies in the biomedical domain’s unique terminol-
ogy (e.g., “PrnP”, the prion protein), which exhibits a considerable
degree of lexical variation and ambiguity (e.g., “CD230” is synony-
mous with “PrnP”, cluster of differentiation 230). Consequently, the
ability to accurately capture biomedical terminology is essential for
biomedical IR systems.

Employing prior knowledge (or external knowledge) has proven
advantageous in addressing the aforementioned challenges. Sev-
eral studies have investigated the incorporation of prior knowledge
sources, such as biomedical ontologies, databases, and knowledge
graphs, to enhance performance in biomedical IR systems [29, 11].
By introducing domain-specific knowledge, like the Medical Sub-
ject Headings (MeSH) and the Unified Medical Language System
(UMLS), biomedical ontologies can enhance the accuracy and cov-
erage of terminology recognition and relation extraction. Leveraging
PubMed as a knowledge source can aid in retrieving relevant doc-
uments and enable the exploration of related aspects. Furthermore,
using knowledge graph-based methods allows for capturing complex
relationships between biomedical concepts. Their work demonstrates
that integrating prior knowledge can significantly improve the perfor-
mance of biomedical IR systems.
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In this paper, we propose a framework called Diversified Prior
Knowledge Enhanced General Language Model (DPK-GLM) as a
cost-effective approach for merging domain knowledge with general
language models to improve their performance in biomedical IR. Our
framework consists of a two-stage retrieval framework with three
key components: a Knowledge-based Query Expansion method to
enrich biomedical knowledge, an Aspect-based Filter for identifying
highly-relevant documents, and a Diversity-based Score Reweight-
ing method for re-ranking retrieved documents. Our experimen-
tal design adopts two pre-trained general language models, BERT
and RoBERTa [21], as baseline models. For comparative purposes,
we also employ two pre-trained domain-specific language models,
namely BioBERT [20] and ClinicalBERT [10]. The results derived
from experiments conducted on publicly accessible biomedical IR
datasets, in conjunction with an ablation study, manifest significant
performance enhancements attributable to our proposed approaches.

2 Related Work
This section examines related works in two areas: pre-trained lan-
guage models and biomedical information retrieval.

2.1 Pre-trained Language Models

Recent years have witnessed significant progress in pre-trained lan-
guage models (PLMs) for information retrieval. General models such
as BERT and T5 [24] have achieved impressive performance in vari-
ous IR tasks, including recommendation, query generation, and doc-
ument ranking. Several studies have explored the effectiveness of
PLMs in biomedical domain tasks [2], such as named entity recogni-
tion (NER), relation extraction (RE), and question answering (QA).
For instance, BioBERT, a domain-specific PLM tailored for biomed-
ical text, exhibits state-of-the-art results in multiple biomedical text
mining tasks (e.g., disease NER) and serves as a popular backbone
in a wide range of biomedical IR tasks.

Considering that general language models are not optimized
for biomedical data, training domain-specific models is a sensible
choice. However, the performance of these models is also constrained
by the scope of their training data. Lisa et al. [19] observed that pub-
licly available domain-specific models such as BioBERT experience
a significant performance decline when evaluated on a newly anno-
tated COVID-19 preprint dataset. Ji et al. [15] revealed that Clini-
calBERT performed worse than classic BM25 [26] on the National
Center for Biotechnology Information (NCBI) disease corpus for the
biomedical entity normalization task. Moreover, Wei et al. [28] de-
veloped an ensemble approach, combining convolutional neural net-
works (CNN) with long short-term memory (LSTM) networks to
manage semantic syntax features, attaining better results compared to
transformer models for the bio-concept disambiguation task. These
studies demonstrate that tasks in the biomedical domain are consider-
ably more complex than those involving general domain knowledge.

2.2 Biomedical Information Retrieval

Biomedical IR has traditionally relied on term-matching algorithms
such as TF-IDF and BM25, which search for documents contain-
ing terms mentioned in the query. However, these methods struggle
with biomedical terminology variation [14, 23]. To address this is-
sue, several studies have explored the use of domain-specific knowl-
edge bases to enhance biomedical IR systems. Koopman et al. [18]
proposed a graph inference model that obtained domain knowledge

from SNOMED CT to tackle the semantic gap problem. Goodwin et
al. [4] utilized multiple knowledge bases, such as MeSH and UMLS,
to build a unified knowledge graph for topic analysis and expansion.
Jin et al. [16] expanded queries using a list of weighted synonyms ex-
tracted from the National Library of Medicine (NLM) API to achieve
high recall in baseline retrieval.

Other studies have focused on different strategies. Rybinski et al.
[17] employed the Divergence from Randomness (DFR) method to
boost performance in the initial ranking step for the biomedical lit-
erature search. Soldaini et al. [27] proposed a convolutional neural
model to reduce clinical notes’ noise for medical literature retrieval.
KERS [1] was designed as an article recommendation system to sup-
port decision-making in medical treatments for cancer patients.

All the approaches mentioned above depend on fine-tuning or re-
training pre-trained models on domain-specific data, which can be
expensive and time-consuming. In contrast, our framework offers a
cheaper yet efficient alternative that can be easily applied to existing
general language models to enhance their performance in biomedical
IR.

Figure 1: The architecture of our proposed framework.

3 Methodology
Our proposed DPK-GLM framework is a two-stage retrieval frame-
work consisting of three components: a Knowledge-based Query Ex-
pansion method, an Aspect-based Filter, and a Diversity-based Score
Reweighting method, as shown in Figure 1. The following sections
will introduce the details of each component.

Table 1: Examples of the extracted entities.

Query Entities
What is the role of PrnP in mad cow disease? PrnP, mad cow disease

What is the role of IDE in Alzheimer’s disease? IDE, Alzheimer’s disease
Which [GENES] involved in NFkappaB signaling regulate iNOS? NFkappaB, iNOS

3.1 Knowledge-based Query Expansion

The diversity of search results in biomedical IR is characterized by
the range of query-related aspects covered in the output ranking
list. It ensures that the retrieved documents provide a comprehensive
overview of the query and meet the user’s information needs. Prior
knowledge from respected sources such as MeSH, UMLS, and NCBI
is being incorporated to enhance the diversity of query aspects.

A query q is a series of terms q = {t1, e2, ..., t6, e7, ..., tn}, where
n represents the number of terms, and a term related to biomedical
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aspects is referred to as an entity e. Including more diversified entities
in a query implies a higher level of diversity and broader aspect cov-
erage, which can help users find all potentially relevant information.
We utilize SpaCy [9] to extract entities E = {e2, ..., e7, ...} from
the query. Table 1 shows examples of the extracted entities. The ex-
tracted entities are then expanded with their synonyms and descrip-
tions E′ = {e′2, e′′2 , ..., e′7, e′′7 , ...} from prior knowledge sources.
For instance, in a query “What is the role of PrnP in mad cow dis-
ease?”, the description entity of “PrnP” is prion protein, and its syn-
onym entities, such as “ASCR”, “AltPrP”, “CD230”, can be found in
MeSH and NCBI Gene databases. As for the diversified entities of
mad cow disease, it encompasses various other information: Bovine
spongiform encephalopathy (BSE), neurodegenerative disease, vari-
ant Creutzfeldt-Jakob disease (vCJD), etc. These aspect-related enti-
ties are not included in the original query but are highly relevant to
the query.

While incorporating prior knowledge can alleviate the challenges
of lexical variant and diversified aspects problems, the biomedi-
cal domain faces an additional issue of multiple out-of-vocabulary
terminology representations. This situation can be represented as
E′

v = {ev12 , ev22 , ..., ev17 , ev27 , ...}, where v indicates different rep-
resentations. For example, due to varying writing habits among re-
searchers, the entity “TGF-beta1” can be represented as “TGF-betaI”
and “TGF-β1”.

Inspired by [12], Break-point and Replacement methods were im-
plemented for further query expansion. Break-point indicates a spe-
cific location in a string where the space can split the string into two
parts. For example, the entity “TGF-beta1” with two break-points
can be transformed to “TGF-beta 1” and “TGFbeta-1”. On the other
hand, Replacement refers to a substring within a string that can be
swapped with another string while preserving the semantic meaning
of the original expression. For instance, the entity “TGF-beta1” with
the number “1” can be substituted with “TGF-betaI”.

In this way, the expanded query is the union of the original entities
with all its extended diverse aspects, including synonyms, descrip-
tions, and various terminology representations. The output can be
formulated below:

qexp = q ∪E′ ∪E′
v = {t1, e2, e′2, ..., ev12 , ..., e7, e

′
7, ..., e

v1
7 , ..., tn}

3.2 Aspect-based Filter

General language models trained on large-scale datasets are often
biased towards the training domain for optimal performance. Con-
sequently, achieving high-quality ranking results in the biomedical
domain without fine-tuning or retraining can be challenging. Intu-
itively, if enhancing the performance of the general model proves
difficult, filtering out irrelevant documents can be beneficial, as the
remaining documents are more likely to be relevant. Furthermore, the
reduced range of candidate documents results in lower computational
and time costs, making it a practical and efficient solution.

Leveraging prior knowledge, the expanded query encompasses all
highly-related aspects of the original query. Based on this point, we
removed all documents devoid of any aspects and acquired a smaller
set of candidate documents, which are more likely to be relevant to
the query. However, this approach carries risks, as it is possible that
some documents may contain valuable information that is not explic-
itly stated and could be mistakenly filtered out. In this case, a reason-
able guess is that the retrieval results will be negatively affected due
to the absence of some relevant documents. To verify the hypothesis,
we conduct experiments to determine whether this concern is neces-

sary or not, and the details of the experiments can be found in Section
4.

3.3 Two-stage Ranking

In a two-stage IR system, the initial ranking plays a critical role,
as the performance of the final result heavily depends on it. Many
works concern efficiency, using traditional retrieval algorithms such
as BM25 to obtain initial ranking results, and then applying fine-
tuned pre-trained language models for re-ranking to improve accu-
racy [16, 5]. Since the Aspect-based Filter can narrow the scope of
documents and enhance retrieval efficiency, we utilize the general
language model in the initial ranking to maximize its capabilities.

The general language model generates embeddings for the query
and the document, and the ranking results of the IR system are ob-
tained by computing the similarity between their embeddings. In-
tuitively, we expect to utilize the semantic understanding ability of
the language model to strengthen retrieval accuracy. For this pur-
pose, our two-stage ranking approach employs two encoder types:
Bi-encoder and Cross-encoder [25].

The Bi-encoder is designed to encode the query and document in-
dependently, allowing for pre-computation and caching of document
features. Its high efficiency makes it suitable for the initial ranking
task. In contrast, the Cross-encoder takes a question-answer pair as
input, passing both the query and document simultaneously to the
neural network and leveraging cross-attention to yield better results.
While this model attains higher retrieval accuracy, it is less efficient
and is primarily designed for re-ranking tasks.

To strike a balance between effectiveness and efficiency, our two-
stage ranking approach leverages the strengths of these two models.
The Bi-encoder is employed in the initial ranking stage. As the num-
ber of initially retrieved documents is much smaller than the original
document set, the efficiency of the Cross-encoder is boosted for the
re-ranking stage.

3.4 Diversity-based Score Reweighting

The similarity score of the query and document embeddings deter-
mines the ranking results of a language model-based IR system.
However, the similarity score is not always accurate, as it is influ-
enced by the quality of the embeddings, particularly when using gen-
eral language models in a specific domain. We propose a Diversity-
based Score Reweighting method to address this issue to adjust the
ranking results.

Diversity represents the degree to which a document covers differ-
ent aspects of a query. The expanded query encompasses all the di-
versified aspects of the original query, and the documents that cover
more aspects are more likely to be relevant. The occurrence of mul-
tiple different entities in a document indicates that it covers several
aspects related to the query topic, which is used to compute the di-
versity score.

The proposed Diversity-based Score Reweighting method linearly
combines the similarity and diversity scores to improve results by
balancing their weights. After each ranking stage, the ranking results
are re-sorted based on this rule.

We denote diversity as V , representing the number of entities that
exist in a document, and S as the similarity score of a document
with respect to a given query. The reweighting process, Sre, can be
formulated as follows:

Sre = αζ · V + (1− α)S
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where α is a hyperparameter that controls the balance between di-
versity and similarity score, and ζ is a hyperparameter designed to
control the weight of diversity.

4 Experiments
In this section, we present our experimental studies. Section 4.1 in-
troduces the datasets and evaluation metrics employed in the exper-
iments. Section 4.2 outlines the experimental settings and baselines,
while Section 4.3 discusses the results of the proposed methods.
Lastly, Section 4.4 features an ablation study to analyze the effec-
tiveness of each component of the proposed methods.

4.1 Datasets and Evaluation Metrics

Datasets We conducted experiments on public biomedical IR
datasets: TREC 2006&2007 Genomics Track (TREC-GENO) [8,
6]. The document collection of TREC-GENO comprises a full-
text biomedical corpus containing 162,259 documents from 49
genomics-related journals indexed by MEDLINE. A total of 64 of-
ficial topics from the biomedical domain were used as queries, with
28 topics being specific and 36 topics being abstract. These official
topics were manually created by biomedical domain experts and for-
matted in question-answering style. The following are examples of
the queries:

• Specific Query: “What is the role of IDE in Alzheimer’s disease?”
• Specific Query: “How does Nurr-77 delete T cells before they

migrate to the spleen or lymph nodes and how does this impact
autoimmunity?”

• Abstract Query: “What [BIOLOGICAL SUBSTANCES] have
been used to measure toxicity in response to zoledronic acid?”

• Abstract Query: “What [CELL OR TISSUE TYPES] express re-
ceptor binding sites for vasoactive intestinal peptide (VIP) on their
cell surface?”

There are three main reasons for choosing TREC-GENO as the
dataset for our experiments. First, the dataset lacks annotations and
has only 63 queries with corresponding ground truth (golden stan-
dard), making it difficult to improve the performance of pre-trained
language models by fine-tuning on this dataset. Second, there are two
different query types in the dataset. Their differences significantly
impact our proposed methods, and we will discuss this in detail in the
following sections. Third, the dataset has official assessment metrics,
which are used to evaluate aspect-level performance.

Evaluation Metrics There are four official evaluation metrics, all
of which are variants of mean average precision (MAP):

• Document MAP: This metric calculates the average of precision
values obtained after retrieving each relevant document.

• Aspect MAP: This metric aims to evaluate retrieval performance
in terms of the diversity of search results.

• Passage MAP: This metric measures individual precision scores
at the passage level, where a passage can be considered as a para-
graph in a document.

• Passage2 MAP: This is an alternative Passage MAP that uses a
different passage segmentation method to identify the shortest rel-
evant passage.

For easy distinction, we consider the TREC-GENO as two sub-
task sets based on query types, namely Specific and Abstract. In

addition, we introduce NDCG as an additional evaluation criterion
to verify our methods from multiple perspectives. Statistical signifi-
cances are tested by the two-tailed t-test with a significance level of
0.05.

4.2 Experimental Settings and Baselines

Experimental Settings In our two-stage IR framework, we em-
ploy two general language models, BERT and RoBERTa, as the Bi-
encoder for the initial ranking, and SentenceBERT (SBERT) [25] as
the re-ranker model since it has a pre-trained Cross-encoder model.
To investigate whether language models pre-trained on domain-
specific data without fine-tuning can yield better results on a new
dataset compared to general language models, we select BioBERT
and ClinicalBERT as additional Bi-encoder models for comparison.
For the initial search, we extract the top 2000 documents, while in
the re-ranking process, we only need the top 1000 as the final re-
sult. In addition, we set the hyperparameters α to 0.2 and ζ to 0.5 for
comparative experiments, as our framework performs best under this
setting.

Baselines To explore the performance of the language-model-
based retrieval system without fine-tuning compared to traditional
retrieval methods, we adopt the official TREC-GENO runs as the ex-
tra baselines [7]. These official runs include the Min, Median, Mean,
and Max results, and our comparison experiments exclude their Min
results.

4.3 Results and Analysis

Table 2 presents the results of our approach under the official eval-
uation metrics. Our approach achieves the best results on both the
TREC-GENO Specific and the TREC-GENO Abstract. Without fine-
tuning, neither general language models (BERT and RoBERTa) nor
domain-specific models (BioBERT and ClinicalBERT) can deliver
good results on the new dataset. Their performance is even worse
than traditional information retrieval methods. Pre-trained language
models tend to overfit to their training domain, resulting in decreased
performance on downstream tasks when the target domain signifi-
cantly differs. This also demonstrates that even BioBERT and Clini-
calBERT, pre-trained on biomedical data, struggle with tasks beyond
their training data due to the complexity of the biomedical domain.
Currently, no large-scale annotated biomedical datasets are available
to train a highly generalizable language model, which confirms our
approach’s feasibility.

The proposed framework demonstrates significant improvements
in both the Document MAP and the Aspect MAP, aligning with our
expectations. Our proposed methods primarily focus on enhancing
document relevance and aspect diversity of the queries. Simulta-
neously, improvements in document matching also benefit passage
matching. It is worth noting that our framework shows a substantial
improvement in Passage-level MAP compared to the baseline model
but still falls short of the best traditional retrieval method. This gap is
acceptable since we did not specifically optimize passage matching
in this paper. On the other hand, all two-stage search results outper-
form their single-stage counterparts only marginally. This suggests
that although the two-stage approach can provide improvements, the
overall effectiveness is limited by the accuracy of the initial rank-
ing produced by the language models. However, the performance of
different language models in the initial ranking varies considerably.
We can see that BERT, as a general language model, outperforms the
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Table 2: Experiment results of our DPK-GLM and baselines on the TREC-GENO Specific & Abstract under the official metrics. The superscript
“*” means the method is significantly better than the best baseline.

TREC-GENO Specific TREC-GENO Abstract
Methods Document Aspect Passage Passage2 Document Aspect Passage Passage2
TREC Median 0.3083 0.1581 0.0316 0.0345 0.1897 0.1311 0.0565 0.0377
TREC Mean 0.2887 0.1643 0.0347 0.0392 0.1862 0.1326 0.0560 0.0398
TREC Max 0.5439 0.4411 0.1012 0.1486 0.3286 0.2631 0.0976 0.1148
BioBERT 0.2832 0.1014 0.0473 0.0515 0.2368 0.1326 0.0571 0.0506
BioBERT+SBERT 0.2954 0.1189 0.0510 0.0523 0.2398 0.1393 0.0602 0.0611
ClinicalBERT 0.2584 0.0888 0.0408 0.0452 0.2034 0.0968 0.0469 0.0458
ClinicalBERT+SBERT 0.2662 0.0971 0.0459 0.0482 0.2114 0.1006 0.0502 0.0491
BERT 0.2903 0.1012 0.0491 0.0521 0.2083 0.1172 0.0647 0.0595
BERT+SBERT 0.3011 0.1008 0.0511 0.0533 0.2144 0.1252 0.0690 0.0604
DPK-GLM-BERT+SBERT 0.5771* 0.4702* 0.0874 0.1081 0.4551* 0.4278* 0.0755 0.0858
RoBERTa 0.2953 0.1134 0.0504 0.0566 0.2159 0.1224 0.0597 0.0433
RoBERTa+SBERT 0.3078 0.1242 0.0545 0.0596 0.2212 0.1338 0.0625 0.0656
DPK-GLM-RoBERTa+SBERT 0.5854* 0.4733* 0.0882 0.1089 0.4573* 0.4356* 0.0761 0.0863

Table 3: Experiment results of our DPK-GLM and baselines on the TREC-GENO Specific & Abstract under the NDCG metrics. The superscript
“*” means the method is significantly better than the best baseline.

TREC-GENO Specific TREC-GENO Abstract
Methods NDCG@5 NDCG@10 NDCG@20 NDCG@5 NDCG@10 NDCG@20
BioBERT 0.1804 0.1765 0.1733 0.1474 0.1707 0.1913
BioBERT+SBERT 0.1881 0.1794 0.1763 0.1518 0.1816 0.2002
ClinicalBERT 0.1380 0.1437 0.1326 0.1269 0.1310 0.1280
ClinicalBERT+SBERT 0.1466 0.1482 0.1415 0.1379 0.1411 0.1376
BERT 0.1037 0.1234 0.1216 0.1461 0.1339 0.1293
BERT+SBERT 0.1110 0.1352 0.1288 0.1550 0.1424 0.1353
DPK-GLM-BERT+SBERT 0.3241* 0.3163* 0.3115* 0.3365* 0.3232* 0.3151*

RoBERTa 0.1081 0.1201 0.1255 0.1433 0.1667 0.1338
RoBERTa+SBERT 0.1205 0.1321 0.1355 0.1520 0.1742 0.1405
DPK-GLM-RoBERTa+SBERT 0.3415* 0.3358* 0.3228* 0.3635* 0.3840* 0.3882*

domain-specific model ClinicalBERT in all metrics in Table 2. Lan-
guage model-based IR systems heavily rely on the quality of gen-
erated embeddings, and the strength of the semantic understanding
ability determines the performance of the ranking results. Our ex-
periments show that these models struggle with the domain trans-
fer problem for biomedical IR tasks. Nevertheless, our DPK-GLM
framework successfully mitigates this issue without requiring fine-
tuning.

Table 3 presents the performance of our framework in terms of the
NDCG metric. Similar to Table 2, our framework significantly out-
performs the baselines. Notably, our approach achieves better per-
formance on the TREC-GENO Abstract compared to the TREC-
GENO Specific under the NDCG metric. In addition, as shown in
Table 2, our best approach, DPK-GLM-RoBERTa+SBERT, achieves
a remarkably higher Aspect MAP on the Abstract task than the best
traditional retrieval method. However, this phenomenon is not ob-
served in the Specific task. It suggests that pre-trained language mod-
els are more likely to capture abstract semantic information but strug-
gle with understanding specific terms that they have not learned be-
fore. Even though the model’s training data may not include biomed-
ical terms, such as the gene “TGF-beta1”, the model can easily learn
common terms like GENE, MUTATION, and CELL. This learning
ability is well-reflected in the TREC-GENO Abstract.

Through Table 5, we can address the earlier hypothesis: Will fil-
tering out some valuable documents affect the results? By comparing
the relevant documents in the filtered candidate documents with the

ground truth, we can see that only a small portion of relevant docu-
ments were missed after filtering, indicating that our Filter performs
well. In addition, the quality of candidate documents in the Abstract
is lower than that in the Specific, which is attributed to the difficulty
in extracting relevant entities from an abstract query. Nevertheless,
when considering the experimental results of Table 2 and Table 3,
even with the absence of a small number of relevant documents, our
method can still achieve good results.

Figure 2 shows the experiment ranking results under different hy-
perparameters. We did not test the performance variation of the Doc-
ument MAP because it measures whether the retrieval results contain
relevant documents, regardless of their rank. A high diversity score
means the search target has a high potential of relevance to the query,
which means the semantic meanings captured by the general learn-
ing model are more relevant to the query. However, when α becomes
large, the effectiveness of the ranking score decreases due to the over-
weighting of diversity. Only focusing on diversity will lead to poor
results. Striking a balance between diversity and the semantic rank-
ing score is crucial for optimal performance.

4.4 Ablation Study

To further investigate the effectiveness of our approach, we con-
ducted an ablation study on the TREC-GENO dataset. We conducted
a comparative analysis by individually removing the Knowledge-
based Query Expansion method, the Aspect-based Filter, and the

Y. Huang and J.X. Huang / Diversified Prior Knowledge Enhanced General Language Model for Biomedical Information Retrieval 1113



(a) Aspect MAP in Specific (b) Passage MAP in Specific (c) Passage2 MAP in Specific

(d) Aspect MAP in Abstract (e) Passage MAP in Abstract (f) Passage2 MAP in Abstract

Figure 2: The performance of Re-ranking under different α and ζ of DPK-GLM-RoBERTa.

Table 4: The Ablation Study of the DPK-GLM framework on the TREC-GENO Specific & Abstract tasks under the official evaluation metrics.

TREC-GENO Specific TREC-GENO Abstract
Methods Document Aspect Passage Passage2 Document Aspect Passage Passage2
DPK-GLM-BERT+SBERT 0.5771 0.4702 0.0874 0.1081 0.4551 0.4278 0.0755 0.0858
DPK-GLM-BERT+SBERT w/o QE 0.5844 0.4811 0.0905 0.1101 0.4808 0.4435 0.0814 0.0890
DPK-GLM-BERT+SBERT w/o Filter 0.3305 0.1214 0.0632 0.0603 0.2458 0.1428 0.0712 0.0688
DPK-GLM-BERT+SBERT w/o Div 0.5698 0.4556 0.0858 0.1054 0.4503 0.4155 0.0741 0.0826
DPK-GLM-RoBERTa+SBERT 0.5854 0.4733 0.0882 0.1089 0.4573 0.4356 0.0761 0.0863
DPK-GLM-RoBERTa+SBERT w/o QE 0.5922 0.4845 0.0922 0.0945 0.4714 0.4480 0.0820 0.0901
DPK-GLM-RoBERTa+SBERT w/o Filter 0.3290 0.1455 0.0611 0.0650 0.2441 0.1582 0.0702 0.0686
DPK-GLM-RoBERTa+SBERT w/o Div 0.5774 0.4700 0.0861 0.1058 0.4495 0.4249 0.0743 0.0842

Table 5: Comparison between the candidate relevant documents
screened by the Aspect-based Filter and the ground truth relevant
documents in the Gold Standard.

TREC-GENO Gold Standard Filter Accuracy
Specific 997 973 0.9759
Abstract 2490 2323 0.9329

Diversity-based Score Reweighting method from our framework, and
juxtaposed the results with those obtained from the complete frame-
work.

Table 4 shows the results of the ablation study. The results reveal
that the Knowledge-based Filter plays a crucial role in the ranking
framework. Without the Knowledge-based Filter, the performance of
our approach drops notably. This observation provides an alternative
perspective on why filtering out some valuable documents does not
significantly impact search results negatively. More than the filtered
documents, the limited ability of general language models to cap-
ture domain-specific semantics poses the most practical challenge to
search efficiency, leading to document retrieval failures. Our frame-
work leverages prior knowledge to narrow down the text scope and

increase the likelihood of finding relevant documents. As demon-
strated by the experimental results, our method substantially miti-
gates the insufficient semantic understanding abilities of general lan-
guage models in the biomedical domain.

An interesting observation from our ablation study is that our
method showed improved performance when the Knowledge-based
Query Expansion was removed. It suggests that Query Expansion
might have a negative impact on the IR system’s performance. This
finding aligns with the phenomenon observed in the TREC-GENO
Abstract, where an abstract query is more conducive to retrieval
systems finding relevant documents. Entities from prior knowledge
bases may not have appeared in the training data of the general lan-
guage model, potentially leading to the model misunderstanding the
query. We refer to this phenomenon as “topic redundancy”. An ex-
panded query containing too many overly specific topics may result
in inaccurate search results or a small number of returned results.
Therefore, when constructing a query, it is crucial to avoid overly
specific topics and instead select broader topics to obtain more com-
prehensive and accurate results.
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5 Conclusions and Future Work
In this paper, we present DPK-GLM, a novel two-stage ranking
framework for general language models in biomedical IR. Our
approach initially utilizes a Knowledge-based Query Expansion
method to enrich the queries with domain-specific entities extracted
from prior knowledge bases. Next, we employ an Aspect-based Filter
to remove irrelevant documents, increasing the possibility of finding
relevant ones. Finally, we propose a Diversity-based Score Reweight-
ing method to re-sort the original ranking results by combining di-
versity scores with similarity scores. We evaluate DPK-GLM using
BERT and RoBERTa on the public biomedical IR dataset, achieving
remarkable performance and demonstrating the framework’s effec-
tiveness in improving biomedical IR performance. In the future, we
plan to undertake a comprehensive study and analysis of the phe-
nomenon of “topic redundancy”. We also plan to evaluate it on more
medical datasets, such as TREC-PM and TREC-COVID.
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