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Abstract. Recent work demonstrated that path explanation redun-
dancy is ubiquitous in decision trees, i.e. most often paths in decision
trees include literals that are redundant for explaining a prediction.
The implication of this result is that decision trees must be explained.
Nevertheless, there are applications of DTs where running an ex-
planation algorithm is impractical. For example, in settings that are
time or power constrained, running software algorithms for explain-
ing predictions would be undesirable. Although the explanations for
paths in DTs do not generally represent themselves a decision tree,
this paper shows that one can construct a decision set from some of
the decision tree explanations, such that the decision set is not only
explained, but it also exhibits a number of properties that are critical
for replacing the original decision tree.

1 Introduction

Recent years witness groundbreaking advances in machine learning
(ML) [4]. However, these advances raise concerns about whether the
operation of complex ML models can be understood and trusted by
human decision makers. Such concerns are at the core of ongoing
efforts on understanding the operation of ML models, e.g. stability
of predictions and rationale for predictions. Moreover, the ongoing
efforts towards understanding the rationale of predictions broadly
represent the burgeoning field of eXplainable Artificial Intelligence
(XAI). XAl is characterized by a number of different approaches for
tackling the problem of explaining ML models [18]. One important
approach is referred to as intrinsic interpretability [41], where so-
called interpretable models are used, and where the model is itself
the explanation.

Decision trees (DTs) have long been deemed interpretable [5], and
are at the core of proposals for the use of interpretable models, espe-
cially in high-risk applications of ML [44, 45]. Explanations in DTs
are apparently very easy to derive, in that the literals in the path con-
sistent with the input represent the explanation. Unfortunately, recent
work demonstrated that paths in DTs can be arbitrarily redundant
when compared with logically sufficient (abductive) explanations for
a prediction [29]. The main consequence of these recent results is
that, similarly to other ML models, decision trees must be explained.
(It should be noted that this consequence hinges on the assumption
that explanation succinctness matters. However, succinctness must
always matter when it comes to explainability, since otherwise one
could argue that the input to the ML model would suffice as an ex-
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planation.) Redundancy has also been observed in other so-called
interpretable models, including decision lists [38].

There exist very efficient polynomial-time algorithms for comput-
ing abductive explanations in DTs [29]. However, one immediate
question is whether one can remove explanation redundancy from
paths, so that decision makers have immediate access to the actual
explanations. (Also, in some settings, the iterated computation of ex-
planations might be unrealistic, due to constraints on available re-
sources.) Unfortunately, the removal of redundancy breaks the struc-
ture of DTs. In addition, it is known that the family of DTs that do
not exhibit explanation redundancy is very restricted [29].

Since mapping a DT to an explanation-irredundant DT is un-
achievable, this paper proposes a different solution. Concretely, the
paper proposes an algorithm for mapping a DT into a decision set
(DS), but such that the resulting DS exhibits a number of critical
properties, which ensures it operates as a DT. Since DSs are un-
ordered, they can display a number of fundamental issues. Firstly,
DSs can exhibit overlap, and thus may not even compute a classifi-
cation function. Secondly, for DSs that exhibit no overlap, the clas-
sification function may not be total, i.e. for some inputs there is no
prediction. In this case, the use of a default rule requires special hand-
ing, so that the default rule is only used when no other rule applies.
Lastly, DSs require being explained, and explanations for DSs are
harder to compute than for DTs [22, 2]. Furthermore, the paper in-
directly proposes a practical solution to the abstract goal of intrinsic
interpretability [44, 41, 46], where the classifier is itself the explana-
tion. Indeed, the algorithm proposed in this paper offers a solution to
deliver a classifier where the explanation can be extracted by manual
inspection from the classifier. The experimental results validate the
scalability of the proposed algorithm, and offer comprenhensive evi-
dence to the quality of the obtained DSs, with a key metric being the
total number of literals used for explaining the DT paths.

A generalization of (exact) abductive explanations are probabilis-
tic (abductive) explanations [48, 3, 26, 27], which aim at providing
decision makers with shorter explanations (which are easier to grasp)
and which, albeit not as rigorous, still offer strong probabilistic guar-
antees of rigor. As an additional contribution, and in the case of prob-
abilistic explanations, the paper shows that the properties of the DSs
obtained from DTs no longer hold. As a result, the paper outlines a
simple, albeit less compact, solution that can be employed in the case
of probabilistic explanations.

The paper is organized as follows. The definitions and notations
used throughout the paper are introduced in Section 2, which also
briefly overviews related work. Section 3 develops the algorithm for
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mapping a DT into an (explained) DS, proves the key properties of
the resulting DS, and investigates the limitations of the algorithm in
the case of probabilistic explanations. Section 4 presents experimen-
tal results that confirm the properties of DSs obtained from explain-
ing DTs. The results confirm the explained DSs offer significantly
more compact (and subset-minimal) explanations than the explana-
tions obtained from the paths in the original DTs. Section 5 con-
cludes the paper.

2 Preliminaries

2.1 Basic Concepts

Classification problems. In this paper, a classification problem is
defined on a set of features 7 = {1,...,m} and a set of classes
K ={ci,...,ck}. Each feature i € F takes values from a domain
D;, where domains can be categorical or ordinal. Feature space is the
cartesian product of the domains of the features, F = D xDg X - - - X
D,,. A classifier M realizes a non-constant classification function
k : F — K. An instance is a pair (v,c), suchthat v € F, ¢ € K,
and ¢ = k(v). Finally, we associate a tuple (F,F, I, k) with each
classifier.

Throughout this paper, we assume that a classifier is total, i.e. & is
a total function. (Recall that a function is total if it is defined on all
points of its domain. Furthermore, and because « is a function, there
is a single value associated with x(v) for each v € F; otherwise ~
would have to be defined as a relation, and not as a function.)

Decision trees (DTs). A DT 7T is a directed acyclic graph G =
(V, E). V is partitioned into a set N of non-terminal nodes, and a set
T of terminal nodes. With the exception of the root of 7T, all nodes
have one incoming edge. The terminal nodes have no outgoing edges,
and each is associated with a class from K. The non-terminal nodes
are associated with a single feature ¢ € F (i.e. univariate DTs), and
the outgoing edges are associated with sets that partition the domain
of . In this paper, the domain of each feature is partitioned by using
literals of the form x; = d;, with d; € D;, or z; € E;, with E; C
Dj;. (The set notation represents the more general setting proposed
in [29]. Also, literals of the form x; = d; can easily be transformed
into z; € {d;}.) Moreover, each node of V is assigned a number
(usually 1 is assigned to the root). Paths in the DT are represented
as a sequence of numbers, e.g. P = (r1,72,...,Ty), such that each
pair (75, 7j4+1) denotes an edge of 7. The set of paths of 7 is denoted
by P (where the dependency on 7 is omitted for simplicity). Given
a path Py, the features tested in the non-terminal nodes of Py are
represented by ®(Py). Similarly, the features not tested along Py
are denoted by W (Py).

Also, for a path Py, of T, and a set of features X C ®(Pj) C F,
A(Py, X) denotes the set of literals associated with the features in
X along path Py. (The definition of A accounts for situations where
a feature is tested more than once, but we will not delve into that in
this paper. Concretely, for each feature i € ®(Py), we have literals
z; € E;, where E; C ID; is the intersection of the sets in each of the
literals of Py on feature ¢. Furthermore, since each node partitions
the domain of the feature, then no two paths can be consistent for the
same point in feature space. In addition, for any path, it is assumed
that there exists at least one point v in feature space for which the
path’s literals are consistent with v. Finally, it is assumed that DTs
are organized such that the computed classification function is to-
tal. (Evidently, DTs can be envisioned for which « is not total [29,
page 270], or for which & is not a function, but it is instead a rela-
tion [29], e.g. when node domain splits do not form a partition.)

Decision sets (DSs).
40, 33] of the form:

A decision set is a set of unordered rules [39,

IF T THEN

K()=c )
where the rule’s condition (7) is generally assumed to be a conjunc-
tion of literals, defined on the features of the classification problem.
The semantics is that when 7 is true, then the rule is said to fire, and
the prediction is c. It should be noted that, since the rules are un-
ordered, any rule for which the condition is true will fire. For some
of the examples, we will use a more compact notation for rules, of
the form:

T — ¢ )

This more compact representation has the same interpretation as be-
fore, i.e. if the condition 7 is true, then the prediction is c. Boolean
literals in the conditions of rules will be represented by variables, e.g.
x, or their negations, e.g. -z or . (For the more complex examples,
we will opt for the more compact notation, i.e. T.)

DSs are distinguished from decision lists (DLs) [43] in that DLs
are ordered, i.e. impose an order among the rules. Although DSs and
DLs are generally considered to be interpretable [33, 25, 44, 41, 45,
46], there is recent evidence to the contrary [22, 38]. Besides the
need for being explained, DSs exhibit a number of additional is-
sues. First, there may exist overlap between rules predicting different
classes, i.e. two or more rules that fire and predict different classes. In
such a situation, the classifier does not compute a classification func-
tion. Removing overlap in general is believed to be computationally
hard [25]. One proposed solution [33] considers the fairly restricted
case of eliminating overlap only on training data, while giving no
guarantees of non-overlap beyond training data. One alternative is to
allow for the classification function not to be total, or to introduce
a default rule [25], i.e. a catch-all rule with no condition, with the
semantics that it fires only when the other rules do not fire.

Running examples. Throughout the paper, we will use the follow-
ing two running examples.

Example 1. The first running example is the DT of Figure 1, which
is adapted from [34]. The DT serves to diagnose the most severe
case of meningitis, Meningococcal Disease (MD), without invasive
tests. Clearly, F = {1,...,9}, K = {Y,N}, D; = {0,1} fori =
{1,2,3,4,6,7,8,9},and D5 = {0, 1, 2}. (Observe that Age is ordi-
nal (integer or real), but we only test whether the value is greater than
5.) Moreover, we will consider the instance (v,¢) = (A =1,P =
oON =0,V =1,Z=0,S=0,H =0,C =0,G =1),Y).
The paths predicting Y are numbered P, ..., Ps. The paths pre-
dicting N are numbered Q;, ..., Qs. The paths and their number-
ings are obtained from an in-order traversal of the tree. For example
P = (1,2,4), 91 = (1,2,5), Q3 = (1,3,6,8,10,13,15,17),
Qs = (1,3,6,8,10,13,16, 20,22,24), Ps = (1,3,6,8,10,14),
and P = (1,3,6,9). For Ps, ®(Ps) = {1,2,3,4,5}, where
the mapping of features is as shown in Figure 1, i.e. feature 1
is A, feature 2 is P, and so on. In addition, and also for Ps,

A(P57 {1a 4, 5}) = {(A)’ (V)7 (Z=0)}.
Example 2. The second running example is shown in Figure 2. This
second running example will be used to illustrate the computation of
probabilistic abductive explanations. The figure also shows the truth
table for the DT, and for each row in the table, the number of points
in feature space consistent with that row.
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# Name Definition
A Age > 57
Petechiae?

Stiff Neck?

P
N
|4 Vomiting?
Z  Zone=0,1,2?
S Seizures?
G Gender?

H Headache?

C Coma?

Ol | [ |[w]|N|—

(b) Features’ meaning

(a) Decision tree

Figure 1. First example DT, adapted from [34]

¥
) Path H

(x
11 1 e Q=(124) 1 (a) Decision tree
1 1 2 &8 O 1
1 24 1 @ P1=(1,25) 3
1 24 2 @ Py 3
24 1 1 @ P2=(1,3,6) 3
24 1 2 @ Pa=(1,3,6) 3
2424 1 © Q2=(1,3,78 9
2424 2 @ P3=(1,3,7,9 9

(b) Truth table

Figure 2. Second example DT, adapted from [27, 26]

Logic-based explainability. We adopt a formal definition of ex-
planation, as studied in recent works [47, 24, 37, 36].

Given an instance (v,c), an explanation problem & is a tuple
(M, (v, c)). Moreover, a weak abductive explanation (WAXp) is a
set of features X C F which, if assigned the values dictated by v,
then the prediction is c¢. Formally,

WeakAXp(X; M, (v,c)) :==
V(x €F). (Nicxzi =v;) > (k(x) =¢) (3)

(where the parametrization on M and (v, ¢) is shown.) Moreover, an
abductive explanation (AXp) is a subset-minimal weak AXp:

AXp(X) :=
WeakAXp(X) AV(X' € X).~WeakAXp(X') (4
(where the parametrization on M and (v, ¢) is left implicit; we will
do this henceforth.)
Because the definition of WAXp is monotonic [24, 37, 36], then
AXp’s can be computed more efficiently:

AXp(X) =
WeakAXp(X) AV(i € X).~WeakAXp(X \ {i}) (5)

These latter definitions are at the core of algorithms for computing
AXp’s. Besides abductive explanations, contrastive explanations can
be formally defined [23]. These will not be used in this paper.

In this paper we use the restriction of AXp’s to the case when
features must be taken from the path. Such AXp’s are referred to as
path AXp’s [29]. Throughout the paper, path AXp’s are AXp’s, but
where the features that can be included in the explanation must exist
in the path.

Example 3. For the running example (see Figure 1), and the in-
stance (A = 1,P = O,N = 0,V = 1,Z = 0,5 =
0,H =0,C =0,G = 1),Y), this point corresponds to the path
(1,3,6,8,10,14). We can show that one AXp is {A, Z} (techni-
cally, we should write {1,5}).

To offer a more detailed insight into the process of computing this
path AXp, one possible computation is summarized next. While the
we will argue that the order of features {.S, H, C\, G} does not matter,
the remaining features are analyzed in order (A, P, N,V, Z). (De-
pending on the explanation problem, the order features may or may
not matter.)

1. As the features in {5, H, C, G} do not appear in the path, we can
assign any value to these features. As a result, during the com-
putation of this path’s AXp’s, these features are not taken into
consideration.

2. Let feature A take any possible value from its domain. In this
case, we can find a point (A =0,P =0,N =0,V =1,7Z =
0,S =0,H =0,C = 0,G = 1) that makes the path (1,2,5)
consistent, which predicts a different class N. Thus, this violates
the definition of path AXp. Hence, feature A must be fixed to the
value 1.

3. Let feature P take any possible value from its domain. In this case,
we cannot find a point in the feature space that makes consistent
some path predicting the different class N. As a result, feature P
can be declared free, allowing it to take any value from its domain.

4. For the same reason, features in {V, V'} can also be freed, i.e. no
path predicting the different class IN can be made consistent when
these features are allowed to take any values from their domains.

5. Finally, let feature Z take any possible value from its domain. In
this case, we can find a point (A = 1,P = O,N = 0,V =
1,Z=1,S=0,H = 0,C = 0,G = 1) that makes the path
(1,3,6,8,10,12) consistent, which predicts the different class
N. As before, this violates the definition of path AXp. Hence,
feature Z must be fixed to the value 0.

6. In summary, we obtain the path AXp {4, Z}.

Thus, we can confidently state the following rule, representing a suf-
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ficient condition for predicting Y,

IF (Age >5)A (Zone=0) THEN k()=7Y

Using the more compact notation proposed earlier, we could also
write, ANZ=0 — Y.The use of explanations allows identifying
possible model learning issues with the example DT; this is further
discussed elsewhere [36].

There has been rapid progress in logic-based explainability in re-
cent years, which is overview for example in [37, 36] and the refer-
ences therein.

Probabilistic abductive explanations (PAXp’s). Building on ear-
lier work [48, 1, 26, 27], we define weak probabilistic AXp (or weak
PAXp) X C F as a set of fixed features for which the probability
of predicting the correct class ¢, for points consistent with the values
of X in v, exceeds § > 0, with ¢ = k(v). Thus, X C F is a weak
PAXp if the following predicate holds true,

WeakPAXp(X;F, k,v,c,d)
= Prx(k(x) =c|xx =vx) >0 (6)
Hx € F:k(x)=cA (xx =vx)}|

= {x €F: (xx =va)} 24

(Where the restriction of x to the variables with indices in X is repre-
sented by xx = (z;)icx. Concretely, the notation xx = v repre-
sents the constraint A;e xx; = v;.) The condition above means that
the fraction of the number of points predicting the target class and
consistent with the fixed features (represented by X'), given the total
number of points in feature space consistent with the fixed features,
must exceed J. We can adapt (4) to define a PAXp given the defini-
tion of WPAXp. Since the definition of weak PAXp (see Eq. (6)) is
non-monotonic, then the computation of PAXp’s cannot be simpli-
fied [26, 27] using (5) [26, 27].

For DTs with categorical features, and for each pick of fixed fea-
tures, one can compute the conditional probability in polynomial-
time [26, 27]. For the purposes of this paper, we will use the truth
table of Figure 2.

Example 4. For the DT of Figure 2, let us consider the instance
(v,e) =((1,1,1),©) and X = {1, 2}. Then, the number of points
where 1 = 1 A z2 = 1 is 2. Moreover, for all those points, r(-) =
©. Thus, Pry(k(x) = ©|x(1,23 = Vy1,23) = 1. Moreover, when
(v,¢e) = ((2,2,2),®) and X = {3}, the number of points where
x3 = 2 1is 16 and, among these, the number of points for which
k() = @ is 15. Thus, Pre(k(x) = @ |xq33 = v{z3) = !5/16.
Finally, with § = 0.9, it is the case that {1, 2} is a WPAXp for (any
instance of) Q1, and {3} is a WPAXp for (any instance of) Ps. It is
simple to show that both WPAXp’s are PAXp’s [26, 27].

2.2 Related Work

Decision trees. As indicated earlier, it is generally assumed that
DTs compute total functions, but this may not always be the case [29,
page 270]. Without exception, tree induction algorithms guarantee
that the resulting DT computes a classification function. However,
it is possible to force a greedy tree induction algorithm to generate
a DT that does not compute a total function. Nevertheless, deciding
whether a DT computes a total function can be formulated as a deci-
sion problem, and answered with an automated reasoner. In the rest
of the paper, we assume that such checking has been performed, and
so DTs are assumed to compute a total function.

Despite the recent interest in computing explanations for DTs [28,
3,19, 2,29, 1], there seems to be no simple way to remove the redun-
dancy from DT paths. Observe that the set of explanations associated
with paths in a DT most often does not represent a DT, and attempts
at constructing a DT from such explanations would necessarily re-
introduce redundancy.

Decision sets & lists. Decision sets and lists have been studing
since the 1960s [39], with extensive work in the 80s and 90s [40,
6,7,8,9, 11]. The learning DLs and DSs is still an ongoing theme of
research [12, 13, 33, 20, 25]. As noted above, DSs exhibit a number
of limitations, the most important of which being overlap between
rules predicting different classes. There exist solutions which guar-
antee that overlap is non-existing [25], but the computed classifica-
tion function is either not total, or require the use of a default rule
with a dedicated semantics.

The use of a default rule with a dedicated semantics complicates
interpretability or approaches for computing explanations. The alter-
native solution, i.e. allowing for the classification function not to be
total, is also not desirable. To the best of our knowledge, there is no
solution for learning a decision set that produces DSs that exhibit
no overlap, require no default rule, and which offer explanations by
inspection (i.e. guarantee that there is no need for computing expla-
nations).

Despite being considered interpretable models, DTs, DLs and DSs
have been shown to require the computation of explanations [22, 29,
38], most often because of explanation redundancy.

3 From Decision Trees to (Explained) Decision Sets

To the best of our knowledge, there is no simple way to remove re-
dundancy from a DT such that some DT can be reconstructed. As a
result, one solution is to consider removing redundancy from a DT
such that a different ML model is obtained. However, one key re-
quirement for such ML model is that it must allow for explanations
to be easily extracted, i.e. no algorithm is to be executed. The next
section shows one basic approach to obtain such an ML model. After-
wards, we discuss extensions to the basic approach, their limitations,
and alternative solutions.

3.1 Mapping a DT into a DS

This section develops an algorithm which, given a DT computing

a total classification function, creates a DS with the following key

properties:

1. The DS does not include a default rule;

2. The DS does not exhibit overlap (i.e. it computes a classification
function);

3. The DS computes a total classification function; and

4. Each rule is a path AXp of the original DT.

Given the above properties, the DSs obtained with the algorithm de-

scribed below will be referred to as explained decision sets.

The above properties are critically important, since the created DS
does not exhibit any of the issues that are problematic for existing
implementations of DSs. Furthermore, for any point in feature space,
if some rule R fires, then the condition of the rule represents a path
AXp of the original DT, i.e. there is no need for computing AXp’s.

Algorithm 1 represents the proposed solution for constructing a
DS starting from a DT. As can be observed, for each path in the DT,
the algorithm computes one AXp. This AXp is then used for con-
structing a decision rule, using the literals obtained from the literals
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Algorithm 1 Converting DT to DS
Input: Decision Tree 7 with classification function s

1: function DT2DS(7)

2 S+ 0 > &: DS to be constructed
3 P < AllPaths(T) > IP: set of all paths in T
4: while P £ () do

5: Pi < PickPath(P) > Pj: some path not yet explained
6: P« P\ {Pr}

7 X < FindPathAXp(Px) © E.g. algorithms from [29]
8 S+ SuU {IF AleA(Pk,X) [ THEN H() = C}

9 S + RemoveDuplicateRules(S)

10: return S

Ro1:IF[P] THEN k(-) = Y

Ro2: IF[AA P]THEN s(-) = N

Ros: IF[PANAV AZ=1]THEN s(-) = N

Ros: IF[PANAV AZ=2ASAG|THEN s(-) = N
Ros: IF[AAZ=2ASAG]THENk(-) =Y

Ro: IF[PANAV AZ=2ASAH|THEN s(-) = N
Ro7: IF[ANZ=2ASAHAC])THENk(:) =Y
Ros: IF[AANZ=2AHAG|THENk(:) =Y

Rog: IF[PANAV AZ=2ACAG]THEN k() = N
Rio:IF[AAZ=0]THENk(:) =Y
Ri1:IF[AAV]THEN k(:) =Y

Ri2: IF[AAN]THEN (1) =Y

)

included in the AXp. In the end, duplicate rules are removed. The
algorithm used for computing one path AXp, i.e. FindPathAXp, can
be any of the algorithms proposed in earlier work [28, 29].

Example 5. Table 1 summarizes the execution of Algorithm 1 on
the example DT of Figure 1. Each row lists: (a) the list of path nodes;
(b) the features in the explanation when the path represents the expla-
nation; (c) the condition of the rule that would be obtained in such a
situation; (d) the features in some path AXp; and (e) the condition of
the rule obtained from the features in the AXp. In total, the DT has 13
paths, and so Table 1 summarizes the algorithm’s execution for each
of the 13 paths. As can be observed, the last row creates a rule which
is a duplicate, and so it will not be added to the DS. As a result, the
DS consists of 12 rules (i.e. obtained from the first 12 executions of
the algorithm’s main loop). These are shown in (7). The order of the
rules can be any, since the result is a decision set. The order shown
in (7) is taken from the order in which paths are analyzed in Table 1,
with duplicate rules removed.

As will be demonstrated in the next section, each rule is itself an
abductive explanation (of the original DT), the DS computes a func-
tion (i.e. it exhibits no overlap), and the computed function is total.
More importantly, as an be observed in Table 1, while the path lit-
erals for the DT total 75 literals, the explanations obtained from the
DS total 44 literals, representing a reduction of more than 40% on
the total number of literals used in explanations.

Extensions. The proposed algorithm leaves some flexibility on
how to compute each AXp. One solution is to compute one subset-
minimal AXp, since there are polynomial-time algorithms in the
case of DTs [28, 19, 29]. Alternatively, one can consider computing
cardinality-minimal AXp’s, thus obtaining shortest explanations for

each path. It is well-known that computing one cardinality-minimal
AXp is NP-hard [3], but with a decision problem in NP. Thus, given
proposed Horn encodings [29], a cardinality-minimal AXp can be
computed by solving Horn Maximum Satisfiability (MaxSAT).

There has been recent work on inferring and exploiting constraints
on the inputs when computing abductive explanations [17, 51]. It is
also immediate to account for constraints on the inputs when com-
puting explanations. Thus, Algorithm 1 can be used to produce an
explained DS that takes input constraints into account.

Finally, we should observe that for each path in the DT there can
be more than one path AXp. Indeed, in the worst-case, the number of
path AXp’s can be exponential on the number of features. As a result,
the proposed algorithm can be adapted to allow for the (restricted)
navigation of the space of AXp’s for each path, thus enabling a hu-
man decision maker to select which AXp to associate with each path.
It should be noted that in the case of the DT from Figure 1, and given
the AXp’s computed in Example 5, none of the paths exhibits more
than one AXp.

Algorithm’s complexity. The complexity of Algorithm 1 is linear
on the complexity of computing abductive explanations. For plain
subset-minimal AXp’s, Algorithm 1 runs in polynomial-time, since
there exist polynomial-time algorithms for computing one AXp [28,
29].

When the DS is to be constructed from cardinality-minimal
AXp’s, Algorithm 1 computes one such explanation a number of
times that is linear with the nodes in the DT. However, computing
one smallest AXp in the case of DTs is NP-hard [3]. Moreover, the
algorithms for computing cardinality-minimal AXp’s will require at
most a logarithmic number of calls to an NP oracle in the worst-case.
In the case of cardinality-minimal AXp’s for DTs, a DS is obtained
solving Horn MaxSAT a number of times that grows with the num-
ber of (terminal) nodes in the DT. Finally, navigation of the space of
AXp’s will also impact complexity, depending on how many AXp’s
are to be enumerated.

3.2 Properties of Explained Decision Sets

As suggested in earlier sections, we now prove the key properties of
the DS created with Algorithm 1. First, we prove that each rule con-
dition in the DS maps to a path AXp of the original DT. Then, we
prove that Algorithm 1 creates a DS that computes a (classification)
function, i.e. there is no overlap between rules with different predic-
tions. Finally, we prove that the DS computes a total function, i.e. for
any point in feature space, at least one rule fires.

Proposition 1. The conditions of each rule in the DS represent a
path AXp of the original DT.

Proof. This result is an immediate consequence of Algorithm 1,
since each rule in the DS is obtained from a path AXp of the original
DT. m|

As a consequence of Proposition 1, each rule corresponds to some
path(s) of the original DT. Furthermore, and under the hypothesis that
the original DT computes a total function, we can prove the following
results. The first result ensures that the DS computes a function (i.e.
there is no overlap). The second results ensures that the computed
function is total (i.e. there is a prediction for every point in feature
space).

Proposition 2. The constructed DS is non-overlapping.

Proof.  Suppose the constructed DS is overlapping, which means
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Table 1: Summary of the execution of Algorithm 1 for the DT in Figure 1. The rule extracted from each AXp is added to the DS, with duplicates

removed.
Path Path Xp Rule condition from path Path AXp Rule condition from path AXp
(1,2,4) {1,2} ANP {2} P
(1,2,5) {1,2} ANP {1,2} ANP
(1,3,6,8,10,12) {1,2,3,4,5} AANPANAVAZ=1 {2,3,4,5} PANAVAZ=1

(1,3,6,8,10,13,15,17) {1,2,3,4,5,6,7}

AANPANAVAZ=2ASAG

{2,3,4,5,6,77 PANAVAZ=2ASAG

(1,3,6,8,10,13,15,18) {1,2,3,4,5,6,7}

AANPANAVAZ=2ASAG

{1,5,6,7} ANZ=2ASAG

(1,3,6,8,10, 13,16, 19) {1,2,3,4,5,6,8}

ANPANAVANZ=2ASANH

{2,3,4,5,6,8y PANAVAZ=2ASAH

(1,3,6,8,10,13,16,20,21)  {1,2,3,4,5,6,8,9}

ANPANAVAZ=2ASANHAC

{1,5,6,8,9} ANZ=2ASANHANC

(1,3,6,8,10,13,16,20,22,23) {1,2,3,4,5,6,7,8,9}

AANPANAVAZ=2ASAHACAG

{1,5,7,8} ANZ=2NHANG

(1,3,6,8,10,13,16,20,22,24) {1,2,3,4,5,6,7,8,9} AAPANAVAZ=2ASAHACAG {2,3,4,5,7,9} PANAVAZ=2ACAG

(1,3,6,8,10,14) {1,2,3,4,5} AANPANAVAZ=0 {1,5} ANZ=0

(1,3,6,8,11) {1,2,3,4} AANPANAV {1,4} ANV

(1,3,6,9) {1,2,3} AANPAN {1,3} AAN
(1,3,7) {1,2} AANP {2} P

there exist at least two rules with non-contradicting conditions that
predict two different classes. In such a case, there would exist a
point in the feature space that is consistent with two paths of the
original DT leading to two different classes, which contradicts with
the hypothesis that the DT computes a total function. Hence, DS is
non-overlapping. a

Proposition 3. The constructed DS is total.

Proof. If the constructed DS is not total, it implies the existence of a
point in the feature space that is not consistent with any rule in the
DS. As a result, this point is also not consistent with any path of the
original DT, which contradicts the hypothesis that the original DT is
total. Thus, the constructed DS is total. O

3.3 Limitations & Solutions

The basic algorithm proposed in the previous section (see Algo-
rithm 1) allows mapping DTs to (explained) DSs when an path AXp
is associated with each path. This section investigates limitations of
the proposed algorithm and outlines possible solutions.

Probabilistic explanations. There has been recent work on com-
puting rigorous probabilistic explanations [48, 30, 31, 32, 1, 26].
Similarly to computing AXp’s, Algorithm 1 could be instrumented
to compute probabilistic AXp’s (PAXp’s) or locally minimal PAXp’s
(LmPAXp’s) [26]. Thus, a DS would be constructed using different
notions of probabilistic explanations instead of plain abductive ex-
planations. Unfortunately, in this case the resulting DS would not
respect the properties established in Section 3.2, in that overlap is no
longer guaranteed not to exist. The following example illustrates the
issue of overlap that PAXp’s can induce.

Example 6. We use the example DT in Figure 2, and the WPAXp’s
studied in Example 4 to convey the issues raised by probabilistic ex-
planations.

Let 6 = 0.9. For the path (1,2,4), the (only) PAXp is {1, 2},
which would yield the rule z; € {1} Az2 € {1} — ©. Moreover,

for the path (1, 3,7,9) a PAXp is {3}, which would yield the rule
xz3 € {2} — . It is plain to conclude that there exists overlap
between the two rules.

DT annotation. In the case of probabilistic explanations, there is a
simple, but less compact, approach to pre-compute the explanations
of each path. The solution is to annotate the terminal nodes of DTs
with the computed explanations. In the case of probabilistic expla-
nations, it suffices to compute a (Lm)PAXp for each path, and then
annotate the terminal node of the path with that explanation. It is
plain that the DT guarantees the non-existence of overlap. Moreover,
annotating the terminal nodes will have no effect on whether the DT
computes a total function.

There are downsides to this solution, which Algorithm 1 ad-
dresses. First, DT annotation yields a less compact representation
of both the ML model and a possible universe of explanations. Sec-
ond, a human decision maker will be expected to be able to relate
computed explanations with the paths the explanations are associ-
ated with.

4 Experiments

This section presents experimental results that evaluate the practical
efficiency of the proposed approach for mapping a Decision Tree
into a Decision Set. It is important to emphasize that the experiment
did not consider computing cardinality-minimal AXp’s for extracting
rules and constructing DS.

Experimental setup. The evaluation comprises 44 datasets that are
originate from Penn ML Benchmarks [42]. The datasets used in the
paper consist of features with either categorical or ordinal domains
(i.e. integer or real-valued). The number of features ranges from 6 to
240, while the number of classes varies from 2 to 26, with an average
of 47 features and 5 classes. Each dataset is divided into training and
testing sets, with 80% of the data used for training and 20% used for
testing. DTs are learned using Orange3 [10], the maximum depth set
to 9 while the minimal test accuracy set to 70%. It is worth noting that
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Table 2: The table shows statistics for datasets, decision trees and the resulting decision sets. The table includes the number of features (m) and
the number of classes (K) for each dataset. For each DT, the table reports the tree depth (D), the number of nodes (#N), test accuracy (A%), the
number of paths (|P|), and |A(IP)|, which is the total number of literals in all tree paths. For the resulting DS, the table reports the number of

rules (|S]) and |A(S)

, which is the total number of literals in all rules. Moreover, the table reports the maximum (max R%) and average (avg.

R%) path redundancy ratio, which refers to the proportion of literals that can be removed from a decision path to convert it into a decision rule
over the total number of literals included in that path. The last column reports the runtime (in seconds) for converting DT into DS.

Dataset m K DT DS Runtime (s)
D #N A% |P| |A®)| |S|] |A(S)] maxR% avg.R%

adult 14 2 9 151 860 76 639 43 212 62.5 37.8 0.21
analcatdata_authorship 70 4 5 25 95.3 13 51 13 49 20.0 3.1 0.02
ann_thyroid 21 3 8 25 99.7 13 66 11 33 60.0 332 0.02
breast_cancer_wisconsin 30 2 6 13 92.1 7 27 7 18 50.0 26.0 0.01
car_evaluation 21 4 9 117 962 59 478 46 299 50.0 17.8 0.13
chess 36 2 9 43 99.4 22 155 21 94 66.7 325 0.05
churn 20 2 9 93 92.8 47 303 43 178 60.0 34.8 0.09
coil2000 85 2 9 117 939 59 467 44 254 66.7 239 0.18
connect_4 42 39 689 724 345 3021 259 1915 44.4 15.0 1.55
corral 6 2 5 27 1000 14 56 6 12 60.0 46.1 0.01
dermatology 34 6 7 17 95.9 9 42 9 40 143 32 0.02
dna 180 3 9 149 925 75 563 73 468 50.0 14.9 0.22
ionosphere 34 2 7 29 93.0 15 73 13 38 714 36.3 0.03
kr_vs_kp 36 2 9 39 98.9 20 135 20 89 66.7 31.0 0.05
letter 16 26 9 499 739 250 2122 229 1514 50.0 21.6 0.87
mfeat_factors 216 10 9 155 848 78 579 78 544 25.0 55 0.21
mfeat_fourier 76 10 9 217 750 109 826 107 692 44 4 13.5 0.30
mfeat_karhunen 64 10 9 253 772 127 980 125 816 429 14.8 0.34
mfeat_pixel 240 10 9 18 87.0 93 658 93 637 222 2.9 0.26
mfeat_zernike 47 10 9 293 742 147 1187 145 1076 333 7.7 0.46
mofn_3_7_10 10 2 7 93 974 47 294 46 174 57.1 389 0.17
molecular_biology_promoters 57 2 4 15 72.7 8 26 8 21 50.0 16.7 0.01
movement_libras 9 15 9 127 736 64 414 64 401 28.6 29 0.16
mux6 6 2 6 55 1000 28 141 15 46 50.0 34.7 0.04
optdigits 64 10 9 353 893 177 1433 177 1367 25.0 43 0.61
pendigits 16 10 9 235 940 118 903 115 776 444 10.6 0.33
ring 20 2 9 107 836 54 394 48 219 77.8 37.1 0.32
satimage 36 6 9 333 862 167 1351 154 980 66.7 20.9 0.47
sonar 60 2 7 27 78.6 14 68 14 52 429 19.4 0.02
soybean 35 18 9 79 844 40 260 38 212 333 10.6 0.07
spambase 57 2 9 141 920 71 509 68 379 62.5 20.1 0.19
spect 22 2 9 77 79.6 39 268 34 170 66.7 23.2 0.09
spectf 44 2 9 29 85.7 15 91 15 53 66.7 41.1 0.04
splice 60 39 91 89.2 46 319 46 257 50.0 20.1 0.12
texture 40 11 9 167 904 84 660 81 552 333 12.3 0.24
threeOf9 9 2 8 63 1000 32 185 23 75 57.1 34.6 0.06
tic_tac_toe 9 2 9 113 917 57 389 48 240 55.6 23.8 0.14
tokyol 44 2 9 27 94.3 14 91 12 46 44.4 30.9 0.03
twonorm 20 2 9 351 838 176 1409 171 1232 44.4 9.3 0.69
vote 16 2 8 19 93.1 10 50 10 35 40.0 25.0 0.02
waveform_21 21 39 343 756 172 1375 154 1026 444 15.5 0.56
waveform_40 40 39 391 750 196 1596 180 1244 44.4 14.3 0.70
wdbc 30 2 6 17 89.5 9 40 9 28 50.0 25.2 0.01
xd6 9 2 9 79 100.0 40 243 30 90 66.7 44.2 0.10
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Orange3 is capable of handling features with categorical or ordinal
domains. Furthermore, a prototype of the proposed algorithm was
implemented in Python, and is publicly available in the repository '.
Finally, the experiments were performed on a MacBook Pro with a 6-
Core Intel Core i7 2.6 GHz processor with 16 GByte RAM, running
macOS Monterey.

Results. Table 2 summarizes the results of mapping DTs to DS. For
the learned DTs, 34 out of the 44 DTs have depth more than 7, 33
out of the 44 DTs achieve a test accuracy of over 80%. Moreover, the
number of nodes in the learned DTs ranges from 13 to 689, with 22
out of 44 models having more than 100 nodes. Besides, the number
of tree paths for DTs varies from 7 to 345, with an average of 74
paths. The total number of literals in tree paths varies from 26 to
3021, with an average of 566 literals.

Through the transformation of DTs into DSes, we have success-
fully reduced the number of rules and literals required for decision-
making. The number of rules for the DSes ranged from 6 to 259,
with an average of 66 rules. Besides, the total number of literals in
the rules varied from 12 to 1915, with an average of 423 literals.
On average, roughly 10% tree paths are redundant, and roughly 25%
literals are redundant.

More specifically, for the adult, car_evaluation, coil2000, con-
nect_4, and corral datasets, we observe that 43.4%, 22%, 25.4%,
24.9%, and 57.1%, respectively, of the tree paths are redundant.
Although the tree paths for the breast_cancer_wisconsin, molecu-
lar_biology_promoters, sonar, spectf, and wdbc datasets are not re-
dundant, a non-negligible ratio of redundant literals exists within the
tree paths. Specifically, for these datasets, the maximal ratio of re-
dundant literals in the tree paths is 50%, 50%, 42.9%, 66.7%, and
50%, respectively, while the average ratios of redundant literals in the
tree paths are 26%, 16.7%, 19.4%, 41.1%, and 25.2%, respectively.
An additional observation is that in 34 out of the 44 DTs, the max-
imal ratio of redundant literals in the tree paths is at least 40%, and
in some cases, can exceed 70% (e.g., datasets ionosphere and ring).
Additionally, in 24 out of 44 DTs, the average ratio of redundant lit-
erals in the tree paths is at least 20%. However, there are indeed some
DTs where the average ratio of redundant literals in the tree paths is
small, such as analcatdata_authorship and dermatology.

Finally, the table shows that the runtime for mapping DTs into
DSes is negligible, as indicated in the last column. This can be at-
tributed to the algorithm used, which leverages a polynomial-time
method for extracting one path AXp from each tree path.

5 Conclusions

This paper demonstrates that (non-explained) decision trees can be
mapped onto (explained) decision sets, such that the obtained de-
cision sets exhibit all the key properties of decision trees. The pa-
per proposes an algorithm that constructs an explained decision set
starting from a decision tree. In contrast with other algorithms for
constructing decision sets proposed in the recent past [33, 35, 25,
16, 14, 49, 15, 50, 21], the algorithm proposed in this paper ensures
that the resulting decision sets compute a total function, such that
the condition of each rule is the explanation for the prediction when
the rule fires. Given the existing proposals for intrinsic interpretabil-
ity [44, 41, 46], the algorithm proposed in this paper offers a solution
to deliver a classifier where the explanation is extracted, by inspec-
tion, from the classifier. The experiments demonstrate not only the

L https://github.com/XuanxiangHuang/dtree2dset

scalability of the proposed algorithm, but also the significantly tighter
representations that explainable decision sets achieve.

Future work will investigate the impact on the size of the explained
DT of computing smallest explanations for each path in the DT. Sim-
ilarly, additional heuristics for selecting the explanations to consider
for each path in the DT will be investigated. For example, one could
give preference to picking explanations that match already picked
explanations, so as to minimize the total number of rules in the DS.
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