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Abstract. We investigate multi-agent reinforcement learning for
stochastic games with complex tasks, where the reward functions
are non-Markovian. We utilize reward machines to incorporate high-
level knowledge of complex tasks. We develop an algorithm called
Q-learning with reward machines for stochastic games (QRM-SG),
to learn the best-response strategy at Nash equilibrium for each
agent. In QRM-SG, we define the Q-function at a Nash equilibrium
in augmented state space. The augmented state space integrates the
state of the stochastic game and the state of reward machines. Each
agent learns the Q-functions of all agents in the system. We prove
that Q-functions learned in QRM-SG converge to the Q-functions at
a Nash equilibrium if the stage game at each time step during learn-
ing has a global optimum point or a saddle point, and the agents up-
date Q-functions based on the best-response strategy at this point. We
use the Lemke-Howson method to derive the best-response strategy
given current Q-functions. The three case studies show that QRM-SG
can learn the best-response strategies effectively. QRM-SG learns the
best-response strategies after around 7500 episodes in Case Study I,
1000 episodes in Case Study II, and 1500 episodes in Case Study III,
while baseline methods such as Nash Q-learning and MADDPG fail
to converge to the Nash equilibrium in all three case studies.

1 Introduction

In games, multiple agents interact with each other and the behav-
ior of each agent can affect the performance of other agents. Multi-
agent reinforcement learning (MARL) [1] is a framework for multi-
ple agents to optimize their strategies by repeatedly interacting with
the environment. The interactions between agents in MARL prob-
lems can be modeled as a stochastic game (SG), where Nash equilib-
rium can be a solution concept. In a Nash equilibrium, agents have
best-response strategies considering other agents’ actions.

In many complex games, the reward functions are non-Markovian
(i.e., the reward of each agent can depend on the history of events).
One way of encoding a non-Markovian reward function is by using
a type of Mealy machine named reward machines [11]. In this paper,
we focus on stochastic games where each agent intends to complete
a complex task which can be represented by a reward machine cap-
turing the temporal structure of the reward function.

We introduce a variant of the PAC-MAN game as a motivational
example, where two agents try to capture each other, and the task
completion is defined based on complex conditions, as illustrated in
Figure 1. Two agents and evolve in a grid-world by taking syn-
chronous steps towards adjacent cells. We also introduce two power
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bases and at fixed locations. We track whether the two agents
encounter logical propositions such as , , and or not to evalu-
ate the lower-level dynamics and specify the high-level reward. For
instance, the proposition is true when agent is at power base .
Similarly, the proposition is true when agents and meet on
the same cell. In the simplest variant of the game, the goal of each
agent is to first reach its own power base and then capture the other
agent. Each agent obtains a reward of 1 when its task is completed.
Whenever agent arrives at its power base , agent becomes more
powerful than agent . However, if agent then arrives at its power
base , agent becomes the more powerful agent. The more power-
ful agent is capable to capture the other agent.

We address the challenge of learning complex tasks in two-agent
general-sum stochastic games with non-Markovian reward functions.
We develop an algorithm called Q-learning with reward machines
for stochastic games (QRM-SG), where we use reward machines to
specify the tasks and expose the structure of reward functions. The
proposed approach defines the Q-function at a Nash equilibrium in
augmented state space to adapt Q-learning to the setting of stochas-
tic games when the tasks are specified by reward machines. The aug-
mented state space integrates the state of the stochastic game and
the state of reward machines. During learning, we formulate a stage
game at each time step based on the current Q-functions in aug-
mented state space and use the Lemke-Howson method [13] to derive
a Nash equilibrium. Q-functions in augmented state space are then
updated according to the Nash equilibrium. QRM-SG enables the
learning of the best-response strategy at a Nash equilibrium for each
agent. Q-functions learned in QRM-SG converge to the Q-functions
at a Nash equilibrium if the stage game at each time step during learn-
ing has a global optimum point or a saddle point, and the agents up-
date Q-functions based on the best-response strategy at this point.
We test QRM-SG in three case studies and compare QRM-SG with
common baselines such as Nash Q learning [10], Nash Q-learning in
augmented state space, multi-agent deep deterministic policy gradi-
ent (MADDPG) [16], and MADDPG in augmented state space. The
results show that QRM-SG learns the best-response strategies at a
Nash equilibrium effectively.

2 Related Work

Multi-agent reinforcement learning with stochastic games: Our
work is closely related to multi-agent reinforcement learning in
stochastic games. Many recent works of multi-agent reinforcement
learning (MARL) focus on a cooperative setting [5–7,22–24,28,33],
where all the agents share a common reward function. [6] addresses
the nonstationarity issue introduced by independent Q-learning in

ECAI 2023
K. Gal et al. (Eds.)

© 2023 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA230380

1068



(a) Map of the environment.
Agents and can move syn-
chronously to an adjacent cell
(or stay put) at each step. Loca-
tions and are called power
bases.
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(b) Reward machine for agent with sparse
reward (zero when not specified on a tran-
sition). We suppose that , and cannot
all be true at the same time, making this re-
ward machine deterministic. � represents
tautology.

Figure 1: The simplest variant of the PAC-MAN game is a symmetric
zero-sum game where two agents try to capture each other. The agent
that visited its own power base the most recently can capture the
other agent. The low-level stochastic game plays out in a grid world
(a) and the high-level reward is captured by (b).

multi-agent reinforcement learning by using the importance sam-
pling technique since the multiple agents usually learn concurrently.
With the multi-agent actor-critic method as a backbone, [5] proposes
counterfactual multi-agent (COMA) policy gradients that use a cen-
tralized critic to estimate the Q-function and decentralized actors to
optimize the agents’ policies. Similar to both of these approaches
that describe the multi-agent task in the stochastic game, but we
tackle a non-cooperative multi-agent reinforcement learning prob-
lem in a stochastic game compared to [15, 18, 34, 35]. As opposed
to [15, 35], which extends inverse reinforcement learning (IRL) to
the non-cooperative stochastic game to let the agent learn the reward
function from the observation of other agent/expert’s behavior, we
assume the reward function is given to all agents that participate in
the stochastic game. However, our work shares the same objective as
the works mentioned above, as each agent learns a policy at a Nash
equilibrium in the stochastic game. Furthermore, the existing works
rely on the Markovian property of the reward function. The definition
of the stochastic game in this paper differs from the aforementioned
works as we specify the reward function as non-Markovian, which is
more applicable to many real-world applications.
Reinforcement learning with formal methods: This paper is also
closely related to the work of using the formal methods in reinforce-
ment learning (RL) with a non-Markovian reward function for sin-
gle agent [3, 4, 8, 21, 25, 26, 30–32], and multi-agent [14, 19]. In the
single-agent RL, [8] proposes DeepSynth which is a new algorithm
that synthesizes deterministic finite automation to infer the unknown
non-Markovian rewards of achieving a sequence of high-level ob-
jectives. However, DeepSynth is based on the general Markov deci-
sion process, which makes it incapable of solving MARL problems
that are modeled as a stochastic game. In a similar case for multi-
agent reinforcement learning, [19] tackles the MARL problem in a
stochastic game with non-Markovian reward expressed in temporal
logic. [14] incorporate the non-Markovian reward to MARL in an
unknown environment, with the complex task specification also de-
scribed in temporal logic. In this work, the reward function for all the
agents in a stochastic game is encoded by the reward machine, which
provides an automata-based representation that enables an agent to
decompose an RL problem into structured subproblems that can be
efficiently learned via off-policy learning [11].

3 Preliminaries

In this section, we introduce the necessary background on stochastic
games, reward machines, and how to connect stochastic games and
reward machines.

3.1 Stochastic Games
Definition 1 A two-player general-sum stochastic game (SG) is a
tuple G = (S, sI , Ae, Aa, p, Re, Ra, γ), where S is the finite state
space (consisting of states s = [se; sa], se and sa are the substates
of the ego agent and the adversarial agent, respectively), sI ∈ S
is the initial state, Ae and Aa are the finite set of actions for the
ego agent and the adversarial agent, respectively, and p : S × Ae ×
Aa × S → [0, 1] is the probabilistic transition function. Reward
functions Re : (S × Ae × Aa)

+ × S → R and Ra : (S × Ae ×
Aa)

+ × S → R specify the non-Markovian rewards to the ego and
adversarial agents, respectively. γ ∈ (0, 1] is the discount factor.

We use the subscripts e and a to represent the ego agent and the
adversarial agent, respectively. Our definition of the SG differs from
the “usual” definition used in reinforcement learning (e.g., [29]) in
that the reward functions Re and Ra are defined over the whole
history (i.e., the rewards are non-Markovian). A trajectory is a se-
quence of states and actions s0ae,0aa,0s1 . . . skae,kaa,ksk+1, with
s0 = sI . Its corresponding reward sequence for agent i (i ∈ {e, a})
is ri,1 . . . ri,k, where ri,t = Ri(s0ae,0aa,0 . . . stae,taa,tst+1), for
each t ≤ k. For both the ego agent and the adversarial agent, they
observe the same trajectory s0ae,0aa,0 . . . skae,kaa,ksk+1. The ego
agent achieves a discounted cumulative reward

∑k
t=0 γ

tre,t for the
trajectory s0ae,0aa,0 . . . skae,kaa,ksk+1. Similarly, the adversarial
agent achieves a discounted cumulative reward

∑k
t=0 γ

tra,t for the
trajectory s0ae,0aa,0 . . . skae,kaa,ksk+1.

In an SG, we consider each agent to be equipped with a Markovian
strategy πi : S × Ai → [0, 1], i ∈ {e, a}, mapping the state to
the probability of selecting each possible action. The objective of
the ego agent and the adversarial agent is to maximize the expected
discounted cumulative reward ṽe and ṽa, respectively.

ṽi(s, πe, πa) =
∞∑
t=0

γt
E(ri,t|πe, πa, s0 = s) (1)

As a solution concept of an SG, a Nash equilibrium [20] is a col-
lection of strategies for each of the agents such that each agent cannot
improve its own reward by changing its own strategy, or we say that,
each agent’s strategy is a best-response to the other agents’ strategies.

Definition 2 For an SG G = (S, sI , Ae, Aa, Re, Ra, p, γ), the
strategies of the ego agent and the adversarial agent π∗

e and π∗
a are

at a Nash equilibrium of the SG if

ṽe(s, π
∗
e , π

∗
a) ≥ ṽe(s, πe, π

∗
a)

ṽa(s, π
∗
e , π

∗
a) ≥ ṽa(s, π

∗
e , πa)

hold for any πe and πa.

A Nash equilibrium illustrates the stable point where each agent re-
acts optimally to the behavior of other agents. In a Nash equilibrium,
given other agents’ strategies, the learning agent is not able to get a
higher reward by unilaterally deviating from its current strategy. We
refer to π∗

i as the strategy of agent i that constitutes a Nash equilib-
rium. The goal of each learning agent is to find a strategy that maxi-
mizes its discounted cumulative reward considering the other agent’s
action once it reaches the game’s Nash equilibrium.
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3.2 Reward Machines
In this paper, we use reward machines to express the task specifica-
tion. Reward machines [2, 12] encode a (non-Markovian) reward in
a type of finite-state machine. 1 Technically, a reward machine is a
special instance of a Mealy machine [27], the one that takes subsets
of propositional variables as its input and outputs real numbers as
reward values.

Definition 3 A reward machine (RM) A = (V, vI , 2
P ,R, δ, σ) con-

sists of a finite, nonempty set V of RM states, an initial RM state
vI ∈ V , an input alphabet 2P where P is a finite set of propositional
variables, an output alphabet R, a (deterministic) transition function
δ : V × 2P → V , and an output function σ : V × 2P → R.

By using reward machines, we decompose a complex task into
several stages. For example, considering the reward machine of the
ego agent ( ) in the motivational example (Figure 1b), the initial RM
state is v0. At v0, if the proposition becomes true and is not
reached, the machine transitions to v1 and outputs a reward of 0, or
if the proposition becomes true and is not reached, the machine
transitions to v2 and outputs a reward of 0. At v1, after is reached
and the adversarial agent is not at its power base (¬ ), the ego agent
completes its task, and the machine transitions to vend and outputs a
reward of 1. Similarly, at v2, after is reached and ¬ is true, the
machine transitions to vend and outputs a reward of -1. Additionally,
as any agent can be the more powerful of the two (i.e. with the power
to capture the other agent) once it arrives at its own power base, the
machine can transition between v1 and v2. We also have self-loops if
the propositions do not lead to a change in the stage of the task.

3.3 Connecting Stochastic Games and Reward
Machines

To build a bridge between the reward machine and the SG, a label-
ing function L : S × Ae × Aa × S → 2P is required to map the
states in an SG to the high-level events. High-level events represent
expert knowledge of what is relevant for successfully executing a
task and are assumed to be available to both the ego and adversarial
agents. At time step t, we have lt = L(st, ae,t, aa,t, st+1) to de-
termine the set of relevant high-level events that the agents detect
in the environment. lt is a set consisting of the propositions in P
that are true given (st, ae,t, aa,t, st+1). We assume that the agents
share the same set of propositional variables P , and the agents ob-
serve the same sequences of high-level events for the same trajectory.
Specifically, for the trajectory s0ae,0aa,0 . . . skae,kaa,ksk+1, its cor-
responding event sequence is l0l1 . . . lk. The reward machine A re-
ceives lt as an input and outputs a reward rt = σ(vt, lt). To connect
the input and output of A, we write A(l0l1 · · · lk) = r0r1 · · · rk.
We call (l0l1 . . . lk, r0r1 · · · rk) a trace and we consider finite traces
(with possibly unbounded length) in this paper as a reward machine
maps any sequence of events to a sequence of rewards. Given the de-
tected high-level event lt at time step t, the RM state transitions to
vt+1 = δ(vt, lt).

Definition 4 A reward machine Ai = (Vi, vI,i, 2
P ,Ri, δi, σi) (i ∈

{e, a}) encodes the non-Markovian reward function Ri of the agent
i in the SG G = (S, sI , Ae, Aa, Re, Ra, p, γ), if for every trajec-
tory s0ae,0aa,0 . . . skae,kaa,ksk+1 and the corresponding event se-
quence l0l1 · · · lk, the reward sequence ri,0 · · · ri,k of the agent i
equals Ai(l0l1 · · · lk).
1 The reward machines we are utilizing are the so-called simple reward ma-

chines in the parlance of [12], where every output symbol is a real number.

We use reward machines Ae and Aa to encode the non-Markovian
reward functions Re and Ra in the SG G for the ego agent and the
adversarial agent, respectively.

4 Problem formulation

We focus on a two-agent general-sum stochastic game (SG) with
non-Markovian reward functions, G = (S, sI , Ae, Aa, Re, Ra, p, γ).
Each agent is given a task to complete, and the task completion de-
pends on the other agent’s behavior. We use a separate reward ma-
chine Ai = (Vi, vI,i, 2

P ,R, δi, σi) for agent i (i ∈ {e, a}) to specify
a task that the agent intends to achieve. Moreover, Ai encodes the
non-Markovian reward function Ri in G. An agent obtains a high
discounted cumulative reward if its task is completed. Therefore,
seeking to accomplish the task is consistent with maximizing the dis-
counted cumulative reward for the learning agent.

In the two-player general-sum stochastic game, the agents oper-
ate in an adversarial environment, e.g., in the motivational example,
the task of the ego agent is accomplished if the ego agent captures
the adversarial agent. Similarly, the task of the adversarial agent is
accomplished if the adversarial agent captures the ego agent.

In this paper, we aim to find the best-response strategy for each
agent in the two-player general-sum stochastic game with reward
functions encoded by reward machines. Agents try to maximize their
own discounted cumulative reward. We have the following problem
formulation.

Problem 1 Given an SG G = (S, sI , Ae, Aa, Re, Ra, p, γ), where
the non-Markovian reward functions Re and Ra are encoded
by reward machines Ae = (Ve, vI,e, 2

P ,Re, δe, σe) and Aa =
(Va, vI,a, 2

P ,Ra, δa, σa), respectively, learn the strategies of the ego
agent and the adversarial agent π∗

e and π∗
a at a Nash equilibrium of

the stochastic game.

We assume that the state, RM state, selected action, and earned re-
ward of both agents are observable to each agent. The set of propo-
sitional variables P is the same in Ae and Aa. The high-level events
received in the reward machines are a function of both agents’ states
and actions. Therefore, the learning processes of the two agents are
coupled.

5 Q-learning with Reward Machine for Stochastic
Game (QRM-SG)

In this section, we introduce the proposed QRM-SG algorithm for
stochastic games with reward functions encoded by reward ma-
chines. We first define a stochastic game with reward machines and
formulate it as a product stochastic game to obtain Markovian re-
wards. Then, we use QRM-SG to learn a strategy for each agent that
constitutes a Nash equilibrium.

Definition 5 Given a SG G = (S, sI , Ae, Aa, Re, Ra, p, γ),
where the reward functions Re and Ra are encoded by re-
ward machines Ae = (Ve, vI,e, 2

P ,Re, δe, σe) and Aa =
(Va, vI,a, 2

P ,Ra, δa, σa), respectively, we define a stochastic game
with reward machines (SGRM) as a product stochastic game H =
(S′, s′I , Ae, Aa, R

′
e, R

′
a, p

′, γ), where

• S′ = S × Ve × Va,
• s′I = sI × vI,e × vI,a ,
• p′(s, ve, va, ae, aa, s

′, v′e, v
′
a) =⎧⎪⎨

⎪⎩

p(s, ae, aa, s
′) if v′e = δe(ve, L(s, ae, aa, s

′))

and v′a = δa(va, L(s, ae, aa, s
′)),

0 otherwise,
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• R′
e = σe(ve, L(s, ae, aa, s

′)),
• R′

a = σa(va, L(s, ae, aa, s
′)).

where L is the labeling function L : S ×Ae ×Aa × S → 2P .

Lemma 1 A stochastic game with reward machines (SGRM) has
Markovian reward functions to express the non-Markovian reward
functions in the stochastic game encoded by reward machines.

In a stochastic game with reward machines (SGRM) H =
(S′, s′I , Ae, Aa, R

′
e, R

′
a, p

′, γ), the rewards received by the agents
are Markovian with respect to the augmented state space S′, the
Cartesian product state set S × Ve × Va. Also, the rewards are the
same as the reward outputs by reward machines Ae and Aa. The
agents consider S′ to select actions.

At each time step, the agents select actions simultaneously and ex-
ecute the actions ae and aa respectively. Then the state s moves to
s′. The labeling function L returns the high-level events given cur-
rent state and actions, and next state. Given the events, reward ma-
chines deliver the transition of RM states, (ve, va) moving to (v′e, v

′
a),

where v′e = δe(ve, L(s, ae, aa, s
′)), v′a = δa(va, L(s, ae, aa, s

′)).
The transition ((s, ve, va) to (s, v′e, v

′
a)) leads to a reward of

σe(ve, L(s, ae, aa, s
′)) for the ego agent and σa(va, L(s, ae, aa, s

′))
for the adversarial agent.

To utilize Q-learning and considering a Nash equilibrium as a
solution concept, we consider the optimal Q-function for agent i
(i ∈ {e, a}) in an SGRM is the Q-function at a Nash equilibrium
inspired by [10], which is the expected discounted cumulative re-
ward obtained by agent i when both agents follow a joint Nash equi-
librium strategy from the next period on. Therefore, Q-function at a
Nash equilibrium depends on both agent’s actions. Moreover, we de-
fine the Q-function at a Nash equilibrium in augmented state space
S×Ve×Va. Let q∗i (s, ve, va, ae, aa) denote the Q-function at a Nash
equilibrium for agent i. Mathematically,

q∗i (s, ve, va, ae, aa) = ri(s, ve, va, ae, aa)

+γ
∑
s′∈S
v′
e∈Ve

v′
a∈Va

p(s′, v′e, v
′
a|s, ve, va, ae, aa)ṽi(s

′, v′e, v
′
a, π

∗
e , π

∗
a) (2)

where ṽi(s′, v′e, v′a, π∗
e , π

∗
a) is the expected discounted cumulative re-

ward starting from the augmented state (s′, v′e, v′a) over infinite peri-
ods when agents follow the best-response strategies π∗

e and π∗
a . When

multiple equilibria are derived, different Nash strategy profile may
lead to different Q-function at a Nash equilibrium.

The proposed algorithm QRM-SG tries to learn q∗i (i ∈ {e, a})
for a Nash equilibrium strategy. At a Nash equilibrium, the strategy
of one agent is optimal when considering the other agent’s behavior.
Each agent maintains two Q-functions — learning the Q-functions of
both itself and the other agent. qij represents the Q-function for agent
i and learned by agent j. For instance, the ego agent is equipped with
qee and qae. Similarly, πij is the strategy of agent i learned by agent j.
The agents learn the Q-functions through exploration and by observ-
ing state and RM state transitions, actions, and rewards. At each time
step during learning, we can formulate a stage game for agent i given
the Q-functions qei(s, ve, va) and qai(s, ve, va) estimated by agent i.

Definition 6 A two-player stage game is defined as (re, ra), where
ri (i ∈ {e, a}) is agent i’s reward function Ri over the space of joint
actions, ri = {Ri(ae, aa)|ae ∈ Ae, aa ∈ Aa}.

Given the stage game (qei(s, ve, va), qai(s, ve, va)) during learning,
we derive the best-response strategies at a Nash equilibrium and Q-

functions are updated based on the expectation that agents would take
best-response actions.

Algorithm 1: QRM-SG

1 Hyperparameter: episode length eplength, γ, ε
2 Input: Reward machines Ae,Aa

3 s ← InitialState(); ve ← vI,e; va ← vI,a
4 qee(s, ve, va, ae, aa), qae(s, ve, va, ae, aa),
qea(s, ve, va, ae, aa), qaa(s, ve, va, ae, aa)
← InitialQfunctions()

5 for episode = 1, 2, · · · do

6 for 0 ≤ t < eplength do

7 for i ∈ {e, a} do

8 ε = GenerateRandomValue()
9 if ε < ε then

10 ai ← ChooseActionRandomly()
11 else

12 πei(·|s, ve, va), πai(·|s, ve, va) ←
CalculateNashEquilibrium(qei(s, ve, va),
qai(s, ve, va))

13 ai ← argmax
a∈Ai

πii(a|s, ve, va)

14 s′ ← ExecuteAction(s, ae, aa)
15 lt ← L(s, ae, aa, s

′)
16 for i ∈ {e, a} do

17 v′i ← δi(vi, lt)
18 ri,t ← σi(vi, lt)

19 for i ∈ {e, a} do

20 πei(·|s′, v′e, v′a), πai(·|s′, v′e, v′a) ←
CalculateNashEquilibrium(qei(s′, v′e, v′a),
qai(s

′, v′e, v
′
a))

21 qei(s
′, v′e, v

′
a) ←

πei(·|s′, v′e, v′a)πai(·|s′, v′e, v′a)qei(s′, v′e, v′a)
22 qai(s

′, v′e, v
′
a) ←

πei(·|s′, v′e, v′a)πai(·|s′, v′e, v′a)qai(s′, v′e, v′a)
23 qei(s, ve, va, ae, aa) ←

(1− αt)qei(s, ve, va, ae, aa) + αt(re,t +
γqei(s

′, v′e, v
′
a))

24 qai(s, ve, va, ae, aa) ←
(1− αt)qai(s, ve, va, ae, aa) + αt(ra,t +
γqai(s

′, v′e, v
′
a))

25 s ← s′; ve ← v′e; va ← v′a

26 return (qee, qae, qea, qaa)

Algorithm 1 shows the pseudocode for QRM-SG. QRM-SG be-
gins with initializations of Q-functions (line 4). Within an episode,
each agent interacts with the environment (lines 7 to 18), and uses the
observations perceived from the environment to update Q-functions
(lines 19 to 24). The game restarts when the number of time steps
reaches the threshold or at least one agent completes the task.

We have three loops within one episode in the QRM-SG. The first
loop (lines 7 to 13) demonstrates how the agents select an action,
where ε − greedy policy [29] is adopted to balance the exploration
and exploitation. A random floating point number ε is uniformly sam-
pled in the range [0.0, 1.0) (line 8). When ε < ε which has a prob-
ability of ε (line 9), the learning agent takes a uniformly random ac-
tion (line 10). With probability 1 − ε, the learning agent takes the
Nash equilibrium action (lines 12 and 13). In implementation, we
use the Lemke-Howson method [13] to derive a Nash equilibrium. In
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line 12, the Lemke-Howson algorithm takes the learned Q-functions
qei(s, ve, va) and qai(s, ve, va) with respect to the current augmented
state (s, ve, va) as the input, and returns a Nash equilibrium which
specifies probabilities of each available action. Then, the agent se-
lects the action with the maximum probability (line 13). In line 14,
agents execute the selected actions and the state s transitions to s′

according to the function p in the stochastic game G.
The second loop (lines 16 to 18) shows the transitions in the corre-

sponding reward machine for each agent. The labeling function first
detects the high-level event (line 15). Given the current RM state and
detected event, for each agent, we track the transition of RM state
(line 17) and compute the reward that the agent would receive ac-
cording to its reward machine (line 18).

The third loop (lines 19 to 24) is the learning loop. For agent
i, a Nash equilibrium at (s′, v′e, v′a) is first computed using the Q-
functions learned by agent i (line 20). Then in lines 21 and 22, we
calculate the discounted cumulative reward qji of agent j (j ∈ {e, a})
when the agents follow the Nash equilibrium obtained in line 20 at
(s′, v′e, v

′
a). qji uses the corresponding Q-functions qji to derive the

discounted cumulative reward at (s′, v′e, v′a).

qji(s
′, v′e, v

′
a) = πei(s

′, v′e, v
′
a)πai(s

′, v′e, v
′
a)qji(s

′, v′e, v
′
a) (3)

The Q-function qji for agent j estimated by agent i, (i, j ∈ {e, a}), is
updated as follows (lines 23 and 24).

qji(s, ve, va, ae, aa) = (1− αt)qji(s, ve, va, ae, aa)

+αt(ri,t + γqji(s
′, v′e, v

′
a))

(4)

where αt is the learning rate at time step t.
Figure 2 shows the structure of QRM-SG and focuses on the pro-

cedures in one time step.
QRM-SG is guaranteed to converge to best-response strategies in

the limit, as stated in the following theorem and proven in the ex-
tended version [9].

Assumption 1 Every state s ∈ S, RM states ve ∈ Ve, va ∈ Va,
and actions ae ∈ Ae, aa ∈ Aa, are visited infinitely often when the
number of episodes goes to infinity.

Assumption 2 The learning rate αt satisfies the following condi-
tions for all t:

1. 0 < αt < 1,
∑∞

t=0 αt(s, ve, va, ae, aa) =
∞,

∑∞
t=0[αt(s, ve, va, ae, aa)]

2 < ∞, and the latter two
hold uniformly and with probability 1.

2. αt(s, ve, va, ae, aa) = 0 if (s, ve, va, ae, aa) �=
(st, vte, v

t
a, a

t
e, a

t
a).

Assumptions 1 and 2 are standard assumptions and similar to those
in Q-learning [17]. Condition 2 in Assumption 2 requires that at each
step, only the Q-function elements related to the current state, RM
state, and actions are updated.

Assumption 3 One of the following conditions holds during learn-
ing.

1. Every stage game (qei(s, ve, va), qai(s, ve, va)), i ∈ {e, a}, for
all t, s, ve, and va, has a global optimal point (π̃ei, π̃ai),

(
i.e.,

π̃jiqji ≥ π̃′
jiqji for any π̃′

ji, j ∈ {e, a}) and agents’ rewards in
this equilibrium are used to update their Q-functions.

2. Every stage game (qei(s, ve, va), qai(s, ve, va)), i ∈ {e, a}, for all
t, s, ve, and va, has a saddle point (π̃ei, π̃ai),

(
i.e., π̃jiπ̃−jiqji ≥

π̃′
jiπ̃−jiqji for any π̃′

ji, π̃jiπ̃−jiqji ≤ π̃jiπ̃
′
−jiqji for any π̃′

−ji, j ∈
{e, a}), and agents’ rewards in this equilibrium are used to update
their Q-functions.

In Assumption 3, π̃ji denotes the strategy of agent j at either
the global optimal point or the saddle point, given the Q-functions
learned by agent i. π̃−ji is the strategy of the agent other than agent
j, i.e., π̃−ei = π̃ai, π̃−ai = π̃ei . Assumption 3 requires that the stage
game at each time step has either a global optimal point or a saddle
point.

Theorem 1 Under Assumptions 1, 2 and 3, the sequence
qit = (qtei, q

t
ai) at time t, i ∈ {e, a} updated by

qt+1
ji (s, ve, va, ae, aa) = (1− αt)q

t
ji(s, ve, va, ae, aa)

+αt

(
rj,t + γπei(·|s′, v′e, v′a)πai(·|s′, v′e, v′a)qtji(s′, v′e, v′a)

) (5)

for j ∈ {e, a}, where (πei(·|s′, v′e, v′a), πai(·|s′, v′e, v′a)) is the ap-
propriate type of Nash equilibrium solution for the stage game
(qtei(s

′, v′e, v
′
a), q

t
ai(s

′, v′e, v
′
a)), converges to the Q-functions at a

Nash equilibrium (q∗ei, q
∗
ai).

Note that (πei(·|s′, v′e, v′a), πai(·|s′, v′e, v′a)) is the appropriate
type of Nash equilibrium solution if the strategy corresponds to
the global optimal point or the saddle point for the stage game
(qtei(s

′, v′e, v
′
a), q

t
ai(s

′, v′e, v
′
a)). q∗ij is the Q-function at a Nash equi-

librium for agent i and learned by agent j.

6 Experiments

In this section, we evaluate the effectiveness of the proposed QRM-
SG method in three case studies. We compare QRM-SG with follow-
ing baseline methods:

• Nash-Q: we perform Nash Q-learning algorithm developed
in [10] and the agents’ locations are taken as the state.

• Nash-QAS (Nash Q-learning in augmented state space): to have
more information on high-level events, we include an extra binary
vector in the state representing whether each event has been
encountered or not.

• MADDPG-SG (multi-agent deep deterministic policy gradient
with state of the stochastic game): we adopt one of the state-
of-the-art MARL baselines —- MADDPG algorithm developed
in [16] — and include the agents’ locations as the state.

• MADDPG-AS (multi-agent deep deterministic policy gradient in
augmented state space): similar to Nash-QAS, we include an extra
binary vector in the state to represent high-level information for
MADDPG [16].

In each case study, each agent is given a task with sparse rewards
to achieve, which can be specified as a reward machine. Each agent
receives a reward of one if and only if the task is completed. We have
two agents in a 6×6 grid world for three case studies, as shown in
Figure 3. Following the notations in the motivational example, we
use the blue color to indicate the locations corresponding to the ego
agent and the red color for the adversarial agent. The power bases
are represented by circles and starting locations are represented by
triangles. At each time step, each agent can select from: {up, down,
left, right}. Each action has a slip rate of 0.5% and ε is set to 0.25.

The first case study is designed as an ’appetizer’ to test QRM-SG.
Then, we make the ego agent’s task more demanding in the second
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Figure 2: Flowchart of QRM-SG. Following the motivational example, blue indicates the elements related to the ego agent and red indicates
the elements related to the adversarial agent.
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Figure 3: The grid world for case studies. In Case Study I and II,
the adversarial agent starts from location ‘a’. In Case Study III, the
adversarial agent starts from location ‘a’ or ‘b’.
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(a) Case study I.
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(b) Case studies II and III.

Figure 4: The reward machines used in the case studies. In each case
study, the reward machine of each agent has the same structure, only
the reward differs. Hence, we present the rewards for agent in blue,
and the rewards for agent in red. The reward is sparse (zero for
both agents when not specified on a transition). Omitted transitions
are self-looping transitions with reward 0.

and third case studies. Randomnesses in the starting locations of the
adversarial agent are included in the third case study. We define that
one agent is captured by the other agent when the distance between
two agents is smaller than 2. Each agent is considered to complete
the task after capturing the other agent. Only when an agent is the
more powerful of the two agents, it has the capability to capture the
other agent. We set different conditions for the ego agent to be the
more powerful in different case studies. The tasks for agents to com-
plete are specified as reward machines, which are demonstrated in
Figure 4. The adversarial agent is given the same task in three case
studies, which requires it to be the more powerful by reaching its
power base ( ) and then capture the ego agent ( ). In Case Study
I, the ego agent is required to first reach its own power base ( ),
then destroy/reach the adversarial agent’s power base ( ) to be the
more powerful, and capture the adversarial agent afterward ( ). In
Case Study II, the required sequential events for the ego agent to be
powerful are: reaching its power base ( ), reaching the adversarial
agent’s power base ( ), reaching its power base ( ). These events
demonstrate the scenario in that the ego agent first gets energy at its
power base, destroys the adversarial agent’s power base using most
of its energy, and then gets recharged to capture the adversarial agent.
Case Study III is different from Case Study II in that the adversarial
agent randomly samples the starting location from 2 possible loca-
tions. In all case studies, we define that after the adversarial agent
arrives at its power base, the ego agent has to reach its own power
base again to be able to destroy the adversarial agent’s power base.
After a power base is destroyed, the corresponding agent is not pos-
sible to be more powerful.

To better analyze the results, each case study is designed to have
best-response strategies for agents. The ego agent is expected to
complete the required sequence of events to be the more powerful
agent, capture the adversarial agent, and complete the task resulting
in a cumulative reward of 1. As the adversarial agent is far away
from its power base, its power base would be destroyed by the ego
agent before it arrives at a Nash equilibrium. Thus, the adversar-
ial agent would fail to complete its task. The learning processes of
each agent in three case studies are plotted in Figures 5a to 5c. Every
80 episodes, we stop learning, test the algorithms’ performance, and
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(a) Case study I.

(b) Case study II.

(c) Case study III.

Figure 5: Cumulative reward comparison for each case study.
Smoothed plot with a rolling window of size 6. QRM-SG is the pro-
posed method.

save the cumulative rewards of each agent. In Case Study I, QRM-
SG finds the Nash equilibrium in around 7500 episodes. Nash-QAS
finds the Nash equilibrium after 12000 episodes, which indicates
that using the augmented state can be sufficient for the ego agent
to learn to complete the task. When learning by Nash-Q, the adver-
sarial agent completes the task. The reason can be that the task for
the adversarial agent is much easier. MADDPG-SG and MADDPG-
AS do not converge within 16000 episodes. In MADDPG-SG, the
ego agent needs more episodes for completing the task compared
to MADDPG-AS. One possible reason is that MADDPG-AS per-
ceives more information represented in the augmented state space.
In Case Study II, the policies of agents reach the Nash equilibrium
after around 1000 episodes utilizing QRM-SG, while baselines fail to
converge to the Nash equilibrium. In Case Study III, QRM-SG finds
the Nash equilibrium in around 1500 episodes, while baselines have
difficulty converging to the Nash equilibrium. The ego agent learned
by Nash-QAS receives a higher reward than other baselines. The ego
agent learned by other baselines rarely finishes the task. From the re-
sults of the three case studies, QRM-SG outperforms the four base-
line methods, where the ego agent can accomplish the task at a Nash
equilibrium in several thousand episodes.

An analysis of the effect of ε on the performance of QRM-SG
is available in the extended version [9]. Additionally, an extensive
evaluation of QRM-SG on a 12×12 grid world is conducted in the
extended version [9].

7 Conclusions

In this paper, we introduce the utilization of reward machines to ex-
pose the structure of non-Markovian reward functions for the learn-
ing agents in two-agent general-sum stochastic games. Each task is
specified by a reward machine. We propose QRM-SG as a variant
of Q-learning for the setting of stochastic games and integrated with
reward machines to learn best-response strategies at a Nash equi-
librium for each agent. We prove that QRM-SG converges to Q-
functions at a Nash equilibrium under certain conditions. Three case
studies are conducted to evaluate the performance of QRM-SG.

This paper opens the door for using reward machines in stochas-
tic games. First, one immediate extension is to jointly learn reward
machines and best-response strategies during RL. Second, extending
the methodology to general-sum stochastic games with more agents
is worth further investigation. Finally, the same methodology can be
readily applied to other forms of RL, such as model-based RL, or
actor-critic methods.
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