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Abstract. Graph classification is a classic problem with practi-
cal applications in many real-life scenes. Existing graph neural net-
works, including GCN, GAT, and GIN, are proposed to extract use-
ful features from complex graph structures. However, most existing
methods’ feature extraction and aggregation inevitably mix the use-
ful and redundant features, which will disturb the final classification
performance. In this paper, to handle the above drawback, we put
forward the Local Structural Separation Hypergraph Convolutional
Neural Network (LoSS) based on two discoveries: most graph clas-
sification tasks only focus on a few groups of adjacent nodes, and
different categories have their specific high response bits in graph
embeddings. In LoSS, we first decouple the original graph into dif-
ferent hypergraphs and aggregate the features in each substructure,
which aims to find useful features for the final classification. Next,
the low-correlation feature suppression strategy is devised to sup-
press the irrelevant node-level and bit-level features in the forward
inference process, effectively reducing the disturbance of redundant
features. Experiments on five datasets show that the proposed LoSS
can effectively locate and aggregate useful hypergraph features and
achieve SOTA performance compared with existing methods.

1 Introduction

Graph classification is an important research task used for solving
various real-life classification problems, like identifying the proper-
ties of different proteins, searching for molecules with specific func-
tions, discovering hotspots of social networks, etc. Graphs used in
the above scenes usually involve more than hundreds/ thousands of
nodes and complex connections, which contain useful and redundant
features for the classification task.

Many researchers propose a series of works to fully explore
the useful features in the graphs, including GAT[20], GCN[22],
GIN[24], etc. GCN adopts the graph Laplacian to capture the struc-
tural information and activation function to filter out redundant fea-
tures. GAT uses the attention mechanism to pay more attention to
potentially useful features for the specific task. GIN tries to extract
useful features with the neighborhood aggregation technique.

However, most existing works directly aggregate the messages
from first-order neighbors of each node. The simple first-order infor-
mation aggregation mechanism inevitably mixes the useful features
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Figure 1. The illustration of two discoveries is relevant to node-level
features and bit-level features. a) Graph classification tasks focus on a few

groups of adjacent nodes. b) Each category has specific bits with high
responses in the graph embedding (the summed 1-d feature vector before the

full connection classifier layer).

and redundant features, which is harmful to the classification result.
What’s more, two discoveries concluded by preliminary analysis also
show that the devised strategies of existing frameworks are not en-
tirely harmonious with the underlying calculation mechanism of the
graph classification model. As shown in Figure 1(a), we find out that
most graph classification tasks only focus on a few groups of adjacent
nodes. Another discovery is that different categories have their spe-
cific bits with high responses in the graph embedding ( the summed
1-d feature vector before the full connection classifier layer). Please
refer to Section 3.1 for more details about the above two discoveries.

The incompatibility between the above two discoveries and exist-
ing feature extraction strategies raises two questions: a) How to well
and truly find important features from the complex graph structure?
b) How to effectively aggregate and calculate those important fea-
tures for the final classification?

In this paper, we put forward a novel framework for the graph
classification task, termed Local Structural Separation Hypergraph
Convolutional Neural Network (LoSS), in response to the above
two questions. In order to find the potentially useful features from
the complex graph structure, we devise a feature decoupling and
group aggregation strategy based on the first discovery (Figure 1(a)).
Firstly, the original graph is decoupled into multi channels with local
structural characteristics (Probabilistic random walk clustering). For
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each channel, graph nodes are separated into different groups based
on corresponding random walks, which will be modeled by hyper-
graphs. Then, the features of nodes in each group are aggregated in
the forward inference process and finally concatenated together for
classification.

Furthermore, with the decoupled and aggregated features, we pro-
pose a low-correlation suppression strategy based on two discov-
eries (Figure 1). The low-correlation feature suppression strategy
is devised to reduce the disturbance of redundant features for the
model decision-making by suppressing the redundant hypergraph
features generated in the forward inference process. With the above
two strategies, useful graph features can be founded in the forward
inference process through decoupling, aggregating, and suppress-
ing operations under the guidance of the supervision loss function,
which can reduce the impact of redundant features effectively. Exper-
iment results show that the proposed LoSS can effectively locate and
aggregate useful hypergraph features for final classification, which
achieves SOTA performance compared with existing methods.

Our contribution is, therefore, the proposed LoSS based on two
discoveries. The local structure based decoupling and aggregation
strategy is devised to decouple the original graph into different hy-
pergraphs and aggregate the features in each substructure, which can
fundamentally find useful features for the final classification. More-
over, the low-correlation feature suppression strategy is devised to
suppress the redundant features of hypergraphs in the forward infer-
ence process, which can effectively reduce the disturbance of redun-
dant features. Meanwhile, the proposed LoSS achieves SOTA perfor-
mance compared with existing methods.

2 Related Work

Graph convolutional network. Inspired by convolutional neu-
ral networks [9], graph convolutional neural networks are proposed,
which are applied to non-Euclidean data structures (graph). Bruna
et al.[2] first use graph Laplacian eigenvectors as graph Fourier basis
and propose the spectral graph convolution operation. To improve the
efficiency of spectral graph convolution operation,[22] and [3] are
proposed, which use Chebyshev polynomials instead of the Lapla-
cian eigendecomposition. To generate Low-dimensional embeddings
of unseen nodes, the flexible framework GraphSAGE[6] is designed,
which learns a function that generates embeddings by sampling and
aggregating features from a node’s local neighborhood. Xu et al.[24]
analyze the expressiveness of graph neural networks and introduce a
simple but powerful architecture Graph Isomorphism Network. Vin-
cent et al.[21] use the Fused Gromov-Wasserstein distance to en-
hance the structure discrimination ability of GNN.

Hypergraph Convolutional Network. To explore hypergraphs,
some hypergraph neural networks are proposed. Inspired by graph
convolution neural networks, the first hypergraph convolution neu-
ral network HGNN[4] is proposed, which encodes high-order data
correlation in a hypergraph structure. Dynamic hypergraph structure
learning DHSL[31] is the first dynamic hypergraph structure learning
method, which simultaneously optimizes the label projection matrix
and the hypergraph structure itself. However, DHSL only updates the
hypergraph structure on initial feature embedding. To tackle this is-
sue, DHGNN[7] is designed to update the hypergraph structure in
each model layer. To accelerate the calculation of hypergraph neural
networks, HyperGCN[25] expands hypergraphs to pair-wise graphs
and samples the relations.

Attribution Method. Backpropagation-based methods are one of
the most important attribution methods[30]. To meet two fundamen-
tal axioms-Sensitivity and Implementation Invariance, Sundararajan
et al.[19] design the attribution method Integrated Gradient, which
attributes the prediction of a deep network to its input features.
Shrikumar et al.[16] propose DeepLIFT to compare the activation
of each neuron to its ‘reference activation’ and assigns contribution
scores according to the results of backpropagating the contributions.
Feng et al.[5] introduce the aggregate gradient strategy to effectively
diagnose and optimize CNN classifiers. Sebastian et al.[1] propose
the Layer-Wise Relevance Propagation method to propagate the pre-
diction backward in the neural network, using predefined local prop-
agation rules and get a relevance score for each neural unit. Based
on LRP method and gradient method, Song et al.[17] calculate the
attribution map to explore the transferability between heterogeneous
tasks. Schnake et al.[13] migrate the LRP method to the graph neu-
ral network and explain the decision-making mechanism of the graph
neural network. Jing et al.[8] introduce a topological attribution map
to highlight the structural saliency in a graph and amalgamate model
knowledge. Yanget al.[28][27] use attribution methods to study the
factorization and reassembly of model knowledge. Liuet al.[10][11]
use attribution methods to study the condensation of datasets.

3 Methodology

In this section, we first introduce two discoveries about the latent for-
ward inference mechanism of GNN (Section 3.1). Then, based on the
first discovery, a probabilistic random walk clustering based decou-
pling and aggregation strategy is devised for extracting the potential
useful group features for the graph classification task (Section 3.2).
Next, low-correlation feature suppression is proposed to reduce the
disturbance of redundant node-level and bit-level features in the for-
ward inference process (Section 3.3).

3.1 Discoveries and Analysis

Taking the GCN model as an example, we show the statistical results
of two discoveries in Figure 1. A detailed analysis will be given in
the following section.

Discovery 1: Most graph classification tasks only focus on a few
groups of adjacent nodes.

Analysis: For the graph classification task, a model usually is used
to get the node features via the graph. We denote the final node fea-
tures obtained from the model as {x1, x2, x3, ..., xt, ..., xT }, and the
graph embedding can be expressed as:

f =
∑

{x1, x2, x3, ..., xt, ..., xT }, (1)

where f is the sum of the nodes features belonging to the graph, T
denotes the node number, and

∑
denotes the element-wise adding

operation. The graph embedding f will be used to distinguish the
corresponding graph. Thus, the correlation of each node can be con-
sidered as the correlation of the node features to the graph embed-
ding. The correlation of node t is calculated as follows:

rt =
∑
i

xt[i]

f [i]
, (2)

where xt[i] and f [i] denote the i-th value in feature vector xt and
f [i], respectively. We normalize the nodes correlations and show the
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Figure 2. The framework of LoSS, which extracts and aggregates useful features for graph classification and suppresses low-correlation features from
node-level and bit-level. The graph is firstly decoupled into different hypergraphs by probabilistic random walk clustering. Then, HyperGCN is introduced to
aggregate the features of each hyperedge (a group of nodes denoted by green/orange/blue ellipses), which can extract the potential useful node group features

for the final classification. Furthermore, the low-correlation feature suppression strategy is devised to suppress redundant bit-level and node-level features
(denoted by the vertical and horizontal white cube, respectively) in the node feature matrix, which can effectively reduce the disturbance of redundant bit-level

and node-level features.

results of high predict confidence graph samples in Figure 1(a). From
the results, we discover that only some useful nodes features play
significant role in the graph classification task (i.e., have high cor-
relations). Based on the discovery, we put forward the probabilistic
random walk clustering based decoupling and aggregation strategy
for extracting the potentially useful features, and node-level low-
correlation feature suppression to suppress redundant node features.

Discovery 2: Different categories have their specific bits with
high responses in the graph embedding.

Analysis: In this section, we analyze the correlation between the
model’s prediction and the bit-level features of graph embedding.
With the summed graph embedding f as input, the prediction of the
full connection classifier can be denoted as p = fWc, where Wc

denotes the weight matrix of the classifier. Then, we adopt the LRP-
αβ rule[1] to calculate the contribution of each graph embedding bit
to the target category, which is given as follows:

ck[j] =

⎧⎪⎪⎨
⎪⎪⎩
α (f [j]Wc[j,k])∑

j(f [j]W
c[j,k])

if f [j]Wc[j, k] > 0

0 if f [j]Wc[j, k] = 0

β (f [j]Wc[j,k])∑
j(f [j]W

c[j,k])
if f [j]Wc[j, k] < 0

, (3)

where α+β = 1, Wc is the weight matrix of the classifier, Wc[j, k]
are the value of row j and column k in matrix Wc ,ck[j] is the cor-
relation of graph embedding bit j to class k.

With the above correlation attribution technique, we select 50 high
confidence samples to analyze the correlation of each graph embed-
ding bit to the target category. Figure 1(b) shows the average bit
correlation for each category, which demonstrates that samples of
the same category have specific and fixed bits with high correlation.
Thus, we propose the low-correlation feature suppression strategy to
reduce the disturbance of redundant features.

3.2 Probabilistic Random Walk Clustering based
Decoupling and Aggregation

In this section, we will introduce the technique used to decouple the
original graph into multi channels with Probabilistic Random Walk
Clustering. Firstly, we generate the random walks for each node, and
these walks are collected in a matrix T. The row vector of T rep-
resents a random walk path, which consists of nodes’ index. Then,
the frequency of each node appearing in each column of matrix T is
counted, and the probability of each node occurrence is calculated.
The nodes’ probabilities are used to replace the nodes’ indexes in T.
The walks are clustered (k-means) based on the probability represen-
tation of each path in T.

The probability of a node being accessed reflects its local struc-
tural characteristics, so the clustering results are divided based on
the local structural characteristics of the path. The paths assigned to
the same cluster have similar probability distributions. The different
clusters will be constructed into different hypergraphs separately (a
path is a hyperedge). The hypergraphs constructed by different clus-
ters describe different structural characteristics of the graph, which
will be processed by independent channels, as shown in Figure 2.

The hypergraph is a generalization of the pair-wise graph in which
an edge can join any number of nodes. A hypergraph can be rep-
resented as G = {V, E}, where V is a set of nodes, E is a set of
hyperedges. The node relations in the hypergraph can be represented
by an incidence matrix H ∈ R

|V|×|E|, which is defined as:

H(v, e) =

{
1 if v ∈ e

0 otherwise
, (4)

where e ∈ E , v ∈ V .
Different probabilistic random walk clusters generate different hy-

pergraphs, as shown in Figure 2. The incidence matrix of hypergraph,
which is generated by probabilistic random walk cluster gi, is rep-

B. Hu et al. / LoSS: Local Structural Separation Hypergraph Convolutional Neural Network1062
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Figure 3. An illustration of correlation analysis for forward inference and backward correlation analysis. The black arrows represent the forward inference
process of the model, and the red arrows represent the backward correlation analysis process. In the backward correlation analysis process, we attribute the

prediction results to the input node feature matrix and analyze useful features from the node-level and bit-level.

resented by Hgi . The Laplacian matrix of HGNN [4] is adopted to
aggregate the features of the hypergraph Hgi , which is termed as Hy-
perGCN module in this paper. The aggregation process is formulated
as follows:

(Xgi)l = (Dgi
v )−1Hgi(Dgi

e )−1(Hgi)T (Xgi)l−1(Wgi)l, (5)

where (Xgi)0 is initial node features matrix, l is the number of lay-
ers, Hgi is the hypergraph incidence matrix constructed by proba-
bilistic random walk cluster gi, and the adopted hypergraph Lapla-
cian is (Dgi

v )−1Hgi(Dgi
e )−1(Hgi)T . Diagonal matrices Dgi

e =
diag(1Hgi) and Dgi

v = diag(Hgi1) represent hyperedge degree
matrix and hypernode degree matrix respectively, where 1 is all-one
vector.

The Laplacian matrix determines the propagation mode of node
message in the hyperedges, and different probabilistic random walk
clusters make the hyperedges have different perceptual fields. Thus,
LoSS is enabled to capture multi-scale structural information and re-
duce the coupling of graph features.

The hypergraphs generated by different probabilistic random walk
clusters for the original graph are processed by separate channels.
Therefore, after the aggregation process, different hypergraphs result
in different features, which will be concatenated together as follows:

X = ||K−1
i=0 Xgi , (6)

where K is the number of probabilistic random walk clusters, and
|| is concatenate operation. Concatenation operation maintains the
independent of the features in the downstream tasks. Then, the graph
embedding f is obtained through summing the concatenated node

feature matrix in the vertical dimension as follows:

f = graphsumX, (7)

which converts the two-dimension matrix into one-dimension vector.
The obtained graph embedding f is the input of the full connection
classifier layer.

3.3 Low-correlation Feature Suppression

The above two discoveries show that there are useful and redundant
features in the node-level and bit-level. Therefore, we devise the low-
correlation feature suppression strategy to reduce the disturbance of
redundant node-level and bit-level features.

In this section, we first analyze the correlation between the node
features and the prediction results. Then, based on the correlation
results, the node-level and bit-level suppression strategies are used to
reduce the disturbance of node-level and bit-level redundant features.
To make the calculation process easier to understand, we draw the
calculation process of correlation analysis in Figure 3.

Correlation analysis. Correlation analysis can be divided into two
processes: Classifier analysis and HyperGCN analysis. In the process
of Classifier analysis, firstly, we need to calculate the correlation of
each graph embedding bit to the final classification result. And then,
the correlation will be allocated to the graph nodes because the graph
embedding is summed by graph node features.

The calculation process of the correlation of each graph embed-
ding bit to the final classification is the same as Eqn. (3), which is
used in Section 3.1. We also use ck to represent the contribution of
graph embedding, where ck[j] represents the contribution of embed-
ding bit j to the class k. Then, we allocate the contribution of graph

B. Hu et al. / LoSS: Local Structural Separation Hypergraph Convolutional Neural Network 1063



embedding to the graph nodes. The calculation process can be for-
mulated as:

(Rk)c[i, j] = X[i, j]
1

f [j]
ck[j], (8)

where X is the node feature matrix, and (Rk)c[i, j] represents the
contribution of the j-th bit of node i’s feature. After that, we can get
the decision-making correlation coefficient for each node and bit in
the classifier.

Based on the result of the Classifier analysis, we further analyze
the impact of HyperGCN’s input node features on the final classi-
fication result. In the process of HyperGCN analysis, it can also be
divided into two parts: Propagation analysis and Projection matrix
analysis. When using Laplacian matrix for message propagation, a
node will influence the other nodes belonging to the same hyper-
edges. Thus, the Propagation analysis is carried out to analyze the
influence of a node’s feature on the other nodes’ features during the
propagation process. According to the reverse propagation process of
Eqn. (5), we get the feature correlation tracing formula in the process
of propagation as follows:

(Rgi)l = ((Xgi)l−1(Wgi)l) ∗ (Hgi(De
gi)−1(Hgi)T

(Dv
gi)−1)(

1

(Xgi)l
∗ [(Rk)c]gi)),

(9)

where ∗ is hadamard product, the elements in matrix 1
(Xgi )l

is the

reciprocal of the elements in matrix (Xgi)l, and [ ]gi means taking
the columns corresponding to grphlet gi. Eqn. (9) calculates the influ-
ence of the feature matrix (Xgi)l−1(Wgi)l to feature matrix (Xgi)l,
through hypergraph Laplacian. For ease of understanding, the Eqn.
(9) shows the correlation distribution of the penultimate layer (i.e.,
The layer before the classification layer). If the upper layer is Hyper-
GCN, we can just replace [(Rk)c]gi) with (Ngi)l+1 to calculate the
decision-making correlation.

Since there is a projection matrix in a HyperGCN cell, we need
to conduct a Projection matrix analysis. The Projection matrix anal-
ysis is similar to the process of Classifier analysis. We also adopt the
LRP-αβ rule[1]. It is formulated as:

(Ngi)l[i, j] =
∑
k

(α
(Xl−1[i, j](Wgi)l[j, k])+∑
j(X

l−1[i, j](Wgi)l[j, k])+

−β
(Xl−1[i, j](Wgi)l[j, k])−∑
j(X

l−1[i, j])(Wgi)l[j, k])−
)(Rgi)l[i, j],

(10)

where (Ngi)l[i, j] represents the contribution of the input feature bit
j of node i in channel gi layer l. ()+ and ()− means to get the positive
and negative part, respectively.

After calculating the decision-making correlation matrix (Ngi)l,
we use it to analyze the feature importance from the node-level and
bit-level. In the node-level, we first normalize (Ngi)l by column and
then add it column by column to obtain the indicator vector of node
correlation. In the bit-level, we normalize (Ngi)l by row and add it
row by row so as to get the indicator vector of bit correlation. The
calculation process can be formulated as:

pnode[i] =
∑
j

Mn[i, j],Mn = normcol(N
gi)l, (11)

pbit[i] =
∑
j

Mb[i, j],Mb = normrow(Ngi)l, (12)

pbit and pnode are two indicator vectors, which will be used to select
the low decision-making correlation bits and nodes.

Feature suppression. In order to suppress the redundant features,
we introduce two loss functions in this section. With the indicator
vectors pbit and pnode, we can get the feature suppression loss Lnode

and Lbit as follows:

Lnode = 1[pnode < v]Xl−1, (13)

Lbit = Xl−11[pbit < y]T , (14)

where 1[pnode < v] is a binary row vector, in which the element
equals 1 if the element of pnode less than the threshold value v; oth-
erwise equals 0, and 1[pbit < y] also follows this rule. At the begin-
ning of training, we use the task loss Ltask to train several epochs.
And then, we get the high confidence training samples to evaluate
the bit and node level correlation so that the Lnode and Lbit are ob-
tained. We introduce the Lnode and Lbit and continue to train the
model. The overall loss is denoted as:

L = Ltask + Lnode + Lbit, (15)

The two constraints can reduce the impact of useless features, which
could also be appended to the task loss separately.

4 Experiments

4.1 Datasets

Five datasets are selected to verify the performance of the proposed
method LoSS. The first one is a synthetic dataset[29], which is gen-
erated from a fixed number of predefined graphs like Turán graph,
house-x graph, and balanced-tree graph. The half of predefined fac-
tor graphs will be selected randomly and merged as a training sam-
ple. It’s a multi-label graph classification dataset. The other four
datasets are widely used multi-class graph classification datasets:
IMDBBINARY, MUTAG, PTC, and PROTEINS[26].

4.2 Baselines

We compare LoSS with ten typical graph network architectures,
which are listed as follows: WL[14], GK[15], DGK[26], GCN[22],
GAT[20], GIN[24], DisenGCN[12], and FactorGCN[29]. WL, DGK,
GK are three graph kernel graph kernel based methods. GCN, GAT,
GIN, DisenGCN, and FactorGCN are graph neural network methods.
HRN[23] and GAT-CAL[18] are two new method.

4.3 Experiment setting

The computational resources used are NVIDIA A40 (48G), Xeon
6342R@2.80GHz, and 256GB main memory. We implement our
method in PyTorch. The proposed model is optimized by Adam opti-
mizer, using the learning rate of 0.01, the number of training epochs
is set to 500, the weight decay is set to 5e−5. ReLU is selected as
activation function. The dimension of the hidden feature is set to 64.
The number of hidden layers is set to four for all models. The length
of random walk is set to 5, the number of clusters is also set to 5.

4.4 Quantitative Comparison Results

In this section, the results of LoSS for graph classification on the
aforementioned five datasets are evaluated. The accuracy and stan-
dard deviations are reported in Table 1, where the best results are
shown in bold and 10-fold cross-validation is conducted. The LoSS
row in Table 1 shows the results of our proposed model without the
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Methods \ Datasets SYNTHETIC MUTAG PTC PROTEINS IMDBBINARY

WL[14] - 0.821 ± 0.004 0.570 ± 0.020 0.729 ± 0.006 -
GK[15] - 0.835 ± 0.006 0.597 ± 0.003 0.717 ± 0.006 0.659 ± 0.010
DGK[26] - 0.874 ± 0.027 0.601 ± 0.026 0.757 ± 0.005 0.670 ± 0.006

GCN[22] 0.838 ± 0.001 0.845 ± 0.064 0.628 ± 0.072 0.705 ± 0.056 0.736 ± 0.025
GAT[20] 0.852 ± 0.002 0.802 ± 0.065 0.610 ± 0.046 0.759 ± 0.055 0.728 ± 0.047
GIN[24] 0.806 ± 0.005 0.894 ± 0.056 0.646 ± 0.070 0.762 ± 0.028 0.751 ± 0.051
DisenGCN[12] 0.810 ± 0.002 0.781 ± 0.077 0.593 ± 0.031 0.742 ± 0.037 0.739 ± 0.037
FactorGCN[29] 0.814 ± 0.004 0.901 ± 0.086 0.641 ± 0.041 0.764 ± 0.030 0.749 ± 0.021
HRN[23] 0.857 ± 0.004 0.904 ± 0.089 0.661 ± 0.064 0.769 ± 0.012 0.773 ± 0.059
GAT-CAL[18] 0.861 ± 0.003 0.901 ± 0.067 0.654 ± 0.035 0.768 ± 0.032 0.724 ± 0.052

LoSS (ours) 0.864 ± 0.001 0.894 ± 0.053 0.672 ± 0.036 0.775 ± 0.026 0.784 ± 0.022
+Node-Level Suppression 0.865 ± 0.002 0.909 ± 0.059 0.683 ± 0.036 0.781 ± 0.027 0.788 ± 0.022
+Bit-Level Suppression 0.869 ± 0.001 0.894 ± 0.053 0.695 ± 0.053 0.777 ± 0.026 0.793 ± 0.029

+Both Suppression 0.869 ± 0.001 0.904 ± 0.062 0.675 ± 0.045 0.779 ± 0.022 0.787 ± 0.021

Table 1. The graph classification accuracy comparison on five datasets ("-" means not available, best results are shown in bold).

Figure 4. The ablation study of constraints on layer depth. Red dash line
denotes the original accuracy (0.821).

influence of low-correlation suppression. The +Node-Level Suppres-
sion, +Bit-Level Suppression, and +Both Suppression are the results
of our proposed model under the influence of node-level constraint,
bit-level constraint, and both constraints, respectively.

As shown in Table 1, LoSS consistently outperforms all baselines
on all datasets. In particular, LoSS achieves average accuracies of
79.3% and 69.5%, which are 2.0% and 3.4% improvement over the
second-best ranked method. As a matter of fact, the results of our
proposed model without the influence of low-correlation suppression
have already outperformed the other comparing methods. It shows
that the probabilistic random walk clustering based decoupling and
aggregation mechanism can effectively find useful features and re-
duce the interference of redundant features. Meanwhile, from the re-
sult of +Node, +Bit, and +Both, we can see that the performance of
our model generally improved under the influence of low-correlation
suppression. It verifies the effectiveness of the low-correlation sup-
pression mechanism. Overall, the proposed LoSS shows promising
results against comparing methods.

Figure 5. The ablation study of different cluster number impact for model
performance.

4.5 Qualitative Results

In this section, we provide the qualitative evaluations of three low-
correlation suppression methods to show the influence of three low-
correlation suppression methods on to model’s decision mechanism.

Figure 6 shows the visual results of the synthetic dataset. We use
the correlation analysis method, described in Section 3.3, to analyze
the decision correlation of each node, and visualize some samples,
which are corrected by low-correlation suppression. The synthetic
dataset is generated by mixing predefined structures, and the label of
the data is directly related to whether it has corresponding structures.
Therefore, we can find out the label related part, which is tagged tar-
get in Figure 6. We can see that the focus of our model are transferred
from the irrelevant nodes to the relevant nodes (i.e., target nodes), un-
der the influence of low-correlation suppression.
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Figure 6. The visual results of synthetic dataset.

4.6 Ablation Study

To further analyze the model characteristics, this section first con-
ducts the ablation study of different cluster numbers, and then the
constraint layer depth impacts are evaluated.

The influence of constraint layer depth for different constraints is
shown in Figure 4, where we can see that with the decrease of con-
straint depth, the gains of the three constraints are all gradually de-
creasing. The deep constraint layer brings model performance gains.
On the other hand, the shallow constraint layer has a negative impact
on the performance of the model. The possible reason is that the deep
constraint layer could affect the final decision of the model more di-
rectly, and too many uncoupled useful features are lost in the shallow
constraint layer.

Furthermore, we conduct the ablation study of different cluster
number impacts for our model, which is shown in Figure 5. The tra-
ditional pair-wise graph can be regarded as a kind of special hyper-
graph, in which a hyperedge only contains two nodes. Thus, we use
the original graph as the only input and get the result of cluster 0.
On this basis, we introduce the probabilistic random walk clustering
and gradually increase the number of clusters to decouple graph fea-
tures. We can see that the model performance is greatly improved
when the cluster is introduced. Moreover, the performance gain of

the model gradually stabilizes as the number of clusters increases.
And a more significant number of clusters will result in better model
performance, which also requires more graph neural network units to
handle each cluster.

5 Conclusion

In this paper, we proposed LoSS, a novel graph classification frame-
work. LoSS overcomes the drawback of existing graph classification
models that directly aggregate messages from the first-order neigh-
bors of each node and mix useful and redundant features. Our method
improves the performance of graph classification and is promising to
be used in drug discovery research and social network analysis.
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