
Gaifman Graphs in Lifted Planning

Rostislav Horčíka;* and Daniel Fišerb

aCzech Technical University in Prague, Faculty of Electrical Engineering, Prague, Czech Republic
bSaarland University, Saarland Informatics Campus, Saarbrücken, Germany

ORCiD ID: Rostislav Horčík https://orcid.org/0000-0001-7967-7126,
Daniel Fišer https://orcid.org/0000-0003-2383-9477

Abstract. We introduce the metric induced by Gaifman graphs into
lifted planning. We analyze what kind of information this metric car-
ries and how it can be utilized for constructing lifted delete-free re-
laxation heuristics. In particular, we prove how the action dynamics
influence the distances between objects. As a corollary, we derive a
lower bound on the length of any plan. Finally, we apply our the-
oretical findings on the Gaifman graphs to improve the delete-free
relaxation heuristics induced by PDDL homomorphisms.

1 Introduction

Planning on the lifted level, dealing with hard-to-ground tasks, has
received attention recently. The lifted planners avoid the grounding
process and search for a plan directly in the task representation given
by PDDL [19]. To navigate such a lifted planner, one must introduce
a lifted heuristic. Most existing methods of constructing lifted heuris-
tics try to adapt existing methods for grounded models. For instance,
by modifying the Datalog approach from the reachability analysis,
the paper [1] showed how to compute hmax, hadd heuristics on the
lifted level. They extended their result also to the FF heuristic [3].

A distinguishing feature of lifted planning is that first-order rela-
tional structures represent the states, unlike the STRIPS formalism,
where the states are just sets of structureless facts (i.e., propositions).
Thus to construct lifted heuristics, it is natural to seek methods from
other areas of mathematics dealing with relational structures like
finite model theory [4, 17]. This paper analyzes what information
Gaifman graphs can bring into lifted planning. Gaifman graphs were
originally introduced in the proof of Gaifman’s Theorem [7], stating
that first-order logic can express only local properties of finite rela-
tional structures. Given a relational structure on a set of objects, its
Gaifman graph is an undirected graph whose vertices are objects. An
edge connects two objects if they occur in a ground atomic formula
valid in that structure. Gaifman graphs allow us to introduce a met-
ric on objects; for details, see [17, Chapter 4]. In the context of the
IPC planning domains like transport, the metric tells us how far, for
instance, a package is from a location.

To utilize the metric in lifted planning, we must understand how
the metric changes between states if we apply an action. To simplify
the analysis, we focus on the delete-free relaxation of PDDL tasks.
Given such a task, we investigate the dynamics of the distances be-
tween objects induced by actions. We introduce a diameter of an ac-
tion schema and prove that the distance between any pair of objects

∗ Corresponding Author. Email: xhorcik@fel.cvut.cz.

cannot change more than by the diameter. Consequently, we can de-
rive a lower bound on the length of any plan.

The second part of the paper applies our theoretical results to im-
prove delete-free relaxation heuristics introduced in [14], where it
was proved that any self-map σ : B → B on the set of objects B of a
PDDL task P is a PDDL homomorphism from P to a smaller PDDL
task P′, whose set of objects is σ(B). Consequently, any admissible
heuristic computed on P′ induces an admissible heuristic on P via σ.
However, they left open how to find good self-maps σ such that σ(B)
is sufficiently small, and the induced heuristic is informative. This
paper provides a method for constructing these self-maps utilizing
the metric defined by Gaifman graphs. More precisely, we look for
maps σ such that σ(b) = σ(c) only if b and c are close. Intuitively,
we do not want to identify objects whose distance is large so that
we do not create shortcuts between distant states in our state space.
Our theoretical results support this intuitive idea because identifying
distant objects degrades our lower bound on the plan length.

The paper is organized as follows. Section 2 recalls all neces-
sary details on the first-order logic and PDDL planning tasks. Sec-
tion 3 introduces Gaifman graphs and the metric they induce. Sec-
tion 4 proves the main results, particularly the lower bound for the
plan length. Section 5 shows how to utilize the theoretical results
to improve the heuristics based on PDDL homomorphisms. Sec-
tion 6 presents our experimental results, and Section 7 discusses the
achieved results and limitations of Gaifman graphs.

2 Background

2.1 First-Order Logic

We first recall a few definitions from first-order logic; see [12, Chap-
ter 1]. Further, we introduce our notation and conventions. Given a
set S, we denote a tuple 〈s1, . . . , sn〉 of elements from S shortly by
�s. The i-th component of �s is denoted si ∈ S. For a tuple �s, we de-
note Set(�s), the set of elements occurring in �s. The cartesian product
of k-many copies of a set S is denoted Sk.
Given two sets B,C and a map σ : B → C, we will extend

σ element-wise to tuples, i.e., if �b = 〈b1, . . . , bn〉 ∈ Bn then
σ(�b) = 〈σ(b1), . . . , σ(bn)〉 ∈ Cn. In order to decrease the num-
ber of parentheses in mathematical expressions, we adopt the com-
mon convention of removing parentheses in σ(�b), i.e., writing σ�b in-
stead. Further, we extend σ on subsets of B. For B′ ⊆ B, we define
σ(B′) = {σ(b) | b ∈ B′}.

A first-order relational language L consists of a set of variables
V = {v1, v2, . . .} and a set of predicate symbolsP = {p1, p2, . . .},

ECAI 2023
K. Gal et al. (Eds.)

© 2023 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA230378

1052

each predicate symbol pi has its arity ar(pi). Even though constants
are allowed in PDDL, we do not consider constants as a part of the
first-order language L to simplify our formalisms. Nevertheless, all
our results can be straightforwardly reformulated for languages with
constants.

As we have no functional symbols in our first-order language L,
our atomic formulas (shortly atoms) are just expressions of the form
p(�v) where p ∈ P is a predicate symbol and �v = 〈v1, . . . , vn〉 is an
n-tuple of variables for n = ar(p). The set of all atoms is denoted
Φ(V).

We can define ground atoms if we have a set of objects B. Let
σ : V → B be a map assigning objects to variables. For each atom
p(�v), such a map defines its corresponding ground atom p(σ�v).
The set of all ground atoms over the set of objects B is denoted by
Φ(B) = {p(σ�v) | p(�v) ∈ Φ(V), σ : V → B}.

An L-structure B = 〈B, ψ〉 is a set of objects B together with
a set of ground atoms ψ ⊆ Φ(B). The set ψ can be understood as
interpretations for predicate symbols.1

Given two L-structures B = 〈B, ψ〉 and B′ = 〈B′, ψ′〉, we say
thatB′ is a substructure ofB if B′ ⊆ B and ψ′ ⊆ ψ.
Let B = 〈B, ψ〉 and B′ = 〈B′, ψ′〉 be two L-structures. A map

σ : B → B′ is called a homomorphism from B to B′ if p(�b) ∈ ψ

implies p(σ�b) ∈ ψ′. Equivalently, σ is a homomorphism if σ(ψ) ⊆
ψ′ where σ(ψ) = {p(σ�b) ∈ Φ(B′) | p(�b) ∈ ψ}. We will denote the
fact that σ is a homomorphism by σ : B → B′.
Note that if we have a set of atomic formulas ϕ(�v) containing

variables from Set(�v), we can view it as an L-structure Sϕ =
〈Set(�v), ϕ(�v)〉. Given an L-structure B = 〈B, ψ〉 and a map
σ : Set(�v) → B, we say that ϕ(σ�v) holds in B if ϕ(σ�v) ⊆ ψ;
in other words, if σ : Sϕ → B is a homomorphism.

2.2 PDDL Planning Tasks

We consider the normalized non-numeric, non-temporal PDDL tasks
without conditional effects, axioms, and negative preconditions, and
with all formulas being conjunctions of atoms (represented as sets of
atoms). The types are modeled as unary predicates. So for each type
(i.e., a set of objects), a corresponding unary predicate is interpreted
by that set of objects. We also directly split the effects of PDDL
actions into add effects (positive literals) and delete effects (negative
literals) in the definition below to simplify the presentation.

Similarly, as we fixed a first-order relational language L and then
defined its L-structures, we first define a domain language D and
then its PDDL tasks.

Definition 1. A domain language D = 〈V,P,AS〉 is a first-order
relational language 〈V,P〉 extended with a set of action symbolsAS .
Each action symbol a has its arity ar(a), i.e., the number of variables
it depends on. We refer to structures over the language 〈V,P〉 as D-
structures.

Let a ∈ AS and �v denote a tuple of pair-wise distinct vari-
ables of length ar(a). An action schema a(�v) is a triple a(�v) =
〈apre(�v), aadd(�v), adel(�v)〉 where apre(�v), aadd(�v) and adel(�v) are
sets of atomic formulas built up from variables �v, called precondi-

tions, add effects, and delete effects, respectively.

1 TheL-structures are usually defined in logic as sets of objects endowed with
relations interpreting predicate symbols from L. Here we identify these
interpretations with the corresponding set of ground atoms to be closer to
the notation used in planning, i.e., understanding a state as a set of ground
atoms rather than an L-structure.

Analogously to ground atoms, we define ground actions. Given
a set of objects B, a map σ : V → B, and an action schema a(�v),
the corresponding ground action a(σ�v) is created by substituting
objects σ�v for variables �v.

Definition 2. Let D be a domain language. A normalized PDDL

task over D is a tuple P = 〈B,A, ψI , ψG〉 where B is a non-empty
set of objects, A = {a(�v) | a ∈ AS} a set of action schemata
(one action schema for each action symbol), and ψI ⊆ Φ(B),
ψG ⊆ Φ(B) are sets of ground atoms called initial state and goal,
respectively. The task P is called delete-free if adel(�v) = ∅ for all
its action schemata a ∈ A.

For each PDDL task P = 〈B,A, ψI , ψG〉 over a domain language
D, one can construct its associated delete-free relaxation P+ =
〈B,A+, ψI , ψG〉 over the same domain language D where A+ =
{〈apre(�v), aadd(�v), ∅〉 | 〈apre(�v), aadd(�v), adel(�v)〉 ∈ A}.

A state in P is a set of ground atoms s ⊆ Φ(B). Note that each
state can be understood as a D-structure S = 〈B, s〉. Given an
action schema a(�v) and a map σ : Set(�v) → B, we say that the
ground action a(σ�v) is applicable in the state s if apre(σ�v) ⊆ s. In
other words, a(σ�v) is applicable in s if σ is a homomorphism from
Sapre(�v) = 〈Set(�v), apre(�v)〉 to S. The resulting state of apply-
ing an applicable action a(σ�v) in a state s is the state a(σ�v)�s� =

(s \ adel(σ�b)) ∪ aadd(σ�b).
A sequence of ground actions π = 〈a1(�b1), . . . , an(�bn)〉 is appli-

cable in a state s0 if there are states s1, . . . , sn such that ai(�bi) is
applicable in si−1 and si = ai(�bi)�si−1� for i ∈ {1, . . . , n}. The
resulting state of this application is denoted π�s0� = sn. Let s be a
state. The sequence π is called an s-plan if π is applicable in s and
π�s� ⊇ ψG. In particular, if s = ψI then π is called simply a plan.

In the case of optimal planning, we assume that for each action
schema a(�v), there is a cost function ca assigning a cost ca(�b) to the
ground action a(�b). It allows us to define the cost of the plan π as
c(π) =

∑n
i=1 cai(

�bi). Let s be a state. An s-plan with a minimum
cost is called optimal.

Given a PDDL taskP and a state s, we denote h∗
P(s) the cost of the

optimal s-plan for P. It is well-known that h∗
P+(s) ≤ h∗

P(s) for ev-
ery state s. Thus, computing an admissible heuristic in P+ also gives
us an admissible heuristic for P. Recall that an admissible heuris-

tic for P is a function h assigning to s a value h(s) not greater than
h∗
P(s).
The following definitions will be applied only for delete-free

PDDL tasks. Let S = 〈B, φ〉 and T = 〈B, ψ〉 be D-structures.
The level of T w.r.t. S, denoted levelS(T), is the length |π| of the
shortest sequence of ground actions π = 〈a1(�b1), . . . , an(�bn)〉 ap-
plicable in φ such that ψ ⊆ π�φ�. If there is no such sequence, we
set levelS(T) = ∞ and call T unreachable from S. If the level
is finite, T is said to be reachable from S. Analogously, for sets of
ground atoms ψ, φ, we call ψ reachable from φ if 〈B, ψ〉 is reachable
from 〈B, φ〉. Further, we call a D-structure or a set of ground atoms
reachable if it is reachable from the initial state.

Let P = 〈B,A, ψI , ψG〉 be a delete-free PDDL task. As P has no
delete effect, every reachable goal state s satisfies ψI ∪ ψG ⊆ s. Let
I = 〈B, ψI〉 and G = 〈B, ψI ∪ ψG〉. Note that levelI(G) is the
length of the shortest plan for P.

3 Gaifman graphs

This section introduces Gaifman graphs and the metric they induce
on L-structures. The notion of a Gaifman graph of an L-structure
comes from finite model theory; see [17, Chapter 4].

R. Horčík and D. Fišer / Gaifman Graphs in Lifted Planning 1053

Definition 3. LetB = 〈B, ψ〉 be anL-structure. ItsGaifman graph

GB is the graph 〈B, E〉 whose vertices are objects, and the set of
edges E (i.e., a binary symmetric relation) is defined by 〈c, c′〉 ∈ E

iff c = c′ or there is a ground atom p(�b) ∈ ψ such that c, c′ ∈ Set(�b).

Using the Gaifman graph GB of the L-structureB, one can intro-
duce a metric (distance) δB on objects B by δB(b, c) = 0 if b = c
and otherwise δB(b, c) is the length of the shortest path between b
and c inGB. The distance δB(b, c) = ∞ if there is no path from b to
c. Recall that the diameter of a graph is the greatest distance between
any pair of vertices. We define a diameter DB of an L-structure B
as the diameter of its Gaifman graphGB. Note that the diameterDB

is∞ iff GB is disconnected.

l1

l2

l3

t1

p1
0

1

Figure 1: Gaifman graph of the L-structure from Example 4. The
loops on vertices are omitted.

Example 4. Let L be a predicate language from the IPC do-
main transport consisting of five binary predicate symbols at, in,
road, cap, pred, and four unary predicate symbols veh, pkg,
loc and num. Consider the L-structure B = 〈B, ψ〉 where B =
{t1, p1, l1, l2, l3, 0, 1} and

ψ = {veh(t1), pkg(p1), loc(l1), loc(l2), loc(l3), num(0), num(1),
at(t1, l1), in(p1, t1), cap(t1, 0), pred(0, 1), road(l1, l2),

road(l2, l1), road(l2, l3), road(l3, l2)}.
The Gaifman graph of B is depicted in Figure 1. We have
δB(p1, l3) = 4, and the diameter DB is 5. Note that unary predi-
cates do not impact the Gaifman graph and the induced metric.

Further, consider a set of atomic formulas ϕ(x, y, z) =
{veh(x), at(x, y), road(y, z)}. We can view it as an L-structure
Sϕ = 〈{x, y, z}, ϕ(x, y, z)〉. Note the diameter DSϕ = 2. Let
σ : {x, y, z} → B be the map defined by x �→ t1, y �→ l1,
and z �→ l2. Then, σ is a homomorphism from Sϕ to B, and so
ϕ(t1, l1, l2) holds inB.

The following lemma shows how the metric on L-structures be-
haves on substructures and when we apply a homomorphism.

Lemma 5. Let B = 〈B, ψ〉 and B′ = 〈B′, ψ′〉 be L-structures and
GB = 〈B, E〉, GB′ = 〈B′, E′〉 their respective Gaifman graphs.
Then the following hold:

1. If σ : B → B′ is a homomorphism from B to B′, then σ is a
graph homomorphism from GB to GB′ , i.e., if 〈c, c′〉 ∈ E then
〈σ(c), σ(c′)〉 ∈ E′.

2. If σ : B → B′ is a homomorphism from B to B′, then
δB′(σ(b), σ(c)) ≤ δB(b, c) for any pair of objects b, c ∈ B.

3. If B′ is a substructure of B then δB(b, c) ≤ δB′(b, c) for any pair
of objects b, c ∈ B′.

Proof. (1) Suppose 〈c, c′〉 ∈ E. If c = c′, then 〈σ(c), σ(c)〉 ∈ E′

by Definition 3. If c
= c′, there is a ground atom p(�b) ∈ ψ such that
c, c′ ∈ Set(�b). As σ : B → B′, we have p(σ�b) ∈ ψ′. Consequently,
〈σ(c), σ(c′)〉 ∈ E′.

(2) Next, consider the shortest path b = b0, . . . , bn = c
from b to c in GB. By (1) σ is a graph homomorphism, hence
σ(b) = σ(b0), . . . , σ(bn) = σ(c) is a path in GB′ . Consequently,
δB′(σ(b), σ(c)) ≤ n = δB(b, c).

(3) It is easy to see that ifB′ is a substructure ofB, then E′ ⊆ E.
Thus each path in GB′ is a path in GB as well.

4 Main Results

In the rest of the paper, we fix a domain language D. As we will
be interested in delete-free PDDL tasks, we denote the class of all
delete-free PDDL tasks over D as PDDL+.

Consider a PDDL task P = 〈B,A, ψI , ψG〉 ∈ PDDL+. In this
section, we analyze what information on P is encoded in the metric
induced on D-structures via the Gaifman graphs. We will first dis-
cuss how the pairwise distances between objects (particularly those
occurring in the goal) are changing as we proceed from the initial
state toward a goal state.

Let π = a1(�b1), . . . , an(�bn) be a plan for P and ψI =
s0, s1, . . . , sn ⊇ ψG the corresponding sequence of states leading
from the initial state to a goal state. As P is delete-free, we have
si ⊆ sj for i ≤ j. Each state si corresponds to a D-structure
Si = 〈B, si〉 endowed with the metric δSi induced by its Gaifman
graph GSi .
It is easy to see that each action application cannot make the dis-

tance of any pair of objects b, c ∈ B larger because P has no delete
effects. As si ⊆ sj , Si is a substructure of any Sj for i ≤ j. Con-
sequently, we have δSj (b, c) ≤ δSi(b, c) by Lemma 5(3). Thus the
objects get closer when we successively apply the actions from π.

Next, let us see what conditions on the distances are implied by the
goal ψG. Let G = 〈B, ψI ∪ ψG〉 be the D-structure defined by the
goal, and δG the corresponding metric. Note that the D-structure G
must be a substructure of Sn because sn ⊇ ψI ∪ ψG is a goal state.
The metric δG expresses how far the goal objects are required to be
from each other at most in a goal state. Indeed, by Lemma 5(3), we
have δSn(b, c) ≤ δG(b, c) for any b, c ∈ B. Note that if δG(b, c) =
∞, the distance between b and c in a goal state might be arbitrary.

These considerations show that action applications successively
shorten the distances between the goal objects until the objects are
sufficiently close as specified by the goalψG. We can be more precise
if we quantify how much objects can get closer if we apply an action.

Definition 6. Let P = 〈B,A, ψI , ψG〉 ∈ PDDL+ and a(�x) ∈ A
an action schema. The diameter Da of the D-structure Sapre(�x) =
〈Set(�x), apre(�x)〉 is called the diameter of a(�x).

vp

l n1

n2

Figure 2: The Gaifman graph corresponding to the action schema
drop.

Example 7. Consider the action schema drop from the IPC domain
transport. Its parameters are a vehicle v, a location l, a package p,
and capacity numbers n1, n2. The preconditions are formed by the
set of atoms ϕ = {at(v, l), in(p, v), cap(v, n1), pred(n1, n2)};
the unary predicates expressing that v is a vehicle, l a location, etc.,

R. Horčík and D. Fišer / Gaifman Graphs in Lifted Planning1054

are omitted as they are irrelevant to the Gaifman graph. Let �x =
〈v, l, p, n1, n2〉. The Gaifman graph of the structure Sdroppre(�x)

=
〈Set(�x), ϕ〉 is depicted in Figure 2. Thus the diameter of drop is 3.

The following results assume that the action-schema diameters are
finite. If an action schema a has an infinite diameter, the analysis
through distances is limited because a can arbitrarily change the dis-
tance between objects.2 In particular, disconnected objects might be-
come connected by the application. However, if the diameter of a is
finite, the distance changes can be bound by the diameter.

Theorem 8. Let P = 〈B,A, ψI , ψG〉 ∈ PDDL+, c, c′ ∈ B objects,
s a state, a(�x) ∈ A an action schema and σ : Set(�x) → B such
that a(σ�x) is applicable in s. Let s′ = a(σ�x)�s� be the resulting
state and δS (resp. δS′) the metric on the D-structure S = 〈B, s〉
(resp. S′ = 〈B, s′〉). If δS′(c, c′) < ∞, then δS(c, c

′)− δS′(c, c′) ≤
max{0, Da − 1} where Da is the diameter of a(�x).

Proof. The claim clearly holds if δS(c, c′) = δS′(c, c′). So sup-
pose that δS(c, c′) > δS′(c, c′). It follows that c
= c′. As a(σ�x)
is applicable in s, σ is a homomorphism from Sapre(�x) to S. Con-
sider the shortest path c = c0, . . . , cn = c′ in GS′ whose length is
n = δS′(c, c′). As the path is shorter than δS(c, c′), the path must in-
clude at least one edge introduced by aadd(σ�x). Consequently, there
must be the least index j and the greatest index k such that cj , ck ∈
Set(σ�x) and j < k. Let cj = σ(xi) and ck = σ(xr) for some
xi, xr ∈ Set(�x). As the diameter of Sapre(�x) isDa, the distance be-
tween xi and xr is at most Da in Sapre(�x). Hence δS(cj , ck) ≤ Da

by Lemma 5(2). Consequently, we can replace the subpath from cj to
ck inGS′ (whose length is at least 1) with a path insideGS of length
at most Da. The resulting sequence of edges is a path in GS. Thus
we have the desired δS(c, c′) ≤ n− 1+Da = δS′(c, c′) +Da − 1.

l1

l2

l3

t1

p1
0

1

Figure 3: Gaifman graph of the L-structure from Example 4 after the
application of the delete-free variant of the action drop.

Example 9. Consider the structure B = 〈B, ψ〉 from Example 4 in
the domain language of the IPC domain transport. The preconditions
of the action drop hold for v �→ t1, l �→ l1, p �→ p1, n1 �→ 0, and
n2 �→ 1. If we apply the delete-free version of drop in B, we get
an L-structure B′ = 〈B, ψ ∪ {at(p1, l1), cap(t1, 1)}〉. Its Gaifman
graph is shown in Figure 3. We have δB(p1, l3) − δB′(p1, l3) =
4− 3 = 1 ≤ 2 = Ddrop − 1.

In the following, we focus on delete-free PDDL tasks over a do-
main language D whose actions have a finite diameter and at least
one action schema of a nonzero diameter.3 A class of such PDDL
tasks where the maximum diameter D = maxa(�x)∈ADa > 0 is de-
noted PDDL+

D . As D > 0, we have max{0, Da − 1} ≤ D − 1 for
any a(�x) ∈ A.

2 We will discuss what can be done with action schemata of the infinite di-
ameter in Section 7.

3 The tasks having only action schemata with a zero diameter are rather trivial
as its actions can have only a single parameter x and its add effects are of
the form p(x, . . . , x) for a predicate symbol p.

Theorem 8 bounds the change of distances between objects if we
apply a single action. The following theorem provides a bound if we
apply a sequence of actions.

Theorem 10. Let P = 〈B,A, ψI , ψG〉 ∈ PDDL+
D , T = 〈B, ψ〉

a reachable D-structure from a D-structure S = 〈B, φ〉, and
b, c ∈ B such that δT(b, c) < ∞. Then levelS(T) ≥ (δS(b, c) −
δT(b, c))/(D − 1).

Proof. We have levelS(T) = n for some n ∈ N by reachability.
Thus there is a sequence of ground actions π = a1(�b1), . . . , an(�bn)
with the corresponding sequence of states φ = s0, . . . , sn ⊇ ψ.
Let Si = 〈B, si〉 be the D-structure of the state si. Thus T is a
substructure of Sn. Consequently, δSn(b, c) ≤ δT(b, c) < ∞ by
Lemma 5(3).

By Theorem 8, we have δSi−1(b, c) − δSi(b, c) ≤ D − 1 for all
i = 0, . . . , n. In particular, δSi(b, c) < ∞ for each i. We must prove
that δS(b, c)−δT(b, c) ≤ (D−1)n. Applying the above facts, we get
δS(b, c)− δT(b, c) ≤ δS0(b, c)− δSn(b, c) =

∑n
i=1(δSi−1(b, c)−

δSi(b, c)) ≤ (D − 1)n.

The lower bound on the plan length directly follows from Theo-
rem 10.

Corollary 11. Let P = 〈B,A, ψI , ψG〉 ∈ PDDL+
D , s a state with

its structure S = 〈B, s〉, G = 〈B, s ∪ ψG〉, and b, c ∈ B such
that δG(b, c) < ∞. If there is an s-plan π, then |π| ≥ (δS(b, c) −
δG(b, c))/(D − 1).

Proof. By Theorem 10 for T = G, we have |π| ≥ levelS(G) ≥
(δS(b, c)− δG(b, c))/(D − 1).

Example 12. Consider again the structure B = 〈B, ψ〉 from Ex-
ample 4. We can understand it as a state in a PDDL task from
the transport domain. Note that the maximum diameter D of ac-
tion schemata in transport is 3. Let G = 〈B, ψ ∪ {at(p1, l3)}〉
be a goal. By Corollary 11, any plan starting in B and reaching a
state containing G has a length at least 2 because levelB(G) ≥
(δB(p1, l3)− δG(p1, l3))/(D − 1) = (4− 1)/2 = 3/2.

Theorem 10 also implies the following corollary on the reachabil-
ity of facts.

Corollary 13. Let P = 〈B,A, ψI , ψG〉 ∈ PDDL+
D , S = 〈B, s〉 a

reachable D-structure from I = 〈B, ψI〉. Then the following hold:

1. δS(b, c) < ∞ iff δI(b, c) < ∞ for all objects b, c ∈ B.
2. Let p(�b) be a ground atom such that {p(�b)} is reachable. Then

δI(b, c) < ∞ for all b, c ∈ Set(�b).

Proof. For the first item, we have δS(b, c) ≤ δI(b, c) by Lemma 5(3)
because I is a substructure of S. Thus, the right-to-left implica-
tion follows. Conversely, if δS(b, c) < ∞, then δI(b, c) ≤ (D −
1)levelI(S)+ δS(b, c) by Theorem 10. As levelI(S) < ∞ by reach-
ability, we have δI(b, c) < ∞ as well.
Suppose that p(�b) is a reachable ground atom for the second item.

Thus there is a reachable state S = 〈B, s〉 such that p(�b) ∈ s. We
have δS(b, c) ≤ 1 by the metric definition. Thus δI(b, c) < ∞ by
the previous item.

5 Lifted Heuristic

In this section, we apply the results from the previous section in or-
der to improve the delete-free relaxation heuristics based on PDDL-
homomorphisms described in [14]. We first recall the relevant details.

R. Horčík and D. Fišer / Gaifman Graphs in Lifted Planning 1055

Definition 14. Let D be a domain language, and P =
〈B,A, ψI , ψG〉, P′ = 〈B′,A′, ψ′

I , ψ
′
G〉 PDDL tasks over D. A

map σ : B → B′ is called a PDDL homomorphism, denoted by
σ : P → P′, if the following conditions are satisfied:

(P1) σ(ψI) ⊆ ψ′
I ,

(P2) σ(ψG) ⊇ ψ′
G,

(P3) for each reachable state s in P, each state s′ in P′ and each
ground action a(�b) applicable in s if σ : 〈B, s〉 → 〈B′, s′〉 is a
homomorphism, then a(σ�b) is applicable in s′ and σ : 〈B, t〉 →
〈B′, t′〉 is a homomorphism for t = a(�b)�s� and t′ =

a(σ�b)�s′�.
(P4) for optimal planning, we further require that ca(σ�b) ≤ ca(�b)

for all ground actions a(�b).

PDDL homomorphisms can be used to construct admissible
heuristic due to the following theorem proved in [14, Corollary 6].

Theorem 15. Let σ : P → P′ be a PDDL homomorphism from a
PDDL task P to a PDDL task P′ and s a reachable state in P. Then
h∗
P′(σ(s)) ≤ h∗

P(s).

Consequently, if we are able to compute an admissible heuris-
tic on P′, we can use it to lower bound h∗

P(s). To find a suit-
able P′, the paper [14] proposed the following construction. Let
P = 〈B,A, ψI , ψG〉 ∈ PDDL+ be a delete-free PDDL task. Con-
sider a self map σ : B → B. We define a new delete-free PDDL task
σ(P) = 〈σ(B),A, σ(ψI), σ(ψG)〉 where the action costs in σ(P)

are defined as ca(σ�b) = min{ca(�c) | �c ∈ Bar(a), σ�c = σ�b}. The
map σ is a PDDL homomorphism from P to σ(P); see [14, Theorem
8].

Theorem 16. Let P = 〈B,A, ψI , ψG〉 ∈ PDDL+ and σ : B → B
a self map on B. Then σ is a PDDL homomorphism from P to σ(P).
Thus, h∗

σ(P)(σ(s)) ≤ h∗
P(s) for each reachable state s in P.

One can use the above construction and theorem to define an
admissible heuristic on any PDDL task. Let P be a PDDL task.
First, consider its delete-free relaxation P+. Next, select a self map
σ : B → B so that the image σ(B) is small. Apply grounding
to σ(P+) and consider any admissible heuristic hσ(P+) for the
grounded task. To compute the heuristic value for a reachable state
s in the original problem P, evaluate hσ(P+)(σ(s)). This approach
defines an admissible heuristic for P because hσ(P+)(σ(s)) ≤
h∗
σ(P+)(σ(s)) ≤ h∗

P+(s) ≤ h∗
P(s) for any reachable state s in P.

The paper [14] generated the self maps σ randomly and considered
the map giving the most informative heuristic for the initial state.
Instead of generating σ randomly, we provide a strategy for finding
good self maps σ.

To narrow down possible self maps σ, we focus on retraction
maps. A map σ : B → B is a retraction if it behaves like an iden-
tity on its image, i.e., we have σ(b) = b for all b ∈ σ(B). This
choice is because we want to reduce the number of objects and not
permute them. Further, we focus on self maps σ preserving the goal,
i.e., σ(ψG) = ψG. Finally, we identify only objects of the same type,
i.e., they must satisfy the same unary predicates modeling the types.

We construct the self map σ iteratively as a composition σ = σ1 ◦
· · · ◦σm. Each σi identifies a single pair of objects and fixes the rest.
More precisely, we find a suitable pair of objects c, c′ not identified
by previous maps σ1, . . . , σi−1 and define σi(c

′) = c and σi(b) = b
for all b
= c′. The number m depends on the object reduction we
want to achieve because |σ(B)| = |B| −m.

We want to choose σ so that h∗
σ(P+)(σ(s)) is close to h∗

P+(s).
Although Corollary 11 cannot be used to infer lower bounds directly
on h∗

P+(s) and h∗
σ(P+)(σ(s)), we can at least try to select σ so that

the lower bound on the length of the σ(s)-plan in σ(P+) is not much
smaller than the lower bound on the length of the s-plan in P+. To
compare these two lower bounds, we need to understand the rela-
tionship between the Gaifman metric on the structures S = 〈B, s〉
and σ(S) = 〈σ(B), σ(s)〉, respectively. Note that σ is a homomor-
phism from S to σ(S). Let b, c ∈ σ(B). As we assume that σ is a
retraction, we have δσ(S)(b, c) = δσ(S)(σ(b), σ(c)) ≤ δS(b, c) by
Lemma 5(2). Thus the distances in σ(S) are never larger than in S.
We can even quantify how much smaller they can be.

Lemma 17. Let B = 〈B, ψ〉 be an L-structure and c, c′ ∈ B two
objects such that δB(c, c′) = k for some k ≥ 1. Consider the map
σ : B → B such that σ(c′) = c and σ(b) = b for all objects
b
= c′. Further, let σ(B) be the L-structure 〈σ(B), σ(ψ)〉. Then
for any b1, b2 ∈ σ(B), δσ(B)(b1, b2) < ∞ implies δB(b1, b2) −
δσ(B)(b1, b2) ≤ k.

Proof. Let GB = 〈B, E〉 and Gσ(B) = 〈σ(B), E′〉 be the Gaifman
graphs of B and σ(B), respectively. As we identify only c′ to c, the
edges in E′ not occurring in E are among

{〈b, c〉 | b ∈ σ(B), 〈b, c′〉 ∈ E} ∪ {〈c, b〉 | b ∈ σ(B), 〈c′, b〉 ∈ E}.

Suppose that δσ(B)(b1, b2) < ∞ and consider the shortest path
π with a sequence of objects b1 = c0, . . . , cn = b2 in the Gaifman
graph Gσ(B) from b1 to b2. If π is also a path in GB, then we have
δB(b1, b2) = δσ(B)(b1, b2). Suppose that π is not a path in GB. As
we identify only c′ to c, the shortest path π must contain c exactly
once, i.e., c = ci for some 0 ≤ i ≤ n. There are two possibilities.
Either 〈ci−1, c〉 ∈ E and 〈c′, ci+1〉 ∈ E or 〈ci−1, c

′〉 ∈ E and
〈c, ci+1〉 ∈ E. In both cases, we can connect c and c′ by a path inGB

of length k by the assumption δB(c, c
′) = k. Thus we can construct

a path inGB connecting b1 and b2 whose length is δσ(B)(b1, b2)+k.
Consequently, δB(b1, b2) ≤ δσ(B)(b1, b2) + k.

As σ = σ1 ◦ · · · ◦ σm, we need to apply Lemma 17 m-times.
Consequently, if each σi identifies a pair of objects whose distance
is less than k, we have δS(b, c)− δσ(S)(b, c) ≤ mk.

Let s be a reachable state in P, S = 〈B, s〉 its structure, and
G = 〈B, s ∪ ψG〉. By Corollary 11, the length of any σ(s)-plan
is greater than or equal to (δσ(S)(b, c) − δσ(G)(b, c))/(D − 1)
for any b, c ∈ σ(B) such that δσ(G)(b, c) < ∞. The action di-
ameters depend only on the action schemata A. Thus they are not
changed by σ. So the maximum diameter D is the same for P+ and
σ(P+). We have δσ(S)(b, c) ≥ δS(b, c) − mk by Lemma 17 and
δσ(G)(b, c) ≤ δG(b, c) by Lemma 5(2). Thus

δσ(S)(b, c)− δσ(G)(b, c) ≥ δS(b, c)− δG(b, c)−mk

Hence the lower bound decreases at most by mk/(D − 1) w.r.t. the
lower bound for an s-plan in P+. To make k small, we must iden-
tify objects close to each other in any state reachable in the original
PDDL task P.

However, when creating σ, we only know the initial state I =
〈B, ψI〉. Consequently, the objects close in I need not be close in
a reachable state in P. To overcome this issue, we focus on static
predicates. A predicate is said to be static if it appears only in action
preconditions. The remaining predicates are called dynamic (they
occur in an action effect). Thus we can split any state s = sS ∪ sD

R. Horčík and D. Fišer / Gaifman Graphs in Lifted Planning1056

Table 1: Number of solved tasks by A∗ with the blind heuristic h0,
lifted hmax, and hlmc on tasks reduced by 25%, 50%, 75% and 95%
of objects. Only domains where rnd and gf differ for at least one
level of reduction are shown. Numbers in bold indicate that which of
rnd or gf is better for the fixed reduction level.

domain 25% 50% 75% 95%
h0 hmax rnd gf rnd gf rnd gf rnd gf

blocks (65) 0 2 4 4 6 8 9 14 11 34
logistics (40) 4 10 14 13 16 19 20 28 27 30
organic-synthesis (56) 44 35 26 31 26 32 27 32 27 32
pipesworld-tankage (50) 11 12 7 9 12 13 15 15 15 16
rovers (40) 0 3 11 6 10 5 7 4 5 4
visitall (180) 32 86 63 65 60 63 59 62 59 62

others (556) 36 37 41 41 41 41 41 41 41 41

Σ (987) 127 185 166 169 171 181 178 196 185 219

where sS represents static atoms and sD dynamic atoms. In partic-
ular, for the initial state, we have ψI = ψS

I ∪ ψD
I . Observe that

for any reachable state s, it holds sS = ψS
I because the same re-

lations interpret the static predicates in the whole reachable space.
In other words, the structure IS = 〈B, ψS

I 〉 is a substructure of any
reachable state. Hence it can be seen as a sort of fixed map, whereas
the dynamic atoms connect objects to particular locations within this
map. Using this optic, identifying close objects in IS shortens the
paths through the static map. This choice seems to be reasonable.
If δIS (b, c) is small, then δS(b, c) is small for all reachable states S
because δS(b, c) ≤ δIS (b, c) by Lemma 5(3).
To summarize the construction of σ, we iteratively identify a pair

of objects until we reach the desired object reduction. To select a
pair, we first try identifying pairs of objects that are close in IS . If
there are no candidates (for instance, in the domains without static
predicates like blocks), we identify objects close in the initial state
I = 〈B, ψI〉.

6 Experimental Evaluation

The proposed methods were implemented4 in C and evaluated on a
cluster with AMD EPYC 7543 processors and 30 minutes time and
4 GB memory limit for each process. We use the so-called hard-to-
ground (HTG) domains [18, 8, 2, 16]. We merged together different
variants of the same domain, and we removed domains with condi-
tional effects, fully grounded domains, and duplicates, leaving 987
tasks in 12 domains.

The input PDDL tasks are pruned with PDDL endomorphisms
[15] and with lifted fact-alternating mutex groups [5, 6]. The pro-
posed method inferring homomorphisms based on Gaifman graphs is
denoted by gf, and the method from [14] selecting homomorphisms
randomly is denoted by rnd. Both gf and rnd fix goals and allow
mapping between different objects only if they are of the same type.
rnd generates up to 50 random homomorphisms within one minute
time limit out of which the one resulting in the highest estimate for
the initial state is selected. gf may need to break ties when deciding
between multiple homomorphism. In such case, we select randomly
among pairs of objects whose distance in the Gaifman graph is the
same, and in this way we also generate up to 50 random homomor-
phisms within one minute time limit and select the one resulting in
the highest heuristic estimate for the initial state.

We evaluate gf and rnd in four variants—we reduce the number
of objects by up to 25%, 50%, 75%, or 95%. When grounding the
reduced tasks, we apply pruning using the h2 heuristic [10] to make
the ground tasks even smaller.

4 https://gitlab.com/danfis/cpddl, branch ecai23-lifted-hmorph-gaifman

0 101 103
0

101

103

rnd

g
f

(a) 50% reduction

0 101 103
0

101

103

rnd

g
f

(b) 75% reduction

0 101 103
0

101

103

rnd

g
f

(c) 95% reduction

Figure 4: Per-task comparison of the hlmc heuristic values for initial
states for three best-performing variants of gf and rnd. Scatter plots
use logarithmic scale with artificially added zero. Only tasks where
both variants were able to compute the heuristic value are included.

101 103 105 107

101

103

105

107

rnd

g
f

(a) 25% reduction

101 103 105 107

101

103

105

107

rnd

g
f

(b) 50% reduction

101 103 105 107

101

103

105

107

rnd

g
f

(c) 75% reduction

101 103 105 107

101

103

105

107

rnd

g
f

(d) 95% reduction

Figure 5: Per-task comparison of the number of expanded states be-
fore the last f -layer for commonly solved tasks by A∗ with hlmc.

We apply these methods in both optimal and satisficing setting. In
the optimal setting, we use A� [9] as the search algorithm. For gf
and rnd, we use the LM-Cut heuristic (hlmc) [11] computed on the
ground reduced tasks, and we compare them to the blind heuristic
assigning zero to all states (h0), and the lifted hmax heuristic com-
puted using Datalog in each state (hmax) [1]. In the satisficing setting,
we use greedy best-first search instead of A�. For gf and rnd, we
use the FF heuristic (hff) [13], and we compare them to the lifted
Datalog-based hadd heuristic [1].

Table 1 summarizes the number of solved tasks in the optimal set-
ting. The results suggest using Gaifman graphs, indeed, tends to be
more informed than the random selection more often than not. The
two best-performing variants of gf (75% and 95%) outperform hmax

in the overall number of solved tasks, but the results vary across the
tested domains.

Figure 4 compares gf and rnd in terms of the hlmc heuristic values
in initial states. One can observe that gf often results in a more in-
formed heuristic than rnd under the same reduction level. However,
we should note that these results may be misleading as the selection
of the homomorphisms is steered towards selecting the ones maxi-
mizing heuristic values in initial states. That is, there is no guarantee
that this behaviour is actually replicated in state other than the initial
one.

To get a better sense how the methods compare in the A� search,

R. Horčík and D. Fišer / Gaifman Graphs in Lifted Planning 1057

Table 2: Number of solved tasks as in Table 1, but for greedy best-
first search with the lifted hadd, and hff for gf and rnd.

domain 25% 50% 75% 95%
hadd rnd gf rnd gf rnd gf rnd gf

agricola (25) 0 3 0 0 0 0 0 0 0
childsnack (144) 61 58 60 49 56 47 45 37 37
ged (312) 112 125 124 125 125 125 125 125 125
logistics (40) 31 18 23 11 20 10 20 5 20
organic-synthesis (56) 34 26 32 26 32 28 32 28 32
pipesworld-tankage (50) 22 14 13 12 14 14 14 13 15
rovers (40) 12 12 13 6 10 7 10 4 7
tpp (25) 0 2 2 0 1 0 1 0 1
visitall (180) 140 98 115 87 105 85 94 84 94

others (115) 1 1 1 1 1 3 3 9 9

Σ (987) 413 357 383 317 364 319 344 305 340

0 101 103
0

101

103

rnd

g
f

(a) 25% reduction

0 101 103
0

101

103

rnd

g
f

(b) 50% reduction

0 101 103
0

101

103

rnd

g
f

(c) 75% reduction

Figure 6: Per-task comparison of the hff heuristic values for initial
states similar to Figure 4.

we compare the number of expanded states before the last f -layer
for tasks solved by both gf and rnd (Figure 5). The overall pic-
ture, again, seems to be favourable to gf as the lower number of
expanded states indicates better informativeness of gf. So, Gaifman
graphs seem to carry a useful information that can be utilized in the
optimal planning. Next, we look at the satisficing setting.

Table 2 compares the number of solved tasks for the greedy best-
first search. As in the previous case, using gf tends to result in a
higher number of solved tasks than rnd. However, hadd is superior,
in particular (but not exclusively) due to the visitall domain.

We also compare the hff heuristic values for initial states (Figure 6)
which tend to be higher for gf, suggesting reductions with gf lose
less information than with rnd. However, in this case, one has to
keep in mind that hff is not an admissible heuristic, so a higher value
does not necessarily imply it is closer to the perfect heuristic.

Figure 7 compares the overall number of expanded states for the
tasks solved by both gf and rnd. Here, the overall picture is not
as convincing as in the optimal setting. Nevertheless, one can still
observe some improvement.

Overall, we think the results are encouraging as they show Gaif-
man graphs can provide useful information about planning tasks.

7 Conclusion

We apply the metric induced by Gaifman graphs to lifted planning.
For PDDL tasks with finite action schema diameter, we derive a
lower bound on the length of the shortest plan. The obtained results
help us to improve moderately the delete-free relaxation heuristics
based on PDDL homomorphisms, as shown by our experimental re-
sults. In our experiments, we also tried to use the lower bound from
Corollary 11 directly as a heuristic value for PDDL tasks with unit
cost actions. However, the obtained results suggest that it is not suf-
ficiently informative and the results were essentially the same as for
the blind search.

Our theoretical results have several limitations. First, unary predi-
cates are irrelevant to Gaifman graphs. Consequently, if the goal ψG

consists only of unary atoms, the lower bound on the plan length

101 103 105 107

101

103

105

107

rnd

g
f

(a) 25% reduction

101 103 105 107

101

103

105

107

rnd

g
f

(b) 50% reduction

101 103 105 107

101

103

105

107

rnd

g
f

(c) 75% reduction

101 103 105 107

101

103

105

107

rnd

g
f

(d) 95% reduction

Figure 7: Per-task comparison of the overall number of expanded
states for commonly solved tasks by greedy best-first search with
hff .

from Corollary 11 is trivially zero as adding ψG to a state does not
change the metric. This situation happens, for example, in the visitall
domain where the goal consists of atoms of the form visited(l) for
a location l. Nevertheless, it is possible to reformulate the domain so
that the lower bound would be more informative by making visited
a binary predicate connecting the initial location and the visited one.

A further limitation is the finite action diameter. Most of the action
schemata in the IPC domains have finite diameters, but a few action
schemata have infinite ones. This is, again, usually caused by the
unary predicates. One such example is from the floortile domain. Its
action schema change-color has preconditions robot-has(r, c),
available-color(c′). Thus there is no edge connecting c′ with
other objects. Even though our theoretical results do not apply to
change-color, it is possible to reformulate the task equivalently by
introducing a new static binary predicate p whose interpretation con-
nects all the colors, and we expand the preconditions by p(c, c′).

Another example of an action schema with an infinite diameter
is grasp from the barman domain. Its preconditions contain only
unary predicates, namely on-table(c), handempty(h). This can
be equivalently reformulated as well. We can introduce a new ob-
ject t representing a table, and we replace the preconditions with
on-table(c, t), handempty(h, t). The first atom expresses that c is
on the table t, whereas the second one asserts that the hand h is op-
erating over the table t.

We think that enriching Gaifman graphs in a domain-independent
manner with these kinds of information not explicitly specified in
the input PDDL formulation might strengthen the proposed anal-
ysis. Moreover, we could also enrich Gaifman graphs by labeling
edges with predicate symbols inducing the connections between ob-
jects which would provide more fine-grained information about how
or why objects relate to each other. Another interesting question is
whether we can incorporate action costs into our analysis so that we
would get lower bounds on costs of optimal plans rather than on their
lengths.

R. Horčík and D. Fišer / Gaifman Graphs in Lifted Planning1058

Acknowledgements

Rostislav Horčík was supported by the AFOSR award
FA9550-18-1-0097 and the OP VVV funded project
CZ.02.1.01/0.0/0.0/16_019/0000765 “Research Center for In-
formatics”. Daniel Fišer was supported by DFG Grant 389792660
as part of TRR 248 (CPEC, https://perspicuous-computing.science).

References

[1] Augusto B. Corrêa, Guillem Francès, Florian Pommerening, and Malte
Helmert, ‘Delete-relaxation heuristics for lifted classical planning’, in
Proceedings of the 31st International Conference on Automated Plan-
ning and Scheduling (ICAPS’21), pp. 94–102, (2021).

[2] Augusto B. Corrêa, Florian Pommerening, Malte Helmert, and Guillem
Francès, ‘Lifted successor generation using query optimization tech-
niques’, in Proceedings of the Thirtieth International Conference on
Automated Planning and Scheduling (ICAPS’20), pp. 80–89, (2020).

[3] Augusto B. Corrêa, Florian Pommerening, Malte Helmert, and Guillem
Francès, ‘The FF heuristic for lifted classical planning’, in Proceedings
of the 36th AAAI Conference on Artificial Intelligence (AAAI’22), pp.
9716–9723, (2022).

[4] Heinz-Dieter Ebbinghaus and Jörg Flum, Finite model theory, Perspec-
tives in Mathematical Logic, Springer, 1995.

[5] Daniel Fišer, ‘Lifted fact-alternating mutex groups and pruned ground-
ing of classical planning problems’, in Proceedings of the 34th
AAAI Conference on Artificial Intelligence (AAAI’20), pp. 9835–9842,
(2020).

[6] Daniel Fišer, ‘Operator pruning using lifted mutex groups via compila-
tion on lifted level’, in Proceedings of the 33rd International Confer-
ence on Automated Planning and Scheduling (ICAPS’23), pp. 118–127,
(2023).

[7] Haim Gaifman, ‘On Local and Non-Local Properties’, in Proceedings
of the Herbrand Symposium, ed., J. Stern, volume 107 of Studies in
Logic and the Foundations of Mathematics, 105–135, Elsevier, (1982).

[8] Daniel Gnad, Álvaro Torralba, Martín Ariel Domínguez, Carlos Areces,
and Facundo Bustos, ‘Learning how to ground a plan - partial ground-
ing in classical planning’, in Proceedings of the 33rd AAAI Conference
on Artificial Intelligence (AAAI’19), pp. 7602–7609, (2019).

[9] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael, ‘A formal basis for
the heuristic determination of minimum cost paths’, IEEE Transactions
on Systems Science and Cybernetics, 4(2), 100–107, (1968).

[10] Patrik Haslum and Hector Geffner, ‘Admissible heuristics for optimal
planning’, in Proceedings of the 5th International Conference on Arti-
ficial Intelligence Planning Systems (AIPS’00), pp. 140–149, (2000).

[11] Malte Helmert and Carmel Domshlak, ‘Landmarks, critical paths and
abstractions: What’s the difference anyway?’, in Proceedings of the
19th International Conference on Automated Planning and Scheduling
(ICAPS’09), pp. 162–169, (2009).

[12] Wilfrid Hodges, A Shorter Model Theory, Cambridge University Press,
1997.

[13] Jörg Hoffmann and Bernhard Nebel, ‘The FF planning system: Fast
plan generation through heuristic search’, Journal of Artificial Intelli-
gence Research, 14, 253–302, (2001).

[14] Rostislav Horčík, Daniel Fišer, and Álvaro Torralba, ‘Homomorphisms
of lifted planning tasks: The case for delete-free relaxation heuristics’,
in Proceedings of the 36th AAAI Conference on Artificial Intelligence
(AAAI’22), pp. 9767–9775, (2022).

[15] Rostislav Horčík and Daniel Fišer, ‘Endomorphisms of classical plan-
ning tasks’, in Proceedings of the 35th AAAI Conference on Artificial
Intelligence (AAAI’21), pp. 11835–11843, (2021).

[16] Pascal Lauer, Alvaro Torralba, Daniel Fišer, Daniel Höller, Julia Wich-
lacz, and Jörg Hoffmann, ‘Polynomial-time in PDDL input size: Mak-
ing the delete relaxation feasible for lifted planning’, in Proceedings of
the Thirtieth International Joint Conference on Artificial Intelligence
(IJCAI’21), pp. 4119–4126, (2021).

[17] Leonid Libkin, Elements of Finite Model Theory, Texts in Theoretical
Computer Science. An EATCS Series, Springer, 2004.

[18] Arman Masoumi, Megan Antoniazzi, and Mikhail Soutchanski, ‘Mod-
eling organic chemistry and planning organic synthesis’, volume 36 of
EPiC Series in Computing, pp. 176–195, (2015).

[19] Drew McDermott, ‘The 1998 AI planning systems competition’, The
AI Magazine, 21(2), 35–55, (2000).

R. Horčík and D. Fišer / Gaifman Graphs in Lifted Planning 1059

