
Sensitivity Analysis for Saturated Post-Hoc Optimization
in Classical Planning

Paul Höft, David Speck and Jendrik Seipp
{paul.hoft, david.speck, jendrik.seipp}@liu.se

Linköping University, Sweden

Abstract. Cost partitioning is the foundation of today’s strongest
heuristics for optimal classical planning. However, computing a cost
partitioning for each evaluated state is prohibitively expensive in
practice. Thus, existing approaches make an approximation and com-
pute a cost partitioning only for a set of sampled states, and then
reuse the resulting heuristics for all other states evaluated during the
search. In this paper, we present exact methods for cost partitioning
heuristics based on linear programming that fully preserve heuris-
tic accuracy while minimizing computational cost. Specifically, we
focus on saturated post-hoc optimization and establish several suf-
ficient conditions for when reusing a cost partitioning computed for
one state preserves the estimates for other states, mainly based on
a sensitivity analysis of the underlying linear program. Our experi-
ments demonstrate that our theoretical results transfer into practice,
and that our exact cost partitioning algorithms are competitive with
the strongest approximations currently available, while usually re-
quiring fewer linear program evaluations.

1 Introduction

The strongest admissible heuristics for state space search are based
on cost partitioning [16, 30], a technique that divides the action costs
between several component heuristics, allowing for the admissible
addition of their estimates. The strongest heuristic estimates are ob-
tained by computing a cost partitioning for each evaluated state. For
landmark heuristics, such a strategy is feasible for both optimal and
suboptimal cost partitionings [13]. However, for abstraction heuris-
tics, even suboptimal cost partitioning algorithms executed for each
state evaluation can be computationally prohibitive [25].

An extreme example of this computational intensity are cost par-
titioning heuristics based on linear programming, such as optimal
cost partitioning [15, 18], the state equation heuristic [2], and (sat-
urated) post-hoc optimization [20, 26]. While it is slow but feasible
to solve a linear program (LP) for the state equation or (saturated)
post-hoc optimization for each state, even computing a single opti-
mal cost partitioning can be out of reach for large sets of fine-grained
abstractions [24].

As a result, previous research has leveraged state sampling either
before [14, 27, 25, 5, 19] or during [22] the search. These sampled
states serve as a basis for computing cost partitioning heuristics,
which are then maximized over during the search process. While
this strategy decreases search times for common benchmark tasks,
it comes at the expense of heuristic accuracy. Moreover, it hinges on
the sampled states being representative of the search space.

100

101

102

103

104

105

106

107

sorted Elevators tasks

so
lv
ed

L
P
s

hSPhO hSPhO
eqdist hSPhO

grouped hSPhO
range hSPhO

100%

Figure 1: Number of solved LPs in the Elevators domain from the
optimal track of IPC 2008 on a log scale. hSPhO solves an LP for each
state, while the four new variants avoid redundant computations.

Instead of relying on approximations, our study focuses on de-
veloping exact methods for computing a cost partitioning heuristic
while minimizing computational effort. The motivation behind this
is twofold: to fully preserve heuristic accuracy and to eliminate the
dependency on the representativeness of sampled states within the
search space.

For our analysis, we consider saturated post-hoc optimization
(SPhO), an LP-based cost partitioning algorithm first introduced by
Pommerening et al. [20] and later enhanced by Seipp et al. [26], who
tightened the LP constraints by calculating saturated cost functions
for each component heuristic. Intuitively, SPhO computes a weight
for each component heuristic and the overall heuristic is the weighted
sum of component heuristic values.

The basis for our work is our finding that SPhO computes very
few distinct cost partitionings for the states evaluated during search
in many of the standard benchmark planning problems. On average,
only 0.04% of evaluated states need a new cost partitioning. Al-
though this phenomenon has been observed for other types of cost
partitioning methods such as the state equation heuristic [27], so far
it has not been exploited to obtain faster algorithms. This prompts
the question of whether it is possible to efficiently predict whether a
new state requires a new cost partitioning or whether we can reuse

ECAI 2023
K. Gal et al. (Eds.)

© 2023 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA230377

1044

a previously computed one without sacrificing heuristic accuracy. If
such a prediction is possible, then we can avoid many redundant LP
computations. We show that indeed such predictions can be made by
examining the SPhO LP and leveraging the well-established area of
sensitivity analysis for linear programs [29].

We introduce a progression of four methods for deciding when
a cost partitioning can be reused. Each subsequent method is ca-
pable of identifying a larger number of unnecessary computations
than its predecessor. Figure 1 compares these four algorithms against
solving an LP in every state (hSPhO) and shows that the theoretical
dominance directly translates into practice. Across all benchmarks,
our experimental results reveal that up to 99.99% of cost partitioning
calculations can be skipped in some domains, which makes heuristic
evaluations faster by up to two orders of magnitude.

Finally, we present an offline version of SPhO that pre-samples
states for which to compute cost partitionings. While our exact meth-
ods already solve more tasks than the state of the art for SPhO, this
offline variant further raises the total coverage score.

2 Background

In this section, we formally introduce linear programming and sen-
sitivity analysis and define the basics of classical planning and the
saturated post-hoc optimization heuristic.

2.1 Linear Programming

Our study focuses on the saturated post-hoc optimization heuristic,
which is based on linear programming. Linear programming [29] is
a field of operations research that studies the definition and solution
of systems of linear inequalities called linear programs.

Definition 1. A linear program (LP) in canonical form is defined as:

Maximize z = cTx subject to

Ax ≤ b (1)

x ≥ 0

with A : m× n, |b| = m, |c| = n, |x| = n

In a canonical LP, the decision variables x optimize the objec-
tive function z subject to the rank m of the coefficient matrix A, the
right-hand side (RHS) constraints b, and the objective coefficients c.
Every (primal) LP has a dual formulation, which can be formed by
flipping the optimization criterion and rearranging the LP to the form
v = bT y subject to AT y ≥ c, y ≥ 0 where y are the new decision
variables. In the following, we assume that all LPs or their duals are
in canonical form.

Linear programming is a versatile tool due to its broad applica-
bility and polynomial complexity [28, 17]. To solve an LP it is con-
verted into standard form by adding m slack variables to the decision
variables so that Equation (1) becomes an equality. The most com-
monly used algorithm for solving LPs is the simplex algorithm [4].
The space of feasible solutions, i.e., the assignments to x that satisfy
all constraints, forms a convex polytope. The simplex algorithm can
be understood as traversing the extreme points of this polytope. Each
of these extreme points, and thus each solution given by the sim-
plex algorithm, divides the decision variables into two categories: m
basic and n non-basic variables when also counting slack variables.
The basic variables form the linear basis of the current solution and
are the variables that can take non-zero values for this solution. Each
basic variable is associated with one of the constraints, and we say

that xi is basic for that constraint. All other variables are called non-
basic and have a value of zero.

2.2 Sensitivity Analysis of Linear Programs

Sensitivity analysis, also known as post-optimality analysis, deter-
mines how sensitive the optimal solution of an LP is to small changes
in its parameters [7]. For each non-basic variable, the simplex algo-
rithm provides additional sensitivity information that can be used to
determine the effect of small changes in that variable on the current
basis. We distinguish between non-basic slack and non-basic non-
slack variables. For non-basic non-slack variables xi, this informa-
tion is the opportunity cost c̄i.

Definition 2. The opportunity cost c̄i of a non-basic non-slack vari-
able xi is the increase for ci at which xi would enter the optimal
basis. It is also the reduction of z that would occur when setting
xi = 1, provided this is feasible.

For non-basic slack variables, the simplex algorithm produces sim-
ilar information in the form of the shadow prices ȳi.

Definition 3. The shadow price ȳi of a non-basic slack variable xi

is the change in z that occurs when changing the RHS constraint for
this slack variable bi−n by ±1, provided this is feasible.

Intuitively, opportunity costs are the influence of a small increase
of the non-basic variables on the objective value and shadow prices
are the influence of small variations of the RHS constraints on the ob-
jective value. Note that opportunity costs are one-sided while shadow
prices are valid in both directions. The simplex algorithm also trans-
forms the RHS constraints into new values, which we call b̄.

For our methods below, we extract intervals [L,U], with L,U ∈
R ∪ {−∞,∞}, from an optimal LP solution such that if objective
coefficients cj or constraint values bj remain within this interval, the
basis of the LP (i.e., which variables are basic) remains unchanged.
Even if we maintain the optimal basis and change an objective coef-
ficient or constraint value only within such an interval, the optimal
objective value may change. However, having all this information,
there are cheap approaches to recompute the new optimal objective
value of the LP without solving it again. This will be sufficient to
check whether a new cost partitioning is required for a given state.

Next, we briefly describe two ways to compute such interval
ranges that preserve the optimal basis and allow for cheap recompu-
tation of the new optimal objective value of the LP. The definitions
presented are, with slight modifications, also valid for LPs in dual
canonical form. The definitions below assume n

∞ = n
−∞ = 0 for all

finite n.

2.2.1 Ranges of Right-Hand Side Constraints

The allowed ranges for RHS values of a primal LP solution can be
extracted from the modified RHS values b̄ as follows:

Theorem 1. [4] An LP basis remains optimal when changing one
RHS bound from bk to b′k, as long as L ≤ b′k ≤ U , where

L = bk−max
r

{
−b̄r
ark

∣∣∣ark > 0

}
, U = bk+min

r

{
−b̄r
ark

∣∣∣ark < 0

}
.

The new optimal objective value z′ can be computed from the
shadow prices of the RHS constraints: z′ = z + ȳi(b

′
k − bk), where

ȳi is the shadow price of the slack variable for constraint k.

P. Höft et al. / Sensitivity Analysis for Saturated Post-Hoc Optimization in Classical Planning 1045

2.2.2 100% Rule

The sensitivity intervals [L,U] are limits derived for single pertur-
bations of coefficients or bounds. This means that, without further
consideration, they only hold as long as only one such parameter is
changed at a time. As soon as multiple parameters are changed at the
same time, these bounds are no longer valid. To address this issue,
the 100% rule has been proposed, which provides a set of safe con-
ditions for generalizing the interval ranges to cases where multiple
parameters are changed simultaneously.

Theorem 2. [4] An LP basis remains optimal while changing mul-
tiple RHS constraints from bk to b′k = bk +Δbk as long as

∑
0≤k≤n

λk ≤ 1 and λk =
Δbk
Δb∗k

with Δb∗k =

{
U − bk if Δbk ≥ 0

L− bk otherwise.

The change in objective value can be calculated as the sum of change
given by the shadow prices: Δz =

∑n
i=1 ȳiΔbi−n, so z′ = z+Δz.

There are methods to compute stronger approximations in the case
of multiple parameter changes, such as parametric analysis [4] and
two-sided shadow prices [7]. Since these methods are quite sophisti-
cated and computationally demanding, we focus on the two efficient
sensitivity analysis methods presented above.

2.3 Classical Planning

We consider planning tasks in the SAS+ formalism [1], where a task
consists of a set of finite domain variables that induce a set of states,
a finite set of operators (or actions), an initial state, a goal condition,
and a non-negative function that describes the cost of applying each
operator. The details of planning tasks are not relevant for the tech-
nical contribution of this paper; all that matters is that each planning
task compactly encodes a weighted transition system.

Definition 4. A weighted transition system T = 〈S,L, T, cost, s0,
S∗〉 is a directed labeled graph defined by a finite set of states S, a

finite set of labels L, a finite set of labeled transitions T : s �−→ s′ with
s, s′ ∈ S and � ∈ L, a cost-function cost : L→ R∪{−∞,∞} that
assigns a cost to each label, an initial state s0 ∈ S, and a set of goal
states S∗ ⊆ S. We also write s ∈ T for s ∈ S.

Note that we consider real-valued costs for transition systems, al-
though planning tasks usually have non-negative costs, to allow for
the later definition of minimum saturated cost functions. A goal path
for a state s, called a plan, is a sequence of transitions leading from s
to any goal state. We focus on optimal planning, where the objective
is to find a cost-optimal plan π for the initial state of a given planning
task. Heuristic search [3] is one of the main ways of solving planning
tasks optimally. This usually involves running an A∗ search [8] with
an admissible heuristic on the transition system. A heuristic is a func-
tion h: S → R ∪ {−∞,∞} that estimates the cost of the cheapest
goal path for a given state. The perfect heuristic h∗T maps each state
s in T to the cost of the cheapest goal path from s or to ∞ if there
is no goal path from s. A heuristic h is admissible if it never overes-
timates the true cost of the shortest goal path: h(s) ≤ h∗(s) for all
states s ∈ S.

One of the strongest families of admissible heuristics are abstrac-
tion heuristics [6, 11, 16, 23]. The idea behind abstraction heuristics
is to simplify the transition system 〈S,L, T, cost, s0, S∗〉 of a plan-
ning task with a surjective abstraction function α : S → Sα, yield-
ing an abstract transition system T α : 〈Sα, L, Tα, cost, α(s0), Sα

∗ 〉,

where Tα = {α(s) �−→ α(s′) | s �−→ s′ ∈ T} and Sα
∗ = {α(s) | s ∈

S∗}. For a concrete state s, the abstraction heuristic hα yields the
perfect goal distance of the abstract state α(s) in the abstract transi-
tion system T α. The size of T α is chosen to be small enough for all
abstract goal distances to be efficiently computable.

Cost partitioning [15, 16] allows for adding multiple abstraction
heuristics admissibly, which can be significantly more accurate than
maximizing over them. A cost partitioning for a transition system
T and a tuple of abstraction heuristics H = 〈hα1 , . . . , hαn〉 is a
tuple of cost functions 〈cost1, . . . , costn〉 such that

∑n
i=1 costi(�) ≤

cost(�) for all � ∈ L. It defines the cost partitioning heuristic h(s) =∑n
i=1 h

αi(s, costi), where hαi(s, costi) is the abstraction heuristic
hαi evaluated under cost function costi.

2.4 Saturated Post-hoc Optimization

The post-hoc optimization heuristic is an admissible heuristic for
classical planning from the family of operator counting heuris-
tics [21]. For a given state s, post-hoc optimization over abstraction
heuristics H minimizes the number of times each operator is counted
while ensuring that no heuristic value h(s) decreases for any abstrac-
tion heuristic h ∈ H .

In this paper, we consider the saturated post-hoc optimization
(SPhO) heuristic, because it is stronger than its non-saturated coun-
terpart in theory and practice [26]. A crucial part of SPhO are mini-
mum saturated cost functions:

Definition 5. [25] The minimum saturated cost function mscf of an
abstract transition system T ′ with transitions T is defined as

mscf(�) = sup

a
�−→b∈T

(h∗T ′(a)� h∗T ′(b)),

where the � operator is defined as regular subtraction for finite val-
ues, and for infinite values we use x � y = −∞ iff x = −∞ or
y =∞ and x� y =∞ iff x =∞ �= y or x �= −∞ = y.

Definition 6. Given a transition system T = 〈S,L, T, cost, s0, S∗〉
and a tuple of abstraction heuristics H for T , the heuristic value
hSPhO(s) for a state s is the objective value of the SPhO LP:

minimize
∑
�∈L

cost(�) · Y� s.t.

∑
�∈L

mscfh(�) · Y� ≥ h(s) for all h ∈ H (2)

Y� ≥ 0 for all � ∈ L

By hSPhO we denote the heuristic that solves the SPhO LP for each
evaluated state. The SPhO LP implicitly computes a cost partition-
ing through its dual LP [20]. The dual objective coefficients are the
shadow prices ȳi, which therefore give the heuristic scaling factors
of the cost partitioning heuristic: hSPhO(s) =

∑n
i=1 ȳihi(s).

3 Reusing Solved LPs for SPhO

To avoid solving the SPhO LP from Definition 6 for each evaluated
state, we formulate four cover rules for SPhO. These rules decide
whether an LP solution can be reused for a different state. Given two
states s, s′ and an SPhO LP solution sol for s, we say that sol covers

P. Höft et al. / Sensitivity Analysis for Saturated Post-Hoc Optimization in Classical Planning1046

Algorithm 1 Lazy saturated post-hoc optimization. For a given state
s, check whether any of the previously computed solutions to the
SPhO LP covers s. If so, (possibly) adapt the solution to s and return
the adapted objective value. Otherwise, solve the SPhO LP for s and
store the solution.

Sols ← ∅
function LAZYSPHO(s)

if COVERS(sol, s) for any sol ∈ Sols then

return ADAPT(sol, s)
〈sol, h〉 ← solve SPhO LP for s
Sols ← Sols ∪ {sol}
return h

s′ if its basis is provably optimal for s′. In this case, we can skip
solving the SPhO LP for s′ and instead compute hSPhO(s′) from sol.

To use the cover rules during an A∗ search, we introduce a variant
of the SPhO heuristic, called lazy SPhO, which is parameterized by a
cover rule and only solves LPs for states that are not covered by any
previously obtained LP solutions. Algorithm 1 shows pseudo-code.

We now present the four cover rules that can be used to imple-
ment the COVERS function in Algorithm 1. Each subsequent rule is
stronger than the previous one, allowing us to reuse a solution for a
larger set of states. The first two cover rules for SPhO are based on a
structural analysis of the SPhO LP.

3.1 Equal Abstract Goal Distances: hSPhO
eqdist

One simple way to detect that an LP solution sol for s covers a dif-
ferent state s′, is by checking whether the two states induce the same
SPhO LP (Definition 6). When optimizing the SPhO LP for s and s′,
the only LP parameters that change are the abstract goal distances.
Thus, if the two states have the same abstract goal distances, the re-
sulting LPs will be identical.

Cover Rule 1. Let T be a transition system and H a tuple of heuris-
tics for T . If sol is a solution of the SPhO LP for state s ∈ T , then
sol covers state s′ ∈ T if h(s) = h(s′) for all h ∈ H . The ob-
jective value of sol can be used as the heuristic value for s′ without
adaptation.

By hSPhO
eqdist we denote the lazy SPhO heuristic using Cover Rule 1.

Theorem 3. hSPhO
eqdist = hSPhO.

Proof. hSPhO
eqdist(s) = hSPhO(s) for all states s where Cover Rule 1 is

inapplicable. In states s′ where it is active, the skipped LP for s′

is equal to a previously computed LP for a state s, so hSPhO(s′) =
hSPhO(s) and since ADAPT preserves the value for s′, we have
hSPhO

eqdist(s
′) = hSPhO(s) and thus hSPhO

eqdist(s
′) = hSPhO(s′).

We demonstrate Cover Rule 1 and the rules below with the exam-
ple transition system T and three abstractions for T in Figure 2.

Intuitively, Cover Rule 1 avoids unnecessary LP computations
when the used abstractions cannot distinguish between two states
based solely on goal distances. States s2 and s3 in Figure 2 exem-
plify this: all three abstractions fail to distinguish s2 from s3. Conse-
quently, hSPhO

eqdist skips computing the LP for s3 when encountering s3
during the A∗ search, because its abstract goal distances (2, 0 and 1)
are the same as those for s2, which has already been evaluated.

3.2 Grouped Constraints: hSPhO
grouped

Another key component of the SPhO LPs are the minimum satu-
rated cost functions. Besides the abstract goal distances, they are the
only information used from the abstractions to build the SPhO LPs.
Therefore, if two abstraction heuristics h1 and h2 have the same min-
imum saturated cost function, the resulting LP will contain a dupli-
cated row in the coefficient matrix A. The LP for state s stays math-
ematically equal if we only consider the heuristic among h1 and h2

with the higher estimate for s, as this heuristic incurs a tighter bound
than the other. This is equivalent to combining both constraints and
using max(h1(s), h2(s)) as the RHS bound. Thus, by partitioning
all abstractions into sets Hj of heuristics with equal minimum satu-
rated cost functions, Equation 2 can be simplified to generate fewer
constraints. Also, we can exclude the partition H0, containing all ab-
stractions with a minimum saturated cost function that always returns
0, since they add no information to the LP anyway.

Definition 7. The grouped SPhO LP is:

minimize
∑
�∈L

cost(�) · Y� s.t.

∑
�∈L

mscfh(�) · Y� ≥ max
h∈Hj

h(s) for 1 ≤ j ≤ m (3)

Y� ≥ 0 for all � ∈ L

Solutions to the grouped SPhO LP always have the same objective
value as solutions to the vanilla SPhO LP because only redundant
constraints are left out. A constraint of the form lhs ≥ a is always
more restrictive than a constraint lhs ≥ b if a > b when minimizing,
as the possible values for lhs in the second constraint are a subset
of the possible values of the first constraint. Using the abstraction
grouping we can define a new cover rule.

Cover Rule 2. Let T be a transition system and H a tuple of heuris-
tics for T . Furthermore, let

⋃
· mj=1 Hj = H be a partitioning of all

abstractions H into disjoint subsets Hj , such that all heuristics h in
each partition Hj have the same minimum saturated cost function.
Finally, let sol be a solution of the SPhO LP for state s ∈ T . Then
sol covers state s′ ∈ T if maxh∈Hj h(s) = maxh∈Hj h(s

′) for all
partitions Hj . The objective value of sol can be used as the heuristic
value for s′ without adaptation.

By hSPhO
grouped we denote the lazy SPhO heuristic using Cover Rule 2.

Theorem 4. hSPhO
grouped = hSPhO.

Proof. For all states s, the LP for hSPhO
grouped(s) is equivalent to the LP

for hSPhO
eqdist(s) if we group constraints for the latter. The claim follows

from Theorem 3 and the fact that grouping constraints, as outlined
above, does not change the objective value of an LP.

Grouping abstractions by their minimum saturated cost function
has several benefits. First, it allows for detecting more unnecessary
LP solver calls than the previous cover rule. Second, it reduces the
size of the LP, leading to faster solving times. Finally, it can lead to
better sensitivity ranges, as shown in the next section. Thus, we also
base the two remaining cover rules on the grouped SPhO LP.

In the running example from Figure 2, Cover Rule 2 needs to solve
one LP less, because abstractions A and C have the same minimum
saturated cost function. We can skip solving an LP for s4 because
states s2 and s4 have the same maximum abstract goal distance in
the two abstraction partitions {A,C} (max(2, 1) = max(2, 2)) and
{B} (0).

P. Höft et al. / Sensitivity Analysis for Saturated Post-Hoc Optimization in Classical Planning 1047

s1 s2 s3

s4s5s6

o1 o2

o3

o4o5
o3

(a) Concrete transition system

s1 s2, s3, s4

s5s6

o1
o2, o3

o4

o5o3

(b) Abstraction A

s1

s2, s3, s4, s5, s6

o1

o2, o3, o4, o5

(c) Abstraction B

s1, s4

s2, s3, s5 s6

o1, o4o3

o2
o5 o3

(d) Abstraction C

hA hB hC max(hA, hC)

s1 3 1 2 3
s2 2 0 1 2
s3 2 0 1 2
s4 2 0 2 2
s5 1 0 1 1

(e) Heuristic values

cost mscfA mscfB mscfC
o1 1 1 1 1
o2 1 0 0 0
o3 1 0 0 0
o4 1 1 0 1
o5 1 1 0 1

(f) Cost functions

RHS

state abstraction shadow price L value U

s1

hA 1 2 3 ∞
hB 0 −∞ 1 3
hC 0 −∞ 2 3

s1
max(hA, hC) 1 1 3 ∞
hB 0 −∞ 1 3

s2
max(hA, hC) 1 0 2 ∞
hB 0 −∞ 0 0

(g) LP solutions for selected states, plus sensitivity information.

Figure 2: Example task and abstractions for showcasing cover rules.

3.3 Sensitivity Analysis using RHS Constraints: hSPhO
range

The two cover rules presented above are limited to states with the
same SPhO heuristic value. However, sensitivity analysis (SA) (Sec-
tion 2.2) allows us to check whether a basis of an LP solution com-
puted for state s remains optimal for a new state s′, which we can
directly transform into cover rules that can detect unnecessary LP
computations even if s and s′ have different SPhO heuristic values.

Using the sensitivity analysis formula from Definition 1 we obtain
another cover rule:

Cover Rule 3. Let T be a transition system and H a tuple of heuris-
tics for T . An LP solution sol for state s covers s′ if for at least
|H| − 1 abstractions h we have h(s) = h(s′) and for at most one
abstraction h′ with h′(s) �= h′(s′) we have L ≤ h′(s′) ≤ U , where
L and U are the lower and upper bounds of the sensitivity range for
h′. Then, the new objective value of sol for s′ is z+ȳi(h

′(s′)−h′(s)),
where ȳi is the shadow price belonging to the slack variable for the
constraint of h′.

By hSPhO
range we denote the lazy SPhO heuristic on the grouped SPhO

LP using Cover Rule 3.

Theorem 5. hSPhO
range = hSPhO.

Proof. hSPhO
range (s) equals hSPhO for all states s where Cover Rule 3 is

inactive by construction. In states s′ where it is active the sensitivity
analysis rule for RHS values (Theorem 1) guarantees that the basis of
sol = hSPhO

range (s) is the same as the basis of sol′ = hSPhO
range (s

′) making
the adapted solution hSPhO

range (s
′) = hSPhO(s).

Cover Rule 3 is a generalization of Rule 2: Whereas Rule 2 re-
quires all heuristic estimates to be the same for two states, Rule 3
allows for a bounded change of the estimate made by one heuris-
tic. The running example in Figure 2 shows a situation where Cover
Rule 3 leads to fewer solved LPs by using the information from sensi-
tivity analysis. The rule detects that the LP solution sol for s2 covers
s5 because hB(s2) = hB(s5) and while the value max(hA, hC) for
heuristic partition {A,C} changes from 2 to 1 between s2 and s5,
it stays inside the sensitivity analysis interval [0,+∞) (see bottom
part of Table 2g).

3.4 Sensitivity Analysis using 100% Rule: hSPhO
100%

For the final cover rule, we consider the 100% rule from Definition 2,
which yields a generalization of Cover Rule 3.

Cover Rule 4. Let T be a transition system, H a tuple of m heuris-
tics for T , and s, s′ two states in T . Also, let sol be a solution of the
SPhO LP for s, let bj and b′j be the RHS values of constraint j in the
SPhO LPs for s and s′, and let Δbj = b′j − bj . Then sol covers s′ if

∑
0≤j≤m

λj ≤ 1 where λj =
Δbj
Δb∗j

, Δb∗j =

{
Uj − bj if Δbj ≥ 0

Lj − bj otherwise.

The objective value of sol has to be adapted for state s′ to z′ =
z +

∑m
j=0 ȳj+nΔbj .

By hSPhO
100% we denote the lazy SPhO heuristic on the grouped SPhO

LP using Cover Rule 4.

Theorem 6. hSPhO
100% = hSPhO.

Proof. hSPhO
100%(s) = hSPhO(s) for all states s where Cover Rule 4 is

inapplicable. When the rule decides that a state s′ is covered by the
LP solution sol for state s, the 100% rule from Theorem 2 guarantees
that the basis of sol is the same as the basis of the corresponding LP
solution for s′. By adapting the objective value as per Theorem 2 we
obtain hSPhO

100%(s
′) = hSPhO(s′).

Since this rule also detects when a single RHS value changes
within its sensitivity range, Rule 4 is a generalization of Rule 3.

As an example, we again consider the task from Figure 2 and the
sensitivity information for state s1. Here, Rule 4 detects that the LP
solution for s1 is reusable for all other states, making all but the
first LP solution redundant. This is the case because both consid-
ered heuristic values (max(hA, hC) and hB) stay inside their sen-
sitivity intervals [1,+∞) and (−∞, 3] for all states s2 to s5. Note
that the lower bound for changes in hB is −∞, which means that
decreases for this value do not contribute to the 100% limit, as we
defined n

−∞ = 0 for finite n.
The example additionally illustrates the utility of grouping heuris-

tics with the same minimum saturated cost function, as the lower

P. Höft et al. / Sensitivity Analysis for Saturated Post-Hoc Optimization in Classical Planning1048

bound for abstraction A is worse without grouping (see Table 2g).
Without grouping, we would need to solve the LP for s5.

Note that even the most general Cover Rule is only a sufficient
condition for skipping LP computations and it is unable to detect all
possible cases in which a basis might be optimal for other states.
The 100% range is only a safe approximation of the allowed bounds
when multiple parameters change and the real bound ranges for si-
multaneous changes can be larger than the ones allowed by the 100%
rule.

4 Offline Saturated Post-hoc Optimization

For other cost partitioning algorithms, such as optimal cost partition-
ing [14], potential heuristics [27] and saturated cost partitioning [24],
it is preferable to precompute cost partitionings for a set of sample
states and maximize over the resulting estimates during the search,
rather than computing a cost partitioning for each evaluated state.
Since this approach has not been applied to (saturated) post-hoc opti-
mization before, we introduce it here as a baseline that approximates
hSPhO. To this end, we build our new hSPhO

offline heuristic with the diver-
sification procedure from Seipp et al. [25]: We begin by sampling
n = 1000 states [9] and initializing an empty set C of cost partition-
ings. Then, for t = 200 seconds, we iteratively sample a new state
s, solve the SPhO LP for s, and add the resulting cost partitioning to
C if it yields a higher estimate for any of the n sample states than all
cost partitionings that are already part of C, and discard it otherwise.

5 Experiments

To evaluate if our theoretical results transfer into practice, we im-
plemented the lazy SPhO heuristic with all four cover rules and
the offline SPhO heuristic in the Scorpion planner [25], which is
an extension of Fast Downward 22.12 [10] and contains an imple-
mentation of the eager SPhO heuristic [26]. In our experiments, we
run A∗ searches [8] with all SPhO heuristic variants over pattern
database heuristics [6] using patterns of sizes 1 and 2 that are inter-
esting [20, 19] for general cost partitioning [18]. We use CPLEX 20.1
to solve the linear programs and evaluate the different approaches on
the 1827 benchmark tasks without conditional effects from the op-
timal tracks of the 1998–2018 International Planning Competitions
(IPCs). For resource limits, we adhere to the standard IPC setting
with a runtime of 30 minutes and 8 GiB of memory. All benchmarks,
source code, and experimental data are available online [12].

In the following, we will first analyze the number of solved LPs
required by the different SPhO heuristic variants, before turning to
the performance in terms of solved problems and runtime.

5.1 Number of Solved LPs

Figure 3 shows a per-problem comparison of the number of LP com-
putations needed by the new lazy SPhO heuristic in comparison to
the eager SPhO heuristic from the literature. We see that all of our
approaches reduce the number of LPs to solve by several orders of
magnitude, while fully preserving heuristic accuracy. Each of our
presented approaches reduces the number of necessary LP computa-
tions in comparison to the previous rule. hSPhO

eqdist needs fewer LP solver
calls than hSPhO in all 817 tasks solved by hSPhO, hSPhO

grouped needs fewer
LP computations than hSPhO

eqdist for 55 tasks, hSPhO
range incurs solving fewer

LPs than hSPhO
grouped for 768 tasks and hSPhO

100% reduces the number of LP
solver calls for 654 tasks compared to hSPhO

range .

100 101 102 103 104 105 106 107
100

101

102

103

104

105

106

107

uns.

uns.

hSPhO

h
S
P
h
O

e
q
d
is
t
/h

S
P
h
O

g
ro

u
p
e
d
/h

S
P
h
O

ra
n
g
e
/h

S
P
h
O

1
0
0
%

Solved LPs

hSPhO
eqdist hSPhO

grouped hSPhO
range hSPhO

100%

Figure 3: A comparison of the number of solved LPs between the
eager SPhO heuristic hSPhO and all presented lazy versions on a log-
arithmic scale. Tasks that are not solved within the resource limits
appear on “uns.” axes.

hSPhO hSPhO
eqdist hSPhO

grouped hSPhO
range hSPhO

100% hSPhO
offline

817 940 946 887 905 969

Table 1: Number of solved tasks (out of 1827) by the eager SPhO
heuristic hSPhO and our new variants.

Figure 4 shows the geometric mean number of required LP solver
calls for all SPhO heuristic variants on all considered IPC bench-
mark domains and the Mystery and VisitAll domains. Note that the
figure only considers tasks solved by all variants, that the number of
LP computations by hSPhO equals the number of evaluated states, and
that hSPhO

offline always solves 1000 LPs because it uses an ensemble of
1000 states for the diversification procedure. Figure 4 shows again
that our new approaches, which skip unneeded LP computations, re-
duce the average number of solved LPs by several orders of magni-
tude compared to the eager hSPhO approach. However, the effective-
ness of the presented cover rules, i.e., the number of LP computations
we can avoid, depends on the planning domain. In the Mystery do-
main, we reduce the number of solved LPs by about three orders of
magnitude (which is similar to the results for the Elevators domain
shown in Figure 1). In the VisitAll domain, however, it is almost
never possible to cheaply compute the heuristic value of a newly en-
countered state based on the solution of an LP solved earlier.

5.2 Coverage and Runtime

A natural question is whether the observed reduction in the number
of LP solver calls to compute the SPhO heuristic is reflected in the
number of solved tasks, i.e., the planner coverage, and the planner
runtime.

Table 1 shows the total number of solved planning tasks using the
different SPhO variants. Considering the online approaches, we see
that all our new lazy approaches solve many more problems than
eager hSPhO due to the lower number of solved LPs. However, we

P. Höft et al. / Sensitivity Analysis for Saturated Post-Hoc Optimization in Classical Planning 1049

All Mystery VisitAll

101

102

103

104

so
lv
ed

L
P
s
(g
eo
m
et
ri
c
m
ea
n
)

hSPhO hSPhO
eqdist hSPhO

grouped hSPhO
range hSPhO

100% hSPhO
offline

Figure 4: Comparison of the number of solved LPs (geometric mean)
for eager hSPhO and our lazy and offline variants on a logarithmic
scale over all domains and the Mystery and VisitAll domains.

10−2 10−1 100 101 102 103
10−2

10−1

100

101

102

103

uns.

uns.

hSPhO

h
S
P
h
O

e
q
d
is
t
/h

S
P
h
O

g
ro

u
p
e
d
/h

S
P
h
O

ra
n
g
e
/h

S
P
h
O

1
0
0
%
/h

S
P
h
O

o
ffl
in
e

Runtime (s)

hSPhO
eqdist: 107/696 hSPhO

grouped: 95/709 hSPhO
range : 135/637

hSPhO
100% : 82/700 hSPhO

offline: 678/138

Figure 5: Runtime comparison between the eager SPhO heuristic
hSPhO and our lazy and offline variants on a logarithmic scale. The
legend additionally shows the number of tasks a variant solves
slower/faster than hSPhO. Problems that are not solved within the re-
source limits appear on “uns.” axes.

also see that the heuristic with the lowest number of LP computa-
tions, hSPhO

100%, does not solve the highest number of tasks. The rea-
son for this is that the complexity of evaluating applicability of the
different cover rules for a state varies greatly. Evaluating the hSPhO

eqdist

and hSPhO
grouped heuristics requires constant overhead, regardless of how

many LP solutions are stored, while the hSPhO
range and hSPhO

100% heuristics in-
cur a linear overhead for checking whether heuristic values fall into
sensitivity intervals. This leads to hSPhO

grouped having the highest cover-

age score among the online variants, even though it computes more
LPs than hSPhO

range and hSPhO
100%.

Interestingly, the offline variant hSPhO
offline solves the most tasks over-

all. While hSPhO
offline does not retain full heuristic accuracy, the ensemble

of 1000 states can often cover almost all distinct cost partitionings.
This, combined with the fast evaluation speed, explains its high cov-
erage score.

Finally, we see in Figure 5 that the strong coverage performance of
hSPhO

offline does not necessarily transfer to runtime, as it often takes much
longer to solve a problem than standard hSPhO. The reason for this
is that hSPhO

offline uses a fixed precomputation time (200 seconds), after
which it quickly solves the tasks that are also solved by hSPhO. For
the lazy approaches, the runtime is usually significantly lower than
for eager hSPhO.

6 Discussion

In linear programming, it is common to repeatedly solve similar LPs,
and modern LP solvers such as CPLEX use a number of techniques
to reuse information about the previously solved LP and its solu-
tion, sometimes referred to as advanced or warm starts. Thus, the
implementation of LP-based heuristics such as eager hSPhO use such
warm starts and information about the previously solved LP by de-
fault, which is in line with the goals of our paper. This is also a big
reason for why the huge reductions in the number of solved LPs are
not reflected in speedups of the same magnitude. However, there is an
important difference between the theory presented in this paper and
using LP solvers with warm starts. An LP solver with warm starts
stores only the last LP and information about its solution. As we have
seen in the empirical evaluation, this may not be sufficient for obtain-
ing the best performance, since we regularly encounter states that
require solving or reusing information from various different previ-
ously encountered LPs that a standard LP solver has not cached.

7 Conclusions

In this work, we presented new theory on exact methods for cost
partitioning heuristics based on linear programming that fully pre-
serve heuristic accuracy while minimizing computational cost. To
this end, we established a connection between the sensitivity analysis
of LPs and the heuristic evaluation of newly encountered states for
LP-based heuristics. In particular, we focused on the SPhO heuristic
and showed that it is possible to reuse information about the solu-
tions of LPs computed for previously encountered states, thus elim-
inating costly LP computations for newly encountered states while
preserving full heuristic accuracy. These theoretical results translated
directly into practice, where our new variants of the SPhO heuristic
resulted in orders of magnitude fewer LP solver calls and a signif-
icant increase in coverage in the empirical evaluation. Finally, our
new offline SPhO variant that approximates hSPhO surpassed even the
strongest of our exact methods in the number of solved tasks.

The application of sensitivity analysis to automated planning
heuristics opens up other interesting directions for future work. It is
interesting to consider parametric analysis [4] or two-sided shadow
prices [7], which may lead to even stronger cover rules, and to an-
alyze and study our theory on redundant LP computations for other
LP-based heuristics such as optimal cost partitioning [15, 18] or the
state equation heuristic [2].

P. Höft et al. / Sensitivity Analysis for Saturated Post-Hoc Optimization in Classical Planning1050

Acknowledgements

This work was partially supported by TAILOR, a project funded
by the EU Horizon 2020 research and innovation programme under
grant agreement no. 952215, and by the Wallenberg AI, Autonomous
Systems and Software Program (WASP) funded by the Knut and Al-
ice Wallenberg Foundation. The computations were enabled by re-
sources provided by the National Academic Infrastructure for Su-
percomputing in Sweden (NAISS) and the Swedish National Infras-
tructure for Computing (SNIC), partially funded by the Swedish Re-
search Council through grant agreements no. 2022-06725 and no.
2018-05973.

References

[1] Christer Bäckström and Bernhard Nebel, ‘Complexity results for SAS+

planning’, Computational Intelligence, 11(4), 625–655, (1995).
[2] Blai Bonet, ‘An admissible heuristic for SAS+ planning obtained from

the state equation’, in Proceedings of the 23rd International Joint Con-
ference on Artificial Intelligence (IJCAI 2013), ed., Francesca Rossi,
pp. 2268–2274. AAAI Press, (2013).

[3] Blai Bonet and Héctor Geffner, ‘Planning as heuristic search’, Artificial
Intelligence, 129(1), 5–33, (2001).

[4] Stephen P. Bradley, Arnoldo C. Hax, and Thomas L. Magnanti, Applied
Mathematical Programming, Addison-Wesley, 1977.

[5] Dominik Drexler, Jendrik Seipp, and David Speck, ‘Subset-saturated
transition cost partitioning’, in Proceedings of the Thirty-First Inter-
national Conference on Automated Planning and Scheduling (ICAPS
2021), eds., Robert P. Goldman, Susanne Biundo, and Michael Katz,
pp. 131–139. AAAI Press, (2021).

[6] Stefan Edelkamp, ‘Planning with pattern databases’, in Proceedings of
the Sixth European Conference on Planning (ECP 2001), eds., Amedeo
Cesta and Daniel Borrajo, pp. 84–90. AAAI Press, (2001).

[7] T. Gal, ‘Shadow prices and sensitivity analysis in linear programming
under degeneracy’, Operations-Research-Spektrum, 8, 59–71, (1986).

[8] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael, ‘A formal basis for
the heuristic determination of minimum cost paths’, IEEE Transactions
on Systems Science and Cybernetics, 4(2), 100–107, (1968).

[9] Patrik Haslum, Adi Botea, Malte Helmert, Blai Bonet, and Sven
Koenig, ‘Domain-independent construction of pattern database heuris-
tics for cost-optimal planning’, in Proceedings of the Twenty-Second
AAAI Conference on Artificial Intelligence (AAAI 2007), pp. 1007–
1012. AAAI Press, (2007).

[10] Malte Helmert, ‘The Fast Downward planning system’, Journal of Ar-
tificial Intelligence Research, 26, 191–246, (2006).

[11] Malte Helmert, Patrik Haslum, and Jörg Hoffmann, ‘Flexible abstrac-
tion heuristics for optimal sequential planning’, in Proceedings of
the Seventeenth International Conference on Automated Planning and
Scheduling (ICAPS 2007), eds., Mark Boddy, Maria Fox, and Sylvie
Thiébaux, pp. 176–183. AAAI Press, (2007).

[12] Paul Höft, David Speck, and Jendrik Seipp. Code and data for the ECAI
2023 paper “Sensitivity Analysis for Saturated Post-hoc Optimization
in Classical Planning”. https://doi.org/10.5281/zenodo.8169126, 2023.

[13] Erez Karpas and Carmel Domshlak, ‘Cost-optimal planning with land-
marks’, in Proceedings of the 21st International Joint Conference on
Artificial Intelligence (IJCAI 2009), ed., Craig Boutilier, pp. 1728–
1733. AAAI Press, (2009).

[14] Erez Karpas, Michael Katz, and Shaul Markovitch, ‘When optimal is
just not good enough: Learning fast informative action cost partition-
ings’, in Proceedings of the Twenty-First International Conference on
Automated Planning and Scheduling (ICAPS 2011), eds., Fahiem Bac-
chus, Carmel Domshlak, Stefan Edelkamp, and Malte Helmert, pp.
122–129. AAAI Press, (2011).

[15] Michael Katz and Carmel Domshlak, ‘Optimal additive composition
of abstraction-based admissible heuristics’, in Proceedings of the Eigh-
teenth International Conference on Automated Planning and Schedul-
ing (ICAPS 2008), eds., Jussi Rintanen, Bernhard Nebel, J. Christopher
Beck, and Eric Hansen, pp. 174–181. AAAI Press, (2008).

[16] Michael Katz and Carmel Domshlak, ‘Optimal admissible composition
of abstraction heuristics’, Artificial Intelligence, 174(12–13), 767–798,
(2010).

[17] Jonathan A. Kelner and Daniel A. Spielman, ‘A randomized
polynomial-time simplex algorithm for linear programming’, in Pro-
ceedings of the thirty-eighth annual ACM symposium on Theory of
Computing, pp. 51–61, (2006).

[18] Florian Pommerening, Malte Helmert, Gabriele Röger, and Jendrik
Seipp, ‘From non-negative to general operator cost partitioning’, in
Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelli-
gence (AAAI 2015), eds., Blai Bonet and Sven Koenig, pp. 3335–3341.
AAAI Press, (2015).

[19] Florian Pommerening, Thomas Keller, Valentina Halasi, Jendrik Seipp,
Silvan Sievers, and Malte Helmert, ‘Dantzig-Wolfe decomposition for
cost partitioning’, in Proceedings of the Thirty-First International Con-
ference on Automated Planning and Scheduling (ICAPS 2021), eds.,
Robert P. Goldman, Susanne Biundo, and Michael Katz, pp. 271–280.
AAAI Press, (2021).

[20] Florian Pommerening, Gabriele Röger, and Malte Helmert, ‘Getting the
most out of pattern databases for classical planning’, in Proceedings of
the 23rd International Joint Conference on Artificial Intelligence (IJ-
CAI 2013), ed., Francesca Rossi, pp. 2357–2364. AAAI Press, (2013).

[21] Florian Pommerening, Gabriele Röger, Malte Helmert, and Blai Bonet,
‘LP-based heuristics for cost-optimal planning’, in Proceedings of the
Twenty-Fourth International Conference on Automated Planning and
Scheduling (ICAPS 2014), eds., Steve Chien, Alan Fern, Wheeler Ruml,
and Minh Do, pp. 226–234. AAAI Press, (2014).

[22] Jendrik Seipp, ‘Online saturated cost partitioning for classical plan-
ning’, in Proceedings of the Thirty-First International Conference on
Automated Planning and Scheduling (ICAPS 2021), eds., Robert P.
Goldman, Susanne Biundo, and Michael Katz, pp. 317–321. AAAI
Press, (2021).

[23] Jendrik Seipp and Malte Helmert, ‘Counterexample-guided Cartesian
abstraction refinement for classical planning’, Journal of Artificial In-
telligence Research, 62, 535–577, (2018).

[24] Jendrik Seipp, Thomas Keller, and Malte Helmert, ‘Narrowing the gap
between saturated and optimal cost partitioning for classical planning’,
in Proceedings of the Thirty-First AAAI Conference on Artificial Intel-
ligence (AAAI 2017), eds., Satinder Singh and Shaul Markovitch, pp.
3651–3657. AAAI Press, (2017).

[25] Jendrik Seipp, Thomas Keller, and Malte Helmert, ‘Saturated cost parti-
tioning for optimal classical planning’, Journal of Artificial Intelligence
Research, 67, 129–167, (2020).

[26] Jendrik Seipp, Thomas Keller, and Malte Helmert, ‘Saturated post-hoc
optimization for classical planning’, in Proceedings of the Thirty-Fifth
AAAI Conference on Artificial Intelligence (AAAI 2021), eds., Kevin
Leyton-Brown and Mausam, pp. 11947–11953. AAAI Press, (2021).

[27] Jendrik Seipp, Florian Pommerening, and Malte Helmert, ‘New op-
timization functions for potential heuristics’, in Proceedings of the
Twenty-Fifth International Conference on Automated Planning and
Scheduling (ICAPS 2015), eds., Ronen Brafman, Carmel Domshlak,
Patrik Haslum, and Shlomo Zilberstein, pp. 193–201. AAAI Press,
(2015).

[28] Daniel A. Spielman and Shang-Hua Teng, ‘Smoothed analysis of al-
gorithms: Why the simplex algorithm usually takes polynomial time’,
Journal of the ACM, 51(3), (2004).

[29] Paul R. Thie and Gerard. E. Keough, An introduction to linear program-
ming and game theory, John Wiley & Sons, 3rd edn., 2008.

[30] Fan Yang, Joseph Culberson, Robert Holte, Uzi Zahavi, and Ariel Fel-
ner, ‘A general theory of additive state space abstractions’, Journal of
Artificial Intelligence Research, 32, 631–662, (2008).

P. Höft et al. / Sensitivity Analysis for Saturated Post-Hoc Optimization in Classical Planning 1051

https://doi.org/10.5281/zenodo.8169126

	Introduction
	Background
	Linear Programming
	Sensitivity Analysis of Linear Programs
	Ranges of Right-Hand Side Constraints
	100% Rule

	Classical Planning
	Saturated Post-hoc Optimization

	Reusing Solved LPs for SPhO
	Equal Abstract Goal Distances: h-SPhO-eqdist
	Grouped Constraints: h-SPhO-grouped
	Sensitivity Analysis using RHS Constraints: h-SPhO-range
	Sensitivity Analysis using 100% Rule: h-SPhO-100%

	Offline Saturated Post-hoc Optimization
	Experiments
	Number of Solved LPs
	Coverage and Runtime

	Discussion
	Conclusions

