
Group Activity Recognition in Basketball Tracking Data -
Neural Embeddings in Team Sports (NETS)

Sandro Hauria;* and Slobodan Vucetica

aTemple University

Abstract. Like many team sports, basketball involves two groups of
players who engage in collaborative and adversarial activities to win
a game. Players and teams are executing various complex strategies
to gain an advantage over their opponents. Defining, identifying, and
analyzing different types of activities is an important task in sports
analytics, as it can lead to better strategies and decisions by the play-
ers and coaching staff. The objective of this paper is to automatically
recognize basketball group activities from tracking data represent-
ing locations of players and the ball during a game. We propose a
novel deep learning approach for group activity recognition (GAR)
in team sports called NETS. To efficiently model the player rela-
tions in team sports, we combined a Transformer-based architecture
with LSTM embedding, and a team-wise pooling layer to recognize
the group activity. Training such a neural network generally requires
a large amount of annotated data, which incurs high labeling cost.
To alleviate this problem, we pretrain the neural network on a self-
supervised trajectory prediction task and fine-tune it using a mix of
strong and weak labels. We used a large tracking data set from 632
NBA games to evaluate our approach. The results show that NETS
is capable of learning group activities with high accuracy, and that
self- and weak-supervised training in NETS have a positive impact
on GAR accuracy.

1 Introduction

With the recent advances in sensing technology, there is an unprece-
dented amount of tracking data available for sports analytics, such as
Hawk-eye in tennis [25], various tracking systems in soccer (Chyron-
Hego, Stats LLC, SciSports), and SPORTLOGiQ in ice hockey. The
National Basketball Association (NBA) mandated the installation of
a tracking system based on computer vision called SportVU [31] in
their sports arenas to collect data about the movements of players
and the ball at 25Hz. This data is shared with all NBA teams to en-
sure equity, with an implicit understanding that the teams with the
best ability to benefit from this data will not only improve their own
competitiveness, but will advance innovation in the way basketball is
played.

Single player actions in basketball, such as shot-taking, can be rec-
ognized with rules programmed by an expert. In contrast, group ac-
tivities involve multiple players that perform a coordinated action
dependent on their combined movements over time, which is much
more challenging to describe with handwritten rules. As an exam-
ple, let us consider a commonly observed tactic in basketball called
pick-and-roll. For this tactic, two offensive players are collaborating
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(a) Start of extracted play se-
quence. The ball handler a1 will
dribble to the right and attack.

(b) The attacker a2 blocks the
path of the defender. The ball
handler a1 keeps possession.

Figure 1: A classic pick-and-roll. Attackers are displayed in gold, de-
fenders are shown in blue and the ball in black. The roll man a2 helps
the ball handler a1 by blocking the defender d1.

to block the best path of a defender (see Figure 1). To identify this
action, we have to understand key concepts of basketball, such as
ball possession, defensive assignments, and cooperation of offensive
players. To pose a further challenge, there is a closely related tactic
called handoff, where two offensive players cross paths and transfer
the ball possession with a short pass. Separating the two types of ac-
tivities can be a challenge, because the setup of a pick-and-roll and a
handoff is very similar.

Manually labeling play sequences is time-consuming, because it
requires watching all the games with a lot of focus while paying at-
tention to multiple players simultaneously. There are also edge cases
that some experts would include and others would not. As a con-
sequence, existing manually labeled datasets of pick-and-rolls only
include roughly 1,000 play sequences [24, 21], which is not enough
data to train powerful neural network (NN) models. One option to
supply more labels is to write rule-based code to recognize actions,
yielding weak-labels. As we will elaborate in Section 4.2 and show
in the results in Section 6.4, this is not a simple process and even af-
ter a lot of effort the quality of handwritten code is inferior to manual
labeling. Since rule-based weak-labeling can quickly provide labels
for an entire data set, our hypothesis is that those weak-labels can
be exploited during training of a deep learning model. Additionally,
we propose to use self-supervised pretraining with trajectory predic-
tions. Our hypothesis is that an NN trained to predict trajectories in-
herently learns about the behavior of players and groups of players.
Thus, we expect that an NN pretrained in this way could be fine-
tuned for Group Activity Recognition (GAR). In our approach, we
combine pretraining on trajectory prediction task, fine-tuning using
weak labels and further fine-tuning using manual labels sequentially.
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We propose the use of a transformer architecture [35] that cre-
ates context aware embeddings for each player, which are gathered
through a team-wise pooling layer and call our model Neural Em-
beddings for Team Sports (NETS). Our model uses Long Short-Term
Memory (LSTM) [13] to embed the time series to allow the model-
ing of the temporal aspect of the data. The team-wise pooling layer
allows creating play embeddings that are permutation-invariant to the
input order of players within a team.

Our main contributions are: 1) A multistage training approach
to pretrain on self-supervised data, with subsequent fine-tuning on
weak-labels and manual labels to learn complex GAR. 2) A novel
Transformer-based NN architecture to create predictions and embed-
dings that are invariant to player permutation within a team. 3) Ex-
tensive experimental evaluation on large basketball tracking data.

2 Related Work

GAR has gained significant interest from computer vision research
with practical applications such as social role understanding, secu-
rity surveillance, and sports analysis [37]. While some researchers
study GAR based on tracking information in pedestrian data [44],
surveillance video [23], or exercising activity [16], not many works
in sports analytics rely only on tracking data [30]. Group activities
have been studied in volleyball with the team actions spike, set, pass,
and winpoint with a popular benchmark dataset based on short video
segments [14]. Various deep learning approaches improved classifi-
cation accuracy on this dataset, using state-of-the-art image recogni-
tion tools to solve this task [39, 38, 7, 40]. GAR was used in soccer
analytics to recognize pass, reception, and shot in a given play se-
quence [28], where the authors use a combination of tracking data
and the original video to solve the problem. We believe that using
only tracking data in team sports can be advantageous because it re-
duces the amount of data significantly, making it possible to train on
much larger data. Group activities in sports happen in a standardized
environment, where the geometry of the court can be learned without
the need for the image context.

Human trajectory prediction is an active field of research with
many applications, such as navigation of autonomous vehicles, plan-
ning of transportation systems, traffic operations, and many more
[20]. Modeling the implicit social interactions from trajectory data
is a challenging task with a long history of research from social
force models [12], locally optimal collision avoidance [33], to the
current state-of-the-art of modeling human interactions using deep
neural networks [9, 15, 19, 36]. Trajectory prediction on NBA data
has found much interest in the computer vision community, with no-
table examples using Variational AutoEncoders (VAE) to model the
players’ movements [32, 42, 43]. However, VAEs are notoriously dif-
ficult to train [4], and it can be difficult to tune the parameters to gen-
erate realistic samples [8]. Another deep learning method to predict
NBA trajectories uses an LSTM-base approach [10].

We propose the use of self-supervised learning to help training
GAR models. Self-supervised learning defines pretraining tasks that
can be learned without manual annotation, but require understanding
of the data to be solved [41]. Recent research has shown that self-
supervised learning is beneficial in datasets with limited labeled data
for many different applications such as natural language processing
[6], computer vision [3, 11], robotics [17, 29, 5], or protein model-
ing [26, 27]. Some research has tried to explain why self-supervised
pretraining is particularly beneficial to train NNs. Using the lottery
ticket hypothesis for self-supervised training in computer vision [2]
suggests that pretraining finds a more compact representation of the
complex input data, which is beneficial for downstream tasks.

Figure 2: Illustration of the NETS architecture.

3 Methodology

In this chapter, we first provide mathematical definitions necessary
to explain the NN architecture and provide a detailed description and
motivation for the NN architecture.

3.1 Problem Setting

The goal of this work is to train a NN to recognize group activities
during basketball games, given a set of trajectories of the players and
the basketball on the court.

Notation

Since 2013, every NBA arena has a camera system to track the
players (5 from each team) and the ball during basketball games.
The system observes the 11 tracked objects by their locations in
an x-y plane, where the x-axis goes across the length of the court
and the y-axis goes from sideline to sideline. We pre-process the
data, such that the offensive team attacks along the y-axis. We de-
fine the location of object o at time step t as �to = [xt

o, y
t
o], with

o ∈ O = {B,A1, . . . , A5, D1, . . . , D5} where O denotes the
set of tracked objects, namely the ball B, each of the 5 attackers
{A1, . . . , A5}, and each of the 5 defenders {D1, . . . , D5}. Using an
ordered sequence of L time frames, the trajectory of a tracked object
o can be expressed as τ t−L+1:t

o = [�t−L+1
o , . . . , �to], with equally

spaced time steps at an interval of Δt.

Trajectory Prediction Task

We formulate the self-supervised task of predicting future trajectories
for every tracked object o, represented by the vector τ t+1:t+H

o =
[�t+1

o , . . . , �t+H
o ], where H is the number of future time steps (or

prediction horizon) for which we predict the trajectory.
We denote as τ t:t′ the list of trajectories for all objects, i.e. τ t:t′ =

[τ t:t′
B , τ t:t′

A1
, ..., τ t:t′

D5
]. Through a simple conversion, we can calculate

velocity vector νt:t′ from the trajectory τ t:t′ . Although these two
vectors are mathematically interchangeable, previous work on NBA
data has shown that using velocity vectors as target to deep learning
models is advantageous [10]. This leads to the trajectory prediction
task, where the objective is to predict νt+1:t+H from τ t−L+1:t. This
is a self-supervised learning task, because future trajectories can be
automatically extracted from the historical trajectory data and stored
in dataset D = {(τ t−L+1:t,νt+1:t+H)|t = L, . . . , T -H}, where T
is the total number of time steps.

Group Activity Recognition (GAR)

The objective of GAR is to predict group activity type yt ∈ 1, ...,K

for each play sequence τ t:t′ , where K is the number of activity types.
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Figure 3: Base Transformer to generate embeddings. Trainable func-
tions are in blue boxes. ⊕ stands for concatenation, meaning that one
vector is appended to the other.

�ball �A1 �A2 �A3 �A4 �A5 �D1 �D2 �D3 �D4 �D5

FFball FFoff FFoff FFoff FFoff FFoff FFdef FFdef FFdef FFdef FFdef

zB zA1 zA2 zA3 zA4 zA5 zD1 zD2 zD3 zD4 zD5
N N N N N N N N N N N

Figure 4: Trajectory head.

Figure 5: Classification head.
∑

stands for summation.

Similar to the trajectory prediction task, we can generate a labeled
data set D = {(τ t−L+1:t,yt)|t = L, . . . , T}, where each play se-
quence of L time frames is matched to a label indicating the action
type. The main difference compared to the trajectory prediction is
that labels need to be provided externally.

3.2 Framework

A standard approach to train an NN for GAR, would be to use super-
vised learning on ground truth labels. However, as mentioned earlier,
manual labeling is time-consuming and expensive. We hypothesize
that we can effectively train a powerful model through pretraining on
the trajectory prediction task and fine-tune it using a large number
of lower-quality weak labels, followed by fine-tuning using a small
number of high-quality manual labels. To enable the pretraining and
fine-tuning process, we utilize a modular NN architecture, which is
described in Figure 2. For the trajectory prediction task, the trajec-
tories τ t−L+1:t are input to the base model (we specify the chosen
model in the next section). The output of the transformer is then used
as input to a trajectory prediction head for pretraining. The GAR
task uses the same base model, but uses a classification head for ac-
tivity classification. This modular approach allows the fine-tuning of
weights after the pretraining of the trajectory prediction. Our hypoth-
esis is that a majority of the information about the input data will be

modeled in the Base Transformer, which will enable better perfor-
mance on the second task.

3.3 Neural Network Architecture

In this section, we will explain the detailed implementation of the
base transformer, the trajectory head and the classification head.
Modeling group interactions in team sports is a challenging task,
because the data involves a spatio-temporal aspect for each player
as well as interactions between the players. We solve this issue by
first modeling the spatio-temporal information for each player and
the ball, and then modeling the interactions between the players with
an attention mechanism.

3.3.1 Transformer Encoder

The input data consists of all 11 objects τ t−L+1:t
o of a given play

sequence. Because these input vectors represent a time series for each
tracked object o, we use a Long Short-Term Memory (LSTM) [13]
layer to embed these trajectories into vectors (see Figure 3), to fully
exploit the temporal information of the input data.

The 11 objects have different properties, since the ball behaves dif-
ferently than an attacker. We encode this role information as shown
in Figure 3 and choose a one-hot positional encoding to differenti-
ate each object class (i.e. the ball, offensive players, and defensive
players). We concatenate these 3-dimensional vectors to the output
of the LSTM layer, creating the input to the first attention layer z0

o.
Although it would be possible to create embeddings for each player
separately, previous work shows that adding player embeddings im-
proves results only marginally while requiring a large feature engi-
neering effort [30].

To generate context-aware player embeddings, given the previ-
ously described input embeddings, we use a Transformer encoder
with a multi-head self-attention mechanism [35]. Transformer en-
coders consist of multiple attention-based layers. Each layer learns
to adjust the object representations in relation to other objects, where
the objects in our application are the ball and the players. More for-
mally, a Transformer processes the input zl

o ∈ R
dv at layer l to

an output embedding zl+1
o ∈ R

dv , with input and output dimen-
sion dv . The inputs are transformed into three matrices: query Q,
key K, and value V , where each matrix represents the stacked input
embeddings zl

o. These matrices are then transformed with trainable
matrices WQ

i ∈ R
dg×dv , WK

i ∈ R
dg×dv , WV

i ∈ R
dg×dv and

WO
i ∈ R

hdv×dg , where dg is a model hyperparameter and h is the
number of self-attention heads. The multi-head self-attention func-
tion includes the residual connection and is calculated as

zl+1
o = LN(FF (LN(Att(Q,K, V )))) + zl

o (1)

Att(Q,K, V ) = Concat(head1, ..., headh)W
O (2)

headi = softmax

(
(QWQ

i )(KWK
i )T√

dk

)
VWV

i , (3)

where LN stands for layer normalization [1] and FF is a fully con-
nected feedforward network (see Figure 3). We use the common
practice of simplifying the hyperparameters by setting dg = dv =
dk, which we denote as hidden dimension dh from here on.

The transformer contains a stack of N identical attention layers.
Through this attention mechanism, the NN generates embeddings
zN
o for each tracked object o, taking into account the information

of all other players and the ball.
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3.3.2 Trajectory Prediction Head

After generating the embeddings for each tracked object, we can pre-
dict the future trajectories by using a FeedForward neural network
(FF) to generate one output vector νt

o per tracked object (see Figure
4). Because the physical properties of motion for the ball are very dif-
ferent from humans and because the behavior of an offensive player
is different from the behavior of a defensive player, we use separate
FFs for each role to generate these trajectories. We denote FFs that
share the same weights with the same subscripts in Figure 4.

3.3.3 Classification Head

To predict labels for GAR, we consider the context-aware trans-
former embeddings of the players and the ball from the last trans-
former layer. For GAR, the input order of the players within a team
should not impact the assigned label, and our model should be per-
mutation invariant for each team. We use a team-level pooling layer
which sums up all the embeddings of the players that belong to the
offense and defense, respectively (see Figure 5). More formally, we
can write the output values as

y = softmax

(
FF

(
zN
B ⊕

5∑
i=1

zN
Ai

⊕
5∑

i=1

zN
Di

))
, (4)

where ⊕ stands for concatenation. y ∈ R
K is the output vector con-

taining the probability for each of the K predicted class.
We use a softmax activation function on the last layer so that the

output can be interpreted as probabilities and trained by minimizing
the Negative Log-Likelihood (NLL) loss for K classes:

LNLL = − 1

|D|
∑
D

K∑
k=1

αkyk ln(ŷk), (5)

where αk stands for class adjustments that balance the unequal class
distribution [18]. yk is the one-hot representation of ground truth,
and ŷk is the predicted probability that the play belongs to class k.

4 Experimental Setup

In this section, we describe the data set and the design of our label-
ing approach, which consists of weak-labeling and manual labeling.
Note that the dataset with the full trajectories for 632 NBA games
is publicly available, and we will provide a full dataset of our weak-
labeled play segments.

4.1 Data Set

We used publicly available movement data collected from 632 NBA
games during the 2015-2016 season1. To avoid including play se-
quences without significant action (e.g. time-outs or free throws), we
segmented the data into possessions, which start when the shot clock
resets and end on the next reset. We only kept the part of the posses-
sion when all 10 players are in the offensive half of the court to focus
on significant offensive tactics. Possessions shorter than 3s were dis-
carded, resulting in 113,760 possessions. This amounts to 1.1 million
seconds of game play, where locations of the players and the ball are
captured every 0.04s. We downsampled the data by a factor of 3 to

1 https://github.com/sealneaward/nba-movement-data, last accessed July
2023; we are not associated with the data creator in any way.

reduce computational cost (similar to [42]) and obtain a sampling
rate of Δt = 0.12s. For all models evaluated in the experimental
section, we used L = 10 time steps as input, corresponding to 1.2s
of game play. We constructed a data set by splitting the possessions
into 1.2s long non-overlapping segments, resulting in 869,905 play
sequences. For each of those play sequences, we also included the
future horizon of the next H time steps to allow training on a trajec-
tory prediction task, where we experimented with varying values of
H = 10, H = 20, and H = 40.

4.2 Labeling Group Activities in Basketball

We generated labels for pick-and-rolls and handoffs, two commonly
used tactics by NBA teams. Plays that do not fall into these two cat-
egories were labeled as "other", resulting in K = 3 classes. Gen-
erating such labels manually is very time-consuming because it not
only requires watching entire basketball games, but also high con-
centration to follow multiple players at the same time. There are also
many edge cases that require multiple viewings to decide on the cor-
rect label. Here, we provide a short form explanation of the weak-
labeling rules for pick-and-rolls and handoffs, and we explain the
weak-labeling process in more detail in the Supplementary Material.

4.2.1 Weak-Labeling Pick-and-rolls

Pick-and-roll is an offensive tactic in which the attacking team tries
to block the defender guarding the ball handler. Another attacker (the
so-called roll-man) helps the ball handler by standing in the way of
the defender (see Figure 1). This creates a difficult situation for the
defender, who has to either run around the roll-man to keep guard-
ing the ball handler or switch the assignment and guard the roll-man,
which leads to a possible mismatch. In short, the rule-based approach
matches each defender to an offensive player and then identifies sit-
uations in which the roll-man is very close to the ball handler’s de-
fender (see details in Supplementary Material).

4.2.2 Weak-Labeling Handoffs

A handoff is a different offensive tactic in which two attackers cross
paths, and the ball is handed off when the players are close to each
other. The action can also involve a very short pass. This tactic allows
one to give the ball to another player with a low risk of losing it,
but it can also be used as an opportunity to stand in the defender’s
way. In this sense, it is closely related to a pick-and-roll, but the ball
possession changes during the action. The rule-based approach to
identifying a handoff tries to identify a change in possession between
two players, with a small distance between the players and a short
time of ball transition (see details in Supplementary Material).

The weak-labeling process produced 45,802 “pick-and-rolls",
15,251 “handoffs", and 808,852 “other" play sequences.

4.2.3 Manual Labeling

We assigned manual labels for a total of 1,800 play segments. Be-
cause the data set is highly unbalanced according to weak-label
distribution, we sampled play sequences equally from all 3 weak-
labeled subgroups. To assign the labels, we generated video represen-
tations of 1.2s in length for each play segment. We carefully watched
each video, replaying and freezing it until we were confident with its
label. We sampled and labeled one video from each of the 3 weak
labels until we found 600 pick-and-rolls manually labeled samples
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for each class. We used 50% of these manual labels for testing and
50% for fine-tuning our NETS model.

5 Trajectory Prediction Problem

We used the self-supervised trajectory prediction problem as a pre-
training step for GAR. This task itself has found recent interest in the
computer vision community [32, 42, 43, 10]. In this section, we will
show that our Transformer architecture can achieve state-of-the-art
performance in trajectory prediction.

5.1 Experimental Design

We trained our models using pytorch. We used Adam optimizer with
an initial learning rate of 5 · 10−5 to reduce the mean squared error
of predicted velocities

LMSE(ν, ν̂) =
1

2H
‖ν − ν̂‖22. (6)

We set all hidden dimension to dh = 256, and used a Transformer
with L = 8 layers and h = 64 prediction heads (also see 6.3). We
used a ReLU activation function between all layers except the output.
We trained in batches of 512 samples. Early stopping was applied af-
ter 50 epochs if the validation error did not improve, which typically
took around 400 epochs, corresponding to about 30 hours of training
on a single GPU.

To evaluate the trajectory prediction task, different prediction hori-
zons H = 10, H = 20 and H = 40 were tested. From the predicted
velocities, we computed the trajectories for the players and evalu-
ated different approaches using two standard metrics [9, 22] in tra-
jectory prediction: average displacement error (ADE) and final dis-
placement error (FDE). FDE is the expected Euclidean distance be-
tween the predicted final location and the true final location of the
tracked object after H time steps. ADE describes the expected aver-
age Euclidean distance between the predicted and the true trajectory
at every predicted time step.

5.2 Baselines

Since the trajectory prediction task has been studied in literature be-
fore, we compared our NETS architecture with several strong base-
lines.

LSTM The baseline LSTM refers to an approach using a 2-layer
LSTM, with 128 hidden nodes in each layer as an input encoder, fol-
lowed by a 2-layer FF network, also with 128 hidden nodes. We used
the same loss function and training setup as for our NETS experi-
ments.

SocialGAN[9] This model uses an LSTM-based generator, cou-
pled with a social pooling layer, to account for nearby actors and a
discriminator that learns to distinguish between actual and simulated
trajectories. We used the same hyperparameter settings as in [9]. It is
important to note that SocialGAN was designed for pedestrian pre-
diction, where all objects are embedded the same way in a shared
layer. Therefore, adding the ball location would require significant
modification, which is why this model does not consider the ball’s
location in our experiments.

M. VRNN [42] This model uses a hierarchical approach in which
a Variational RNN is trained on programmatic weak supervision to
first predict a location that a player wants to reach. Then it uses a
second identical layer to predict a trajectory that the player will take
to reach it. It is trained like a Variational Autoencoder, aiming to

Table 1: Comparison of various models in terms of error metrics ADE
and FDE (in feet) for prediction horizons H = 10 (1.2 seconds), H
= 20 (2.4 seconds), and H = 40 (4.8 seconds).

H = 10 H = 20 H = 40

Method ADE FDE ADE FDE ADE FDE

LSTM [10] 1.61 2.98 3.43 6.91 6.59 11.97
M. VRNN [42] 1.70 3.43 4.46 8.66 8.48 14.98
Social GAN [9] 1.25 2.75 3.09 6.67 6.47 12.35
NETSno LSTM 1.18 2.51 2.98 6.42 6.31 11.84

NETS 1.08 2.34 2.78 5.87 5.70 10.88

reproduce realistic behavior of offensive players. We used the same
hyperparameter settings as in [9]. Because this baseline only predicts
the trajectories of offensive players, we compared the performance
of all models for the offensive players only.

NETSno LSTM This is an ablation of our NETS model, with the only
difference being that the input embedding is a 2-layer feedforward
network with 256 nodes each, instead of the LSTM-layer in NETS.

5.3 Results

We compared the performance of NETS on the trajectory predic-
tion task to several strong baselines. Results for various prediction
horizons H are shown in Table 1. NETSno LSTM and NETS, which
are based on transformers, outperformed the other baselines, show-
ing improvements on different prediction horizons. The results held
for both ADE and FDE, suggesting that the improvement can be ob-
served along the entirety of a player’s path. MACRO VRNNs trajec-
tories are designed to resemble the behavior of basketball players,
but can be far off from the ground truth. SocialGAN produced rea-
sonably accurate predictions, but was inferior to other approaches
that were specifically designed for this basketball dataset.

Another interesting finding is that NETSno LSTM performed worse
than our full NETS model. We believe that the LSTM input embed-
ding allows the model to more easily extract temporally dependent
information in the input data, therefore explaining a reduced accu-
racy of a model that has to learn temporal patterns from unstructured
input data.

6 Group Activity Recognition (GAR)

In this section, we report the performance of our proposed approach
on GAR. We first evaluated the ability of these models to classify
a large weak-labeled dataset. We were particularly interested to in-
vestigate if the self-supervised task of trajectory prediction can im-
prove the accuracy of GAR. Then we evaluated our NETS model on
manually labeled data to determine if a deep learning method can
outperform the rule-based labeling approach.

6.1 Experimental Design

Due to our modular architecture design, the NN architecture was the
same as for the trajectory prediction task, except for the last predic-
tion layer (see Section 3.3). We used an 80 / 10 / 10 train-, validation-,
and test-split on all of these play sequences, and we applied early
stopping after 50 epochs. To balance the training set distribution
of 45,802 “pick-and-rolls", 15,251 “handoffs", and 808,852 “other"
play sequences, we downsampled other plays to 45,802 (same as
pick-and-roll), we used weighting factors αk of 0.77, 2.34, and 0.77
for pick-and-rolls, handoffs, and other, respectively.

We note that on the test set the group activity labels were dom-
inated by play sequences labeled as ’other’ and a trivial classifier
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predicting that class would achieve 93.0% test accuracy. Therefore,
instead of reporting accuracy, we report the multi-class F1 score to
compare the performance of the models. We calculated the confusion
matrix M , where Mij represents the numbers of plays with ground
truth labels i classified as j. We calculated F1 scores by convert-
ing the 3-class classification problem into three binary classification
problems, yielding the one vs. all F1-scores

precisioni =
Mii∑
j Mji

; recalli =
Mii∑
j Mij

(7)

F1i = 2 · precisioni · recalli
precisioni + recalli

. (8)

6.2 Baselines

Although GAR has been studied in different sports (see Section 2),
they rely on the original video of the plays, whereas the dataset stud-
ied in this paper only relies on trajectory data and the original videos
are not available. Due to the lack of baselines using deep learning,
we used standard shallow baselines, consisting of logistic regression
LReg, random forest classifier RForest, and gradient boosting clas-
sifier GBoost. To establish a baseline, we trained 3 shallow models
using the popular sklearn implementation. The input to these shallow
models were the play sequences τ t−L+1:t

o consisting of 220 features.
We found the optimal parameter settings through grid search.

To add a deep-learning baseline, we compared our NETS archi-
tecture to a model inspired by DeepHoops [30], which is an LSTM-
based neural network with the same settings described in Section 5.2.
To allow a fair comparison to our NETS architecture, we used the
same training procedure of pretraining the model using the trajectory
prediction task and then changing the prediction head to enable play
classification.

6.3 Evaluation on Weak-Labels

In Table 2 we show F1 scores on the test-set of the weak labeled data.
Our NETS model outperformed shallow approaches by a large mar-
gin. The results show that the classification of group activities even if
labels are generated with a rule-based approach is a difficult problem
for shallow models such as LReg, RForest, and GBoost, as indicated
by the relatively low F1 scores of these traditional machine learn-
ing algorithms. Interestingly, we did not find that the LSTM baseline
outperforms GBoost on the GAR problem.

Table 2: Classification test performance compared to baselines.
Tested on 4,581 pick-and-rolls (p&r), 1,525 handoffs and 80,884
other plays.

p&r handoff other

Method F1-score F1-score F1-score

LReg 0.188 0.099 0.755
RForest 0.329 0.261 0.810
GBoost 0.398 0.443 0.915
LSTM 0.360 0.490 0.905
NETS 0.856 0.768 0.988

We performed an ablation study of the NETS models to evaluate
our architecture design choices: We created a model ablation by re-
moving the LSTM-embedding (see Figure 3), in which the inputs
were embedded with a 2-layer feedforward neural network. We also
examined the influence of the team-wise pooling layer depicted in
Figure 5 by removing the summation and instead concatenating all
representations zNi .

Table 3: Classification test performance of NETS with different archi-
tecture ablations. Tested on 4,581 pick-and-rolls (p&r), 1,525 hand-
offs and 80,884 other plays.

LSTM p&r handoff other

pretrain embed. pooling F1-score F1-score F1-score

� � � 0.705 0.667 0.973
� � � 0.777 0.644 0.980
� � � 0.802 0.675 0.982
� � � 0.803 0.731 0.983
� � � 0.829 0.718 0.985
� � � 0.856 0.768 0.988

All the models in Table 3 were ablations of NETS and were based
on a Transformer architecture. We see that all these models per-
formed better than the shallow models or the LSTM-based model
presented in Table 2, indicating that our domain-adapted Transformer
architecture is well suited for this problem. All models that were pre-
trained showed significant improvement compared to the same mod-
els without pretraining. As in the trajectory prediction task, we noted
significant improvement when utilizing an LSTM-embedding at the
input of the base Transformer instead of dense embedding layers. We
also observed an improvement when using the team-pooling layer at
the output. Furthermore, we observed that training GAR without pre-
training took around 500 epochs when we trained from scratch but
only roughly 200 epochs when we started with a pretrained model.

6.4 Evaluation on Manual Labels
Table 4: Confusion matrix of weak-labels tested on manually labeled
data, consisting of 300 pick-and-rolls (p&r), 300 handoffs and 300
other plays.

ground truth

p&r handoff other

predicted p&r 282 43 24
predicted handoff 5 253 21
predicted other 13 4 260

Table 5: Accuracies of four variants of NETS. "weak-labels" refers to
concordance between weak- and manual labels. Tested on manually
labeled data, consisting of 300 pick-and-rolls (p&r), 300 handoffs
and 300 other plays.

p&r handoff other

method F1-score F1-score F1-score

1) weak-labels 0.869 0.874 0.893
2) NETS 0.915 0.863 0.908
3) NETS, finetune on ml∗ only 0.784 0.813 0.844
4) NETS, validate on ml∗ 0.932 0.930 0.908
5) NETS, finetune on ml∗ 0.951 0.938 0.902
∗ ml = manual labels

As described in Section 4.2, we manually labeled 600 pick-and-rolls,
600 handoffs and 600 other plays, which we split into 50% train- and
50% test-set.

To get an insight into the performance of our rule-based weak-
labeling approach, we show the confusion table of the weak-labels
compared to the assigned ground truth from manual labeling in Ta-
ble 4. While the weak-labeling rules tended to extract many correctly
labeled play sequences, both rules for pick-and-rolls and handoff in-
cluded 24 and 21 play sequences that were labeled as other by man-
ual labeling. Furthermore, there were relatively frequent misclassifi-
cation of handoffs as pick-and-rolls.
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(a) Pretraining on trajectory predic-
tion.

(b) Pretrained on trajectory prediction
and fine-tuned on pick-and-roll classi-
fication.

(c) Pretrained on trajectory prediction,
and fine-tuned on pick-and-roll and
handoff classification.

Figure 6: t-SNE of embeddings of - pick-and-rolls (blue), - handoffs (orange) and - random plays (black).

In the previous subsection, we showed that our NETS architecture
can predict the weak-labels with high accuracy. Next, we evaluated
the performance on manual labels. We also examined the usefulness
of weak and manual labels when testing on these manual labels.

We evaluated the following approaches: 1) Using the rule-based
weak-labeling approach to classify the group activities, which re-
quires human expertise to define the rules and is not a deep learn-
ing approach. 2) Pretrain the NETS model on a trajectory prediction
task and fine-tune the model using a large amount of weak-labels. 3)
Pretrain the NETS model on a trajectory prediction task and fine-tune
the model only using 900 manual labels. 4) Pretrain the NETS model
on a trajectory prediction task, use the weak-labels in the training set
and the manual labels in the validation set for early stopping. 5) Pre-
train the NETS model on a trajectory prediction task, fine-tune it first
on the weak-labels and then fine-tune again on the manual labels.

The results in Table 5 show the F1 scores for the rule-based weak-
labels calculated from the confusion matrix (Table 4). We observed
a slight improvement when training NETS on the weak labels com-
pared to the weak labels themselves, which we hypothesize stems
from the ability of the neural network to generalize better than the
rules alone. In contrast, fine-tuning only on manual labels performed
worse than the rule-based labeling, indicating that we did not have
enough manual labels to train a large NN. Using manual labels in the
validations set further improved the accuracy, implying that NETS
overfit the weak labels without access to manual labels. Using a se-
quential fine-tuning paradigm resulted in the highest accuracy (row
5). When comparing row 5) with the weak-label F1 scores in row 1),
we can observe that the accuracy on pick-and-rolls increased from
0.869 to 0.951, for handoffs it increased from 0.874 to 0.938, and for
others from 0.893 to 0.902.

7 Evaluation of Representations

In this section, our goal is to show that the learned embeddings got
increasingly better with each learning step. To this end, we perform
a qualitative analysis where we transformed the higher dimensional
embeddings into 2D space to allow for visual inspection by using t-
SNE [34] on the test set. We then visually examined how tightly pick-
and-rolls and handoffs were packed together. Scatter plots shown in
Figure 6 illustrate the difference between internal representations of
the three NETS models.

Figure 6a shows the embeddings generated from a model trained
on the trajectory prediction task. The embeddings of pick-and-roll
plays and handoffs did not seem to be clustered together and were

scattered within other plays. Some clusters were forming, but they
were not very distinct.

Figure 6b shows that pick-and-rolls are clearly separated from
other plays. More interestingly, handoffs are often clustered together
and are mostly placed between pick-and-rolls and other plays, cor-
rectly indicating that there are some similarities between the plays. It
also shows some unwanted behavior, since many handoffs are clearly
placed among pick-and-rolls, indicating that it is difficult to distin-
guish the two types of play from each other.

Figure 6c shows the embeddings created after fine-tuning on both
pick-and-rolls and handoffs. The two types of strategies were now
clearly separated, with only few exceptions. Furthermore, we can
see more distinct clusters forming among the other plays, indicat-
ing that the embeddings were of higher quality and more capable of
distinguishing different types of strategies, even for those that have
no labels.

8 Conclusion and Future Work

We have shown that our NETS model with a specifically designed
transformer architecture to address common challenges in sports an-
alytics can classify group activities with high accuracy. Pretraining
the model on a self-supervised trajectory prediction task significantly
improved the model performance on downstream tasks. In future
work, we aim to utilize the generated play embeddings to discover
strategic differences employed by different teams and generate a tool
that can help automatically analyze a game.

To allow reproducibility, we share our code online at
www.github.com/S-Hauri/NETS.
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