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Abstract.

Adversarial machine learning (AML), by designing attacks that in-
tentionally break or misuse state-of-the-art machine learning models,
has become the most prominent scientific field to explore the secu-
rity aspects of Artificial Intelligence. A whole range of vulnerabili-
ties, previously irrelevant in traditional ICT, have effectively emerged
in these studies. In the light of upcoming legislations mandating se-
curity requirements for AI products and services, there is a need to
understand how AML techniques connect with the broader field of
cybersecurity, and how to articulate more tightly threat models with
realistic cybersecurity procedures.

This article aims to contribute to closing the gap between AML
and cybersecurity by proposing an approach to study the feasibility
of an attack in a cybersecurity risk assessment framework, illustrated
with a specific use case of an evasion attack designed to fool traf-
fic sign recognition systems in the physical world. The importance
of considering the feasibility of carrying out such attacks under real
conditions is emphasized through the analysis of two factors: the re-
producibility of the attack according to a published description or
existing code, and the applicability of the attack by a malicious actor
operating in a real-world environment.

1 Introduction

Artificial intelligence (AI) has become one of the focal points of the
ongoing digital transformation. As with any technology, proper regu-
lation and standardisation are eventually needed to ensure that its use
will stay safe, secure and respectful of fundamental rights, societal
values and law. This idea, often summarised under the term “Trust-
worthy AI” [21], applies transversely in a number of sectors with
potential harmful impacts on the people’s life, such as health, bank-
ing, or transport. To this end, regulatory bodies and governments all
over the world are already advancing respective digital policy agen-
das [30], with the proposal for a regulation of AI published in 2021
by the European Commission [12] (the so-called “AI Act”) being
one of the flagship policy developments introducing a risk-based ap-
proach and a set of requirements to achieve trustworthy AI.

A central pillar to achieve trustworthiness in high-risk AI appli-
cations is cybersecurity, which plays a major role in addressing con-
cerns related to the robustness and reliability of AI systems when op-
erating in adverse conditions. From a cybersecurity perspective, the
most relevant field of AI research is currently Adversarial Machine
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Learning (AML), focusing on the design and evaluation of attacks
that intentionally break or misuse features of state-of-the-art machine
learning (ML) models. Since its beginnings in the early 2000s [5] the
field has highlighted intrinsic flaws of ML models and a whole range
of vulnerabilities specific to ML models previously irrelevant in the
cybersecurity of traditional ICT systems.

To leverage this accumulated academic knowledge for daily cy-
bersecurity practice, it is necessary to connect AML tools and threat
models more tightly to realistic cybersecurity procedures, a need well
understood in scientific communities [17, 32]. In cybersecurity, con-
crete threats for deployed software systems are usually analysed fol-
lowing an applied and system-specific risk analysis framework [38],
which is much broader in scope than in typical AML studies. To
this date, studying more applied approaches of modelling threats in
AML remains an underrepresented field of study [8, 17], especially
for complex deep models and in cyber-physical contexts. As a mat-
ter of fact, many technical challenges considered as core components
to any cybersecurity conformity testing with regulatory requirements
remain open questions, such as the feasibility of measuring robust-
ness against cyberattacks on ML models [6], cybersecurity testing
of AI software [51], or properly assessing the strength of model de-
fences [46]. With more AI regulation such as the AI Act becoming
enacted in the coming years, these are especially crucial questions for
international AI standardisation efforts [39]. In cybersecurity, ques-
tions of AI security testing and threat modelling will have to be han-
dled eventually in the context of AI risk management [43] and infor-
mation security standards such as the ISO 27000 series [22].

This work aims to contribute to closing the gaps between AML
and cybersecurity and thereby add to a formalisation of AI cyberse-
curity, and to shed light on research beyond the focus on performance
and accuracy of AI models as the dominating research objectives.
We consider this shift towards security aspects of ML as crucial to
achieving trustworthiness of safety-critical AI systems. In more de-
tail, potential threats from physical adversarial attacks are addressed
from an applied cybersecurity perspective, and the inclusion of AML
with cybersecurity is formalized in a conceptual model for AI cy-
bersecurity risk assessment, where the feasibility of carrying out an
adversarial attack influences the modelling of threats. The feasibility
is studied focusing on two broad aspects: the reproducibility of the
attack from published description or code, and the applicability of
conducting the attack under real conditions. This conceptual model
is illustrated through a use case of an evasion attack from the recently
published GRAPHITE framework [16], designed to fool traffic sign
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recognition systems by applying adversarial physical patches. The
aim is not to carry out an exhaustive quantitative analysis, but rather
to provide elements to discuss the benefits and shortcomings of cur-
rent practices in AML with regard to the evaluation of cybersecurity
in real-world systems.

The paper is structured as follows: Sec. 2 provides a background
on AML and physical evasion attacks, giving context for the pre-
sentation of the conceptual model in Sec. 3 and the description of
the experiments in Sec. 4. The use case is presented throughout the
paper to illustrate specific points. Finally, Sec. 5 provides a set of
concluding remarks and lessons learnt from the use case.

2 Background

2.1 Adversarial Machine Learning

The field of AML started from early work which focused on applying
cybersecurity principles to ML problems for security controls such as
network intrusion detection systems or spam filtering [4, 5, 9]. Mod-
ern AML emerged with the introduction of evasion attacks on deep
neural networks [42] and expanded to other types of ML systems
(e.g., reinforcement learning [13], language models [24], etc.), and
to new types of attacks (backdoors [20], membership inference [37],
etc.). In general, today, studies in AML focus on research into inten-
tionally attacking, breaking or misusing features of general machine
learning models and how to increase and measure robustness against
such approaches. In particular, current research looks into deep neu-
ral networks and their vulnerabilities. These topics are increasingly
relevant in the task of practically securing AI systems, and it stands
to reason that described attacks and approaches may lead to the ex-
ploitation of a new class of vulnerabilities by threat actors to attack
real-world AI systems [26, 32].

However, the AML literature is often actually concerned with fun-
damental questions of generalizability and theoretical robustness of
models [18,42], and not necessarily always with applied problems of
practical cybersecurity [5,6,17]. For instance, many works on adver-
sarial examples rely on restricted mathematical threat models based
on constrained optimisation (e.g., Lp-norm based adversarial attacks
aiming at enforcing low-intensity perturbations). This provides valu-
able insights about the functioning, accuracy and reliability of mod-
els, but it has been argued that these specific types of Lp-norm based
threat models can be of limited use when connected to real-world
cybersecurity problems [6, 17].

Therefore, connecting currently available AML tools and mathe-
matical threat models more tightly to realistic cybersecurity proce-
dures will be needed in order to leverage the accumulated academic
knowledge for daily cybersecurity practice [32]. As it stands, many
technical challenges considered as core components to any cyberse-
curity testing of ML models remain open questions, such as measur-
ing robustness against cyberattacks on ML models [6, 51], properly
assessing the strength of defences and model resilience [46] or under-
standing the feasibility of proposed attacks and threat models under
real-world conditions [17].

2.2 Evasion attacks on image classifiers

Among the new types of vulnerabilities discussed in AML, the cre-
ation of adversarial examples in so-called evasion attacks have been
most prominently studied in the research community. They are iden-
tified as a major potential threat for computer vision systems, in par-
ticular when employed to sense and understand the environment in
an automated way. Attacks on classification models typically aim to

alter the class returned by the system, either in a non-targeted fashion
(the attacker only wants the system to return an incorrect class) or in a
targeted setting (the attacker selects beforehand the desired class they
want the system to output). Since the introduction of evasion attacks
in early works [5,42], a wide number of studies have focused on their
design and on improving the optimisation algorithms to solve them,
suggesting new ways to increase the success rate of attacks and their
versatility in constrained settings [7, 19, 27, 41, 42].

2.2.1 Physical adversarial evasion attacks

We consider an RGB image x ∈ R
W×H×C , with W and H re-

spectively the width and height of the image and C = 3 the number
of channels. The image represents an instance of a given category c
belonging to a larger set of categories C. The task of image classi-
fication consists in training a classifier fθ with θ the list of trainable
parameters, such as the output f(x) = y equals the category of the
instance present on the image x.

An adversarial attack consists in finding and applying a perturba-
tion δ ∈ R

W×H×C on an image such that it leads to an incorrect
classification by a classifier fθ , i.e.,

fθ(x+ δ) = fθ(x̃) = ỹ �= c (1)

where the + sign indicates element-wise addition and x̃ is called
the adversarial image. Most adversarial attacks formulate the prob-
lem as an optimisation problem, where an objective function de-
scribing the attack is minimized over the perturbation by gradient
descent techniques δ∗ = argminδ H(x, yt, δ;λ, θ). The various
types of attack found in the literature are characterized by the design
of specific objective functions and the use of efficient optimisation
schemes.

The classical framework of adversarial attacks (referred to as dig-
ital attacks) considers that the perturbation δ is applied on the digital
representation of the image, i.e., affecting the numerical value of pix-
els before inputting the classification model. In physical adversarial
attacks, the perturbation is meant to be applied on physical objects,
before the digital acquisition of the image. In this setting, the adver-
sary has only control over a portion of the image, characterized as
a mask M ∈ {0, 1}W×H indicating whether the pixel can be per-
turbed or not. The perturbation is then defined as an element-wise
product M · δ. The selection of the mask is either done by the ad-
versary, or driven by the attack. In the following, we refer to the
perturbation as the adversarial patch.

Several works have proposed to generate physical adversarial ex-
amples in real-world scenarios. The work by Eykholt et al. [15]
serves as a major reference for physical attacks on traffic signs. The
objective is to examine the possibility to craft physical perturbations
for real-world objects that are able to change the prediction of a
classifier, while remaining effective under various physical condi-
tions. The resulting perturbations do not aim to be invisible to hu-
man but rather inconspicuous, for example looking like graffiti, lead-
ing at least casual observers to ignore the perturbations. More re-
cently, Feng et al. [16] introduced the GRAPHITE framework for
optimising the generation of physical adversarial examples, in white-
box and black-box settings. As the most advanced, sound framework
to generate physical adversarial patches, which is accompanied by
sufficient documentation and code, the GRAPHITE attack, and more
specifically the attack conducted in white-box settings, will be used
as illustration in Sec. 4.
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3 AI Cybersecurity: conceptual model and use case
illustration

Applied cybersecurity is driven by an analysis of the security risks
associated with a concrete software system under a specific set of
conditions, paired with the development of proof-of-concept exploits
designed to demonstrate security weaknesses in the system. The un-
derlying concept is to conduct a cybersecurity risk assessment, a cru-
cial aspect of which is to estimate the specific expected threats to
systems. Often these are best estimated by concretely demonstrating
the feasibility of attacks to exploit vulnerabilities.

The inclusion of ML in digital systems introduces a number of
novel cybersecurity risks and specific issues that, while not changing
the basic premises of the approach, require deeper consideration to
develop a model for AI cybersecurity risk. To some degree it is clear
that ML programs are basically another form of software for which
many processes and practices from classical cybersecurity should ap-
ply. In particular, any practically relevant ML software will be part
of a larger system, including both AI and classical software compo-
nents. Thus, in principle, basic and well-tested approaches in cyber-
security risk assessment and organisational aspects of information
security do apply as much to ML as to other digital systems [32,44].
Beyond that, the aim should be to address AI-specific issues by bring-
ing together perspectives of AML, complexities of deep neural net-
works, and cybersecurity principles [31, 32]. It should be noted that
this system-based view of cybersecurity likely permits addressing
AI-specific vulnerabilities with non-AI based mitigation measures
and controls, albeit at additional costs, either economical or by limit-
ing the usability of AI components in the larger system, e.g. through
only controlled access. This study deliberately will not focus on the
system perspective to cybersecurity risk and instead focuses on the
potential and challenges of AI-model specific cybersecurity. In any
case, even for non-AI based mitigation strategies, it will be necessary
to properly address the threats from AI-based attack vectors, such as
evasion attacks of individual AI components.

By now, a range of works has been published on the adapta-
tion of applied cybersecurity terminology and concepts to machine
learning systems, some of which with quite a practical security per-
spective [44, 45]. However, neither the maturity of available tech-
nical tools nor practical experience with modern ML systems in
widespread deployment are already sufficient to observe established
practices. The crucial task of threat modelling for AI systems is thus
one of the most underdeveloped steps in practice, and demonstrat-
ing the feasibility of conducting AI-specific attacks relevant for cy-
bersecurity remains an active field of research and development. As
an illustration, we provide a discussion of a use case of traffic sign
recognition in autonomous vehicles (AVs), inspired by the more in-
depth cybersecurity analysis found in [10].

3.1 AI Cybersecurity Risk

Risk can formally be understood as the product of the likelihood of an
event to occur with its estimated impact. In practice, for the cyberse-
curity risk assessment of a specific software — including ML — this
approach essentially aims at estimating the likelihood of an attack
from an analysis of threats and vulnerabilities combined with an un-
derstanding of the potential impacts of an attack on the system to be
protected [33, 38]. Often a quantitative analysis of cybersecurity risk
is prohibited by the enormous hurdles to achieve meaningful mea-
sures, metrics and enough test data, a problem which for AI cyberse-
curity is exacerbated by the complexities introduced by ML models.

It should be noted, that eventually, the mathematically grounded na-
ture of ML algorithms may actually allow a more direct integration
into more rigorous risk frameworks such as using the theory of PAC
learning with noisy labels [32], or methods of formal verifications.
Currently, most approaches will rather focus on empirically explor-
ing the factors describing the risk:

Vulnerabilities and impacts (system-internal) Identifying vulner-
abilities in a system and thereby systematically probing its at-
tack surface and understanding possible impacts when the sys-
tem would be compromised are internal factors of the risk that
depends on the system to be protected. This includes understand-
ing and potentially estimating the robustness of the ML system
against cyberattacks, and analysing the possible space of attack
types that could be employed against a particular ML systems;

Threats (system-external) : Analysing the threats is focusing on
the external factors of the risk, and includes the estimation of
an adversary’s goals and capabilities. This includes the extent of
available knowledge and controllable context factors, choice of
goals, attack selection and the feasibility to conduct them.

The focus is placed in this paper on the external threats and
their modelling for a concrete machine learning based application,
since the factors are the least understood and developed elements
in AML [17] from the perspective of applied cybersecurity. Usu-
ally, concrete threats for deployed software systems are analysed
following a very applied and system-specific threat analysis frame-
work [38], which is much broader in scope than for typical discus-
sions in the AML literature [8,17], especially for complex deep mod-
els and in cyber-physical contexts. In addition, threat modelling has
received much theoretical attention in previous works discussing the
cybersecurity of ML [17, 32].

While we consequently not address in detail the ongoing discus-
sions about how to measure the robustness of ML models [8] and how
to address the arms cycle of new attacks and defences in AML [6,46],
we clarify that these dimensions are of course of equal importance to
estimate overall cybersecurity risk. We will address aspects of them
throughout the paper, but without any claim to be exhaustive.

3.2 Feasibility of attacks in AI threat modelling

As described in [32], besides the goals and motivations of an attacker,
technical factors are equally entering threat modelling. For ML sys-
tems these largely depend on the analysis of potential capabilities of
adversaries, which directly connects to an analysis of the feasibility
to conduct attacks in the chosen adversarial context. The feasibility
may be affected by factors specific to the chosen attack, such as their
implementation or ease of use and by contextual factors, which are
out of the direct control of an attacker, but derived from the environ-
ment in which an attack is taking place. These could be due to details
of the ICT infrastructure in case of a purely digital attack, but also
due to real-world influences in case of a physical attack on a cyber-
physical systems, such as an AV. An additional element entering a
feasibility analysis of an attack is stemming from the fact that, while
attacks may be published in the AML literature, it cannot be assumed
that they can be reproduced as is. This depends largely on publicly
available research code, which often is not yet mature enough, or
does not follow enough established coding practices [35, 49], to be
readily used in an applied cybersecurity setting.

The exploration in this paper is thus based on dividing the practical
analysis of technical aspects of AI threat modelling into two parts:
reproducibility and applicability.
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3.2.1 Reproducibility

Reproducibility looks at the implementation of the attack itself, and
in particular how it would be possible, for a cybersecurity analyst,
to include the impact of the attack in a risk assessment. In the ap-
plied cybersecurity context of this paper, this mostly amounts to a
discussion around available implementations of published research
in AML and their readiness for direct application. However, this as-
pect touches as well upon a general discussion of reproducibility of
results in machine learning, usually in a context of establishing more
rigorous scientific practice. Reproducibility of scientific results is a
well-identified, yet often overlooked challenge in the machine learn-
ing research community [34]. In general, being able to conduct ex-
periments and obtain similar outcomes is not only crucial to ensure
trust in scientific findings inside the scientific community, but also to
allow for a faster integration with other communities.

For implementations in ML, reproducibility issues can stem from
two different sources. Firstly, inaccuracies may be inherent to the
used algorithms and approaches because of stochastic elements, for
example when a random seed is used for initialisation, or when the
exact testing conditions cannot be reproduced because the exact same
model weights are not available. Secondly, reproducibility may be
limited because of issues with publicly available implementations,
which may differ from the one used to publish results. This problem
may be due to small factors, e.g. missing information on specific
hyperparameter settings, limited documentation or heterogeneity if
coding practices. Or, it may stem from altogether missing features
in a published code or from an insufficient description of the exact
algorithmic procedures in a paper, so that exact re-implementation
simply becomes impossible. In general, for better or worse, it cannot
be assumed that research-made code is always following established
typical software development practices [35, 49].

In our context of applied cybersecurity and threat modelling, the
reproducibility of an attack mainly also becomes relevant for the ca-
pacity of a cybersecurity analyst to read and understand the attack, to
use and extend it in different contexts (e.g., with other models, data,
computing environment, objectives), and if there are fundamental
limits to the reproducibility of published results (e.g. due to stochas-
tic elements in the code or different available models for testing the
attack), to understand and quantify these limits. Understanding the
reproducibility of published results on attacks is a first element to
judge the feasibility of using the attack in a real-world setting, and
uncovering limiting factors in terms of their use by attackers, notably
in terms of resources.

3.2.2 Applicability

Applicability describes how feasible the attack is in adversarial and
uncontrollable environments, and is transferable to other types of ad-
versarial conditions. For evasion attacks, this means looking into fac-
tors that influence the robustness of the attack in a real setting, from
simulating various effects in the digital context, testing transferability
to similar models in a grey box setting, and analysing the feasibility
and complexity of conducting physical attacks. From a cybersecu-
rity perspective, this goes into analysing the robustness of the attack,
and also connects to discussions about an adversary’s resources and
strategies. For instance, strictly speaking, if the result of an attack
can be reproduced with spending less resources by using a different
attack vector, it should not be considered as very likely to occur [17].

Compared to digital attacks, the application of the perturbation
happens in the physical world before the acquisition of the image,

leading to a number of variability factors that strongly alter the way
the adversarial patch is perceived. This affects the shape of an adver-
sarial patch (distortions, occlusions, resizing, etc.) and the colours
(reduced contrast, colour blending, fading, etc.). For the use case of
physical adversarial attacks on image classifiers, we can thus further
distinguish applicability in sources stemming from the execution of
the attack and from the image acquisition.

At the time of execution of the attack, the main factors of variabil-
ity include the generation of the patch from a source image using a
dedicated attack framework; the printing of the patch; and the placing
of the patch on the target object. At the time of the image acquisition,
the main factors of variability are either environmental or due to the
acquisition material, and includes the lighting, with an effect on the
brightness of the object that may vary because of weather or uncon-
trolled sources of lights; possible occlusion of the object and of the
patch due to the presence of debris between the object and the camera
or due to environmental effects such as weather or dirt; the distance
and angle to which the camera sees the object; the camera sensitivity
and noise.

3.3 Example: Evasion attack on traffic sign detection
in autonomous vehicles

The following scenario is based on the discussions on the cyberse-
curity of ML presented in [10], with the uptake of computer vision
techniques in autonomous vehicles (AVs).

Threat scenario: Adversaries may introduce physical perturba-
tions on traffic signs to deceive the AI-based perception module of
AVs into perceiving wrong information about the environment. This
includes alterations or the placement of stickers on road signs. Al-
ternatively, attackers may gain remote access to AVs or even the
firmware servers and could potentially conduct similar attacks dig-
itally and at scale across a fleet of AVs. Both variants of the use
case involve the assumption of technically adept attackers investing
a considerable amount of resources, with knowledge in AML and in
attacking classical software systems.

Vulnerabilities: The possibility to conduct evasion attacks against
computer vision models is well understood and proven. All known
ML algorithms including deep neural network architectures are
known to be susceptible to adversarial attacks. Furthermore, it is
likely that adversarial patches can be transferred between different
models. Mitigation is only partially possible, and effectively only
against known attacks at training time.

Impacts: Carefully crafted adversarial patterns may lead to a mis-
classification of objects or symbols on traffic signs, and subsequently
to potential impacts on road and passenger safety, including death. A
successful attack at scale against a fleet of AVs would increase the
potential impact by orders of magnitude. Affected stakeholders or
targets may also include the AV manufacturers.

Threat modelling: The likelihood of an occurrence of this threat
scenario is hard to estimate. Real threat models on attacker’s moti-
vations and cost-benefits of evasion attacks against traffic signs are
not empirically backed-up and even debated in the literature. It is for
instance argued that causing a misclassification of a traffic sign can
be achieved without conducting an elaborate adversarial attack [17].
This analysis would change substantially if this attack would occur
at scale and be conducted against a fleet of AVs.

A non-exhaustive study using this illustrative use case is presented
in Sec. 4. It should be noted that even if this illustration is targeted to
computer vision problems, the principles of the study follow typical
work in AML and can basically be applied to any type of evasion
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attacks, models, and data.
For the study, we leave out details of modelling potential motiva-

tions of attackers to conduct operations against AVs, which do not
depend significantly on the AI technologies involved, to focus on the
technical feasibility of conducting such an evasion attack under real
conditions. These aspects are still not well understood, nor easily ver-
ified empirically for lack of available data on traffic sign recognition
model performance in real applications.

4 Experimental evaluation of the feasibility of a
physical adversarial attack

In this section, we propose an analysis of the feasibility of a physical
adversarial attack in order to illustrate the conceptual model and its
challenges in the context of the AV use case, as described in Sec. 3.

The use of computer vision systems in AVs has become a field
of relevance in cybersecurity for its potential impact on the safety of
citizen. Almost all perception tasks (e.g., sign and object recognition,
localisation or object tracking) performed in AVs are currently based
on deep neural network architectures [25,28,29,36,48,52]. All these
systems are susceptible to evasion attacks and other vulnerabilities
specific to such systems [2, 14, 47, 50].

For our analysis, we focus on the recently introduced attack frame-
work GRAPHITE [16], and more specifically the attack under white-
box settings. This attack is analysed with regard to the needs of a
cybersecurity analyst following the conceptual cybersecurity model
introduced in Sec. 3, in particular with regard to the concepts of re-
producibility and applicability. For the purposes of our experiments,
we are using the same data set and model that was used in [16]. The
data for training the model and testing the evasion attacks is from the
German Traffic Sign Recognition Benchmark (GTSRB) [40]. The
traffic sign recognition model GTSRBNet is trained on GTSRB aug-
mented with random translation, rotation and shear, and is based on
a basic convolutional neural network architecture.

4.1 The GRAPHITE white-box attack

The GRAPHITE attack allows generating physical patches to fool
image classifier, and presents the following features: handling of
fixed mask shape, robustness to environmental conditions (lighting,
viewpoint, etc.), and working in white-box and black-box settings.

The attack is a two-stage process: for a given initialisation mask
(typically covering all the image), an adversarial patch is obtained by
solving an optimisation problem similar to the C &W �0 attack [7].
This includes the optimisation over a set of nt transformations of the
reference image with a maximum number of iterations nr , in order
to take into account variability due to environmental conditions. The
EoT robustness is computed as the success rate of the attack over
the set of transformations. Once a minimal value of robustness τr is
achieved, the mask is cut out by removing regions with low overall
gradients. A new patch is then generated, and this process iterates
until the attack goes unsuccessful, the final patch being the result of
the last successful attack.

We implemented our own version of the GRAPHITE white-box
attack based on the information in the publication and the publicly
available code1. As in [16], we use the following values for the
parameters: nt = 100, nr = 200, τr = 0.8, and run the experiments
over ground-truth/target pairs of a ten-class subset of the GTSRB
dataset, containing the labels: Stop (14), Speed Limit

1 See https://github.com/ryan-feng/GRAPHITE

30 (1), Speed Limit 80 (5), Pedestrians (27),
Turn Left (34), Yield (13), Caution (18),
Roundabout (40), End of Overtaking (41), Do
Not Enter (17).

The implementation was written using the python language, the
pytorch framework for the ML components, and the kornia li-
brary for image transformation. All experiments were run on two
NVIDIA A6000. The code to reproduce the experiments is available
on the platform https://code.europa.eu.

4.2 Reproducibility

Two aspects of reproducibility are studied in the context of the anal-
ysis of the GRAPHITE white-box attack:

1. How easy it is to reproduce the attack itself, including re-
implementing the details of the attack based on the details in [16]
and compare to the original implementation;

2. How easy it is to reproduce the results presented in the publication.

Experiment 1: faithfulness of outputs. We test how well the out-
puts of the published code can be reproduced by our own implemen-
tation of the GRAPHITE white-box attack following the descriptions
in [16]. One of the difficulties encountered in doing this alone was
the absence of a precise description of the different steps followed
to implement the white-box attack, especially with regard to hyper-
parameter settings. There are several settings in the attack for which
default parameters are only documented in the original implementa-
tion of the code, for instance the number of iterations and step size
used, or some of the parameter settings for the l0-optimised prun-
ing of the adversarial patch. In addition, we had to fix a few techni-
cal issues in the published code. After overcoming these challenges,
we can reproduce outputs within a certain degree. We see that out-
puts for the adversarial image are within an average difference of
δ̄p = 0.011± 0.038, where the average is over a subset of the tested
image-target pairs. Exploring the range of parameters gives a vari-
ety of results, for example reducing the number of transforms in the
expectation-over-transforms optimisation from 100 to 10 increases
the average difference to δ̄n=10

p = 0.024 ± 0.081 and there is con-
siderable fluctuation depending on the image-target pair, with some
being quite accurate and others worse than the average results. For a
24-bit RGB image, the reported results correspond to differences of
2 to 5 in terms of pixel intensity.

Experiment 2: faithfulness of results In Tab. 1, we show the re-
sults of reproducing the published white-box attack results in Tab. 2
of [16]. We compare the published results with the results from our
own implementation, having shown that we were able to reproduce
outputs reasonably well in the previous experiment.

The results in Tab. 1 show firstly that by using the default set of
transforms for the optimisation of the adversarial patch as used in
the published results, we can reproduce the published results rea-
sonably well. Interestingly, applying no transformations during the
optimisation for the patch (i.e., on the original image with obtained
patch, without other modifications), the robustness performance of
the GRAPHITE white-box drops notably. Even more significantly,
exchanging the set of transforms during the attack decreases the per-
formance quite significantly, from a reported 77.53% to an average
of 54.97% over several runs and transform types. Both observations
indicate that the attack may somewhat overfit to the specific set of
transforms used in the default settings. In Fig. 1, we showcase how
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(a) No transformation (b) Different transformations

Figure 1: EoT robustness for multiple pairs (ygt, ytg) calculated over
different sets of transformation and averaged over multiple repeti-
tions. (a) No transformations applied. (b) A different set of n = 100
transformations than the default settings for GRAPHITE.

these results further depend on the specific image-target pair (ygt,
ytg), which is the main source of variance in the experiments.

Table 1: Reproducibility of the white-box GRAPHITE attack using
the publicly available implementation and our implementation. (OI:
Original Implementation; Own Implementation: NoT: No transfor-
mation; AT: Attack transformations; DT: Different set of transforma-
tions).

Source OI NoT AT DT

Avg. EoT Robustness 77.53% 68.44% 75.37% 54.97%

4.3 Applicability

The main objective behind the testing of applicability of the
GRAPHITE white-box attack is to further assess the overall feasi-
bility in the context of threat modelling, and to give some estimate
of the actual likelihood of the physical GRAPHITE attack occurring
in a real threat scenario. The analysis is not intended to be exhaus-
tive, but aims to provide elements about what would kind of analysis
would be needed to assess the threat more thoroughly.

Applicability is largely governed by the robustness of physical ad-
versarial attacks, which, as discussed in Sec. 3.2.2, depends on ex-
ternal factors beyond code reproducibility, mostly the attack execu-
tion, such as errors in patch fabrication or the accuracy of applying a
physical patch, and the image acquisition, which may introduce vari-
ability due to environmental factors and camera sensor capabilities.

Applicability can be tested to some degree in purely digital envi-
ronments by simulating these effects. To model both, execution and
acquisition, transformations may be applied to the digital patch and
image. Typically, a set of such image transformations is used to in-
crease the robustness of physical attacks in applying the expectation-
over-transformations formalism to optimise the creation of the adver-
sarial example over a range of transformations [3, 15]. Image trans-
formations usually are either taken to be from a set of typical image-
wise digital manipulations such as geometric or intensity variations
as in for GRAPHITE [16], or use a combination of digital transfor-
mations and real-world variability of recorded effects to account for
complexities of the physical world [15]. In addition, we argue that
camera and sensor effects might need to be taken into consideration
and, crucially, that patch-wise transformation should be added to ac-
count for variability in physically applying the patch on a real sign.

4.3.1 Digital experiments

Experiment 3: Applicability We consider two levels of transfor-
mations: 1) patch-wise level for execution errors and 2) image-wise
level for real-world variability. All transformations are further dif-
ferentiated between geometric and intensity transformations, which
include camera effects such as blurring and filtering, largely in line
with [16]. A patch P is obtained using a physical adversarial attack
with target label ytx on a reference image x with ground truth la-
bel ygx . In our experiments, we consider the set of transformations
introduced in Fig. 2. When the number of transformation increases,
the EoT robustness is lower, showing the impact on performances of
transformations that may arise in real-world conditions.

Table 2: Applicability of the white-box GRAPHITE attack. The EoT
Robustness is averaged over all image-target pairs from the subset
of GTSRB. Patch-wise transformations: rotation of 5°(R), change of
hue of 0.5 (H). Image-wise transformations: Gaussian blurring (σ =
0.5) and Gaussian noise (σ = 0.1) + negative or positive change of
brightness of 0.5 (B- and B+), and of saturation of 0.5(S- and S+),
change of perspective of 0.5 (P).

R H B S P EoT Robustness

0.70 (σ = 0.34)
x 0.65 (σ = 0.35)

- 0.54 (σ = 0.37)
+ 0.35 (σ = 0.35)

- 0.54 (σ = 0.36)
+ 0.65 (σ = 0.35)

x 0.23 (σ = 0.29)
x x - - x 0.18 (σ = 0.25)
x x - + x 0.14 (σ = 0.21)
x x + - x 0.13 (σ = 0.24)
x x + + x 0.07 (σ = 0.17)

4.3.2 Physical experiments

In this experiment, the objective is not to conduct an extensive testing
nor to emulate a real situation on the roads, but rather to qualitatively
explore the full challenge when assessing the thread of a physical ad-
versarial attack in the real-world. One difficulty in physical testing is
how to control the full range of physical effects and environmental
conditions. We have conducted the tests in the somewhat controlled
conditions of a lab with a real European STOP sign. This allows us to
have a certain degree of control of the distance, angle, artificial light-
ing and occlusion effects of the STOP sign. The adversarial patch is
applied as accurately as possible at the exact position as determined
by GRAPHITE. The camera is of a type Canon EOS 300, the adver-
sarial patches are printed on a standard A4 80g white sheet of paper
using a printer of model Canon ImageRunner Advance C5550i.

Fig. 3 shows some results of the experiment. As indicated by the
previous experiment, qualitative tests shows that the attack is very
susceptible to small transformations and noise introduced in the pro-
cess. The difference between Fig. 3b and Fig. 3c is a small adjust-
ment in camera angle and direction, changing the attack success.
While the attack was relatively robust to changes in lighting, changes
in angle or distance had a strong effect on robustness.

5 Conclusion

In this article, we presented a first analysis of AI cybersecurity exper-
iments designed to explore the threat models behind physical evasion
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Figure 2: Image-wise transformations used in our experiment to simulate environmental conditions. In addition to these transformations, two
patch-wise transformations are used: Rotation (R) and positive hue change (H).

(a) Stop sign (b) Stop sign (c) Stop sign

(d) Stop sign (e) Stop sign (f) Stop sign

Figure 3: Examples of outputs obtained with the GRAPHITE attack.

attacks against traffic sign recognition systems. The aim of this work
was to understand how to practically assess the associated cyberse-
curity risks of physical adversarial attacks through the testing of a
deep learning-based perception system, potentially in use in driving
assistance functions. Another objective was to establish a firmer un-
derstanding of what is needed to produce robust physical adversarial
patches even just under standard current laboratory conditions.

Among the many lessons learnt during the process, we note that,
first, it was not possible on a narrow case — with limited time re-
sources but expertise in the fields of AI and cybersecurity — to suc-
cessfully reproduce current research results and establish a stable
pipeline for producing robust physical adversarial patches on traf-
fic signs case, even under our strict laboratory conditions. We con-
clude that it is not easily possible to conduct these type of attacks un-
der real road conditions without a significant investment of resources
and knowledge. This connects to previously discussed issues in re-
producibility in general in the field of ML.

Second, the feasibility of reproducing the GRAPHITE white-box
attack was severely hampered by the limited availability of technical
details in published paper and code. A significant portion of our work
was invested into writing our own code and solutions and robustly re-
produce published results. Thus, while we succeeded in it, this came
at a considerable investment of programming resources and time in-
vestigating the codes. Currently, this would realistically lower any
threat assessment for the discussed use case, especially when con-
sidering that similar effects might be achievable by simply randomly
modifying a sign [17].

Third, if we go beyond the default settings of the attack, we see
indications that the GRAPHITE attack may be less robust to general
transformations than one could expect, and that results may some-
what more significantly depend on the choice of transforms and pa-
rameters. This may put into question how much published AML re-
sults depend on parameter settings and test data and can be used to

extrapolate threats due to theoretically studied attacks. In addition,
the publicly available implementation had some technical issues that
call into question the reliability of some results reported in the pub-
lication. The availability of standardised libraries of attacks such as
ART [1], alongside benchmark platforms such as RobustBench [8],
is a significant step to harmonise practices and broaden access to at-
tacks to non-ML specialists.

Fourth, the feasibility of conducting physical attacks seems
severely limited by the complexity involved in actually transferring
digital attacks into physical adversarial patches, in particular with
respect to the printing and placing of the patches on targets due to
concrete issues such as imperfections and noise introduced by print-
ers cameras, and manual handling of the patches. These aspects tend
to be overlooked in the description of experimental protocol in sci-
entific publications and are therefore not well-documented nor stan-
dardised, limiting reproducibility.

A central conclusion of our work is that at least when considering
the GRAPHITE white-box attack, there is currently no standard soft-
ware solution for creating physical adversarial patches for practical
use. As a follow-up of this work, a deeper analysis of GRAPHITE at-
tacks and other frameworks for creating physical adversarial exam-
ples would be needed. In particular, more analysis could be placed
on the technical aspects that are not carefully addressed in this study,
such as the details of implementation and a standardised evaluation
process for physical adversarial examples.

These results provide additional insights on the risks that physi-
cal adversarial machine learning presents to computer vision models
and better anticipate potential cybersecurity vulnerabilities in AI sys-
tems. At the current stage, it remains hard to assess these risks, con-
sidering the difficulty to measure the robustness and the feasibility
of attacks, as discussed in this work. Furthermore, efforts on stan-
dardising processes and methods in AI cybersecurity eventually will
be faced with defining tested and useful tools and processes for AI
threat modelling and security testing. For instance, standardisation
bodies such as ISO/IEC or ETSI are already developing standards
with regard to AI security controls [11,23]. Currently, analysing, un-
derstanding and countering the threat of physical adversarial exam-
ples for individual AI models seems to be outside the technological
availability of developed tools.
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