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Abstract. In the last few years, Federated Learning (FL) has re-
ceived extensive attention from the research community because of
its capability for privacy-preserving, collaborative learning from het-
erogeneous data sources. Most FL studies focus on either average
performance improvement or the robustness to attacks, while some
attempt to solve both jointly. However, the performance disparities
across clients in the presence of attackers have largely been unex-
plored. In this work, we propose a novel Fair Federated Learning
scheme with Attacker Detection capability (abbreviated as FFL+AD)
to minimize performance discrepancies across benign participants.
FFL+AD enables the server to identify attackers and learn their ma-
lign intent (e.g., targeted label) by investigating suspected models
via top performers. This two-step detection method helps reduce
false positives. Later, we introduce fairness by regularizing the be-
nign clients’ local objectives with a variable boosting parameter that
gives more emphasis on low performers in optimization. Under stan-
dard assumptions, FFL+AD exhibits a convergence rate similar to
FedAvg. Experimental results show that our scheme builds a more
fair and more robust model, under label-flipping and backdoor at-
tackers, compared to prior schemes. FFL+AD achieves competitive
accuracy even when 40% of the clients are attackers.

1 Introduction

The evolution of machine learning techniques led to the develop-
ment of Federated Learning (FL), which enables collaborative train-
ing of a model from distributed data sources (users or clients) in a
privacy-preserving manner [29]. Prior studies illustrated the useful-
ness of FL in applications such as next word prediction [14], emoji
prediction [34], and visual object detection [27]. In general, FL aims
to produce a highly accurate model by aggregating local models
that are trained and fine-tuned over distributed clients’ private data.
However, due to heterogeneity and non-independent identically dis-
tributed (non-IID) data, it is important to satisfy fairness constraints
to limit the performance disparities (variation) across clients [18, 43].
We present Figure 1 to give an example of high-performance vari-
ance in spite of the average accuracy being more than 85%. The un-
derlying FL model (consisting of 4 deep layers) is essentially a digit
classification model trained on the MNIST dataset [20]. Besides the
fairness, the robustness against model poisoning attacks (e.g., label-
flipping and backdoor [39, 33]) is also an important aspect to be taken
care of, especially when FL is deployed in the wild.
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Figure 1: Illustration of the performance disparities of an FL model
trained across 100 clients.

Prior FL studies have addressed both fairness and robustness is-
sues, but separately. In particular, the agnostic federated learning
(AFL) algorithms are proposed in [31, 9] that maximize the per-
formance of worst performers to minimize disparities. The works
in [7, 8] adopted a min-max optimization framework to achieve per-
formance consistency. In the same line, q-Fair Federated Learning
(q-FFL) [23] up-weighted empirical loss by its qth-power into the lo-
cal objective of the clients. From the robustness standpoint, there also
exist algorithms, such as Median [41], Krum and Multi-Krum [5],
FoolsGold [11], Contra [1], and FedAvg-RLR [33], that aim to ex-
clude poisonous models (from aggregation) uploaded by attackers.

Motivation: This research focuses mainly on producing a fair
and robust model by addressing the following limitations of exist-
ing works: (i) Prior fairness schemes such as q-FFL and AFL, fail to
reduce performance disparities when some participants are compro-
mised by adversaries; in such cases, these schemes may accidentally
boost up the attackers (if they are low-performers), which in turn
would result in even higher discrepancies across benign clients. In
fact, these schemes can easily overfit the adversary’s objective, re-
sulting in a highly corrupted model. (ii) On the flip side, the robust
FL methods (Krum, FoolsGold, and FedAvg-RLR) can not produce
a fair enough model as they aim to improve average performance
(not to minimize variance) by mitigating the attackers’ impact. (iii)
Though the model personalization algorithms [22, 16, 28] have ad-
dressed both issues jointly to some extent, they impose high com-
putational overheads at the client’s devices as each device needs to
compute two models (one personalized and one shared).

In this paper, we address the question: Is fairness in FL achiev-
able in the presence of attackers? To answer, we propose a Fair
Federated Learning scheme with Attacker Detection capability
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(FFL+AD). We clarify that our scheme tightly intertwines the at-
tacker detection steps with FFL to address the problem that can not
be otherwise solved by a linear combination of any existing fairness
and defense solutions. The major contributions of this paper are:

• By proposing FFL+AD, we facilitate an FL framework to train a
fair and accurate global model while detecting and isolating ma-
lign local models prior to aggregation at the server.

• FFL+AD incorporates a novel two-step attacker detection method
that first identifies suspected models, by employing K −medoid
clustering, and then they undergo an investigation (carried out by
top performers) to ascertain their malign intent. The latter step
helps minimize false detection and enables the server to learn at-
tackers’ common interests (i.e., targeted labels).

• We introduce a regularization-based scheme to minimize the per-
formance disparities, thereby producing a fair model. This scheme
essentially boosts benign clients (excluding top performers) by a
variable factor computed with the help of top performers.

• Our theoretical analysis shows that the convergence rate of
FFL+AD is similar to FedAvg under the standard assumptions.
Our scheme builds a more fair and robust model compared to the
prior algorithms, even when 40% of the total clients are malicious.

The organization of the paper is as follows. Section 2 discusses rele-
vant prior works and Section 3 describes the problem setup including
the challenge and objective. Section 4 proposes the FFL+AD scheme
with its convergence analysis. In Section 5, we evaluate the solution
empirically using two benchmark image classification datasets. Fi-
nally, Section 6 concludes the paper.

2 Related Work

FL has been an active area of research from its inception, and there-
fore, there exist several studies on fairness and attacker detection. We
discuss some of the notable contributions here.
Fairness in FL: Though fairness received significant attention [4,
19, 44, 15] long before the inception of FL, its fundamental goal
was restricted to alleviate model overfitting and improve general-
ization in the centralized learning framework. However, achieving
fairness is even more crucial in FL due to the heterogeneous nature
of the clients. To achieve this, prior approaches (q-FFL, AFL, etc.)
employed min-max optimization [31, 8, 7, 9] and boosting worst-
performers [23, 21, 43, 25]. In both types of approaches, FL training
requires many global update rounds to reach an optimal model, and
the convergence speed gets even slower in the presence of attackers
because of unknowingly boosting the attackers’ models.

Different from our goal, some previous studies revolve around
other notions of fairness. For example, the research in [17, 45, 25]
investigated fairness from a client selection perspective by formulat-
ing an optimization problem incorporating a trade-off between long-
term fairness and short-term accuracy. The FairAvg [30] algorithm
focused on fair aggregation by treating all clients equally regardless
of the amount of data they possess.
Attacker detection in FL: In the literature on robust FL, there
are broadly two types of insider attackers, targeted and untargeted,
whose detection led to the existence of several solutions. As untar-
geted attackers aim to corrupt the whole model, via uploading ran-
dom weights or sign-flipping, they can be easily defended by using
strategic aggregation algorithms [41, 6, 5, 12] that either clip or re-
move the gradients which are far from the median model. Such an
aggregation (e.g., Krum), however, may produce an unfair model by

excluding informative updates. On the other hand, targeted attack-
ers (e.g., label-flipping and backdoor) aim to corrupt only some tar-
geted samples [37, 11, 35, 39], however, their detection is harder
because they maintain the overall performance of the model on other
classes [33]. FoolsGold [11] and FedAvg-RLR [33] can effectively
mitigate the impact of targeted attackers but fail to ensure fairness.

Some efforts have also been made to jointly achieve fairness and
robustness [16, 22]. Considering data heterogeneity as a root cause
for unfairness, in [22] and [28], the authors have developed a person-
alized model for each client, which inherently inhibits both prop-
erties. However, such solutions do not produce any single global
model, thus deviating from the design principles of FL. In contrast,
we aim to train only one fair and robust global model for all clients.

3 Problem Description

Given an FL system with a set of clients C = {c1, c2, · · · , cK} and
a local dataset with each client, the server aims to build a global
model by aggregating local models w1, w2, · · · , wK (received from
K clients) over multiple rounds. Let wk ∈ W be a set of weights
defining a mapping function h : X → Y , k ∈ {1, 2, · · · ,K}, and
W is a parameter space. By minimizing the average loss over all
clients, the server aims to learn an optimal model

w∗ = argmin
w

F (w)
Δ
=

K∑
k=1

pkFk(w), (1)

where Fk(w) is the local objective function of client ck, pk =
nk/

∑
k nk,

∑
k pk = 1, and nk denotes the number of sam-

ples with the client ck. Let the dataset stored at ck be Dk =
{(xk,j , yk,j)}nk

j=1, where x and y respectively belongs to input space
X and output space Y . By using the dataset Dk, Fk(w) is given as

Fk(w)
Δ
=

1

nk

nk∑
j=1

l(hw(xk,j), yk,j), (2)

where l(·, ·) is an underlying loss function. At any round τ , once the
global model is received by clients, they employ Stochastic Gradient
Descent (SGD) with ητ learning rate to update the model as

∀k ∈ [K] in parallel, wτ+1
k ← wτ − ητ∇Fk(w

τ ). (3)

Later, using a standard FedAvg algorithm [29], the local models are
aggregated at the server to compute a global model for the next round
as wτ+1 =

∑
k pkw

τ+1
k .

3.1 Defining Fairness

Due to the participation of unconditional clients with non-IID data,
achieving a uniform test performance among the clients is a chal-
lenging task. To quantify fairness, we adopt the following definition.

Definition 1. Let ρk(w) denote the testing performance (i.e., av-
erage accuracy over all classes) of a global model w achieved by
client ck on its local dataset. Given two models w and w′, the
model w is said to be more fair than w′ if V ar({ρk(w)}1≤k≤K) <
V ar({ρk(w′)}1≤k≤K), where V ar is variance. It essentially means
that a model that yields smaller performance disparities across par-
ticipants is fair. We measure fairness only across benign devices.

Note that in our implementation, ρk(w) is a set of class-wise ac-
curacies and we refer to the performance as an average accuracy un-
less mentioned specifically. According to FL literature [31, 23, 22],
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Definition 1 has been widely adopted for fairness. However, this no-
tion of fairness is different from the studies [17, 45] where fairness
refers to a fair selection of clients during aggregation, which has no
relation with performance discrepancies. Another set of traditional
definitions sought fairness from the lens of demographic disparities
in centralized systems [10, 32] and in FL [7].

3.2 Fairness in the Presence of Attackers

When FL systems are deployed in the wild, they become suscepti-
ble to insider attackers who intend to corrupt the model. We consider
only targeted attackers who are interested in reducing model perfor-
mance on a specific task while keeping the overall performance al-
most unchanged [3], thereby they can avoid suspicion and gain trust
from the server; consequently, their detection becomes challenging.
Attacker’s capability: An attacker has access to the local data of
a compromised client and is aware of the server’s defense strategy.
The attackers are non-persistent, meaning they do not play attack in
every FL round, and thus the history-based defense mechanisms such
as [11, 12] would not be useful anymore. In our FL setup, the attacker
can inject poison through label-flipping or backdoor attack on the
targeted samples in the local dataset before updating the model.
Challenge: Under the considered targeted attacks, the global model
would learn wrong mapping for the targeted label, causing an overall
accuracy drop on benign clients, and in turn, performance variance
would increase across all the clients. Due to the non-persistent na-
ture of attackers, they are hard to track and may elevate performance
disparities even further if left undetected in early rounds.
Objective: We aim to learn a fair global model in the existence of
insider attackers. Specifically, the model must satisfy the fairness
constraint (stated in Definition 1) across benign clients as the train-
ing progresses, and meanwhile, the server should isolate adversaries
and mitigate their influence on the model. Now, the objective of the
server, expressed in Eq. 1, can be re-written as

w∗ = argmin
w

F (w)
Δ
=

Kben∑
k=1

pkFk(w), (4)

s.t. V ar{ρk(w∗)}Kben
k=1 < V ar{ρk(w′)}Kben

k=1 , ∀w′( �= w∗) ∈W

where Kben ≤ K denotes the number of benign client. Each
client sends its local model to the server at scheduled intervals. The
communication-related issues are beyond the scope of this work.

4 Proposed Solution: FFL+AD

This section presents our solution scheme, FFL+AD, to aid the FL
server in learning a fair and robust model. There are two major tasks:
(i) how to separate out poisonous local models? (ii) how to minimize
performance disparities across benign clients? While accomplishing
the tasks, our solution makes the following assumptions:

• Each client receives a boosting factor (denoted by β) along with
the global model at every round.

• Before retraining, each client calculates the performance of the
global model on the local data, which is exchanged with the server
along with the updated local model and training loss.

• All the attackers inject corruption into the same class label or sam-
ples. The number of attackers is always less than benign ones,
which is true in real-world scenarios.

Note that the above assumptions abide by the design principles of
FL and do not incur any additional communication costs. For better

understanding, we present Figure 2 illustrating a single round com-
munication between the server and a client ck. At round τ = 1, the
server initiates FL by sending a global model with random weights
wτ and βk = 0 to client ck for k ∈ 1, 2, · · · ,K. The client ck would
upload the performance ρk(w

τ ), updated model wτ
k , and training

loss Lk to the server. The value of βk is determined based on the
spread of loss across benign clients. For notational brevity, we use
ρk in place of ρk(wτ ), which essentially includes class-wise accu-
racy {a1, a2, · · · , al} for all l class labels.

Figure 2: Overview of FFL+AD with its steps for any single round
communication between the server and a client ck.

4.1 Identify Suspicious Clients

Let wτ
1 , w

τ
2 , · · · , wτ

K be the received models at round τ . By exploit-
ing the fact that targeted attackers are closer to each other than the
benign clients, we compute pair-wise Euclidean distance between ev-
ery pair of clients ci and cj , and obtain a distance matrix D as

D[i, j] = D[j, i] = dist(wτ
i , w

τ
j ), (5)

where 1 ≤ i < j ≤ K. We preferred Euclidean distance over cosine
similarity because the targeted attackers share a common target and
their local models (i.e., the parameters) stay closer (in the Euclidean
space) to each other compared to the benign clients. The cosine sim-
ilarity could be a better choice if the untargeted attackers, such as
sign-flipping, also participate in FL. We employ K −medoid clus-
tering with K = 2 to partition the models into two groups. Unlike
traditional clustering, we supply pre-computed D and two farthest
clients (found using D) as initial centroids to achieve faster conver-
gence. We clarify that the matrix D is “pre-computed” because it
does not need to be recomputed during clustering in the same round,
however, it is still to be recomputed at the beginning of each round.
By leveraging the stated assumptions, our scheme FFL+AD anno-
tates the clients of the smaller group as suspicious participants.

Remark 1. Since there are high chances of false positive attackers
due to non-IID data, the suspected models are still to be investigated.

4.2 Investigate Suspected Models

This step is crucial to avoid false positives that may occur due to
the closeness of some benign clients to attackers. Thus, in FFL+AD,
we recruit top-r performers (in experiments, r = 10% of the to-
tal clients) for verifying the suspected clients before excluding their
models from aggregation. Top performers are picked from the pool
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of non-suspected clients based on their reported performance values.
Note that the list of top-r clients is subject to change in every round.

Let S be the number of suspected models. The server investigates
these models by executing the following steps:

1. At first, it assigns each of S models to a top performer in a round-
robin manner. Some clients may receive more than one model
when S > top-r or may not receive any when S < top-r.

2. Each top performer evaluates the model on its local dataset and
uploads class-wise accuracy back to the server. For any model
s ∈ [S], let ρs = {a1, a2, · · · , al} be the class-wise performance
reported by the suspected client and ρ̂s = {â1, â2, · · · , âl} be the
performance reported by a top performer.

3. For class label j and model s ∈ [S], if aj − âj > φ then the class
j is marked as a dirty label (which might be attacked). Such labels
are verified across all s. Later, the class that was marked dirty by
the majority of the models is treated as a targeted attacked label.
And the model showing such label as suspicion is an attacker.

Computing φ: Intuitively, we know that the performance of a client
can vary within the range from highest performer to lowest. From
the pool of non-suspected clients, let ck and ck′ be the highest and
lowest performing clients, respectively, and their respective reported
class-wise accuracy values (uploaded along with the retrained model,
see Fig. 2) are ρk = {a1, a2, · · · , al} and ρk′ = {a′

1, a
′
2, · · · , a

′
l}.

Now, we can compute a threshold

φ = max
1≤j≤l

{|a
′
j − aj |}, (6)

with φ→ 0 as the training progresses.

Remark 2. Our FFl+AD scheme is robust to the strategic attackers
who also report fake high performance. However, this fake behavior
reveals their malign nature when their models are found suspicious.

Remark 3. With two steps (Sections 4.1 and 4.2) process, FFL+AD
does not rely on the history of clients, thus it can capture non-
persistent attackers without fail, which makes our scheme more ro-
bust and unique.

Remark 4. By identifying the attacked class label, FFL+AD unfolds
the attackers’ interest or target, which helps to learn the susceptible
class labels in the given context.

4.3 Fairness through Variable Boosting

Upon isolating attackers, we present a novel variable-boosting strat-
egy aiming to minimize disparities among participants without di-
minishing the overall accuracy of the global model. The idea is to
boost low-performing clients dynamically through regularization.

Let Kben denote the number of benign clients and Lk ∈ R is
the training loss (error) obtained by client ck where k ∈ [Kben].
At every round τ ≥ 2, the server first computes mean loss across
all top-r performers, and then for each client, it calculates a variable
boosting factor as

βk =

{∣∣∣∑top-r
i=1 Li

top-r − Lk

∣∣∣ If k ∈ [Kben] and k /∈ [top-r]
0 otherwise.

(7)

These boosting factors are sent to the respective clients for intro-
ducing fairness by penalizing training loss. With this, the client ck
would attempt to optimize:

min
wτ

Fk(w
τ )

Δ
=

1

nk

nk∑
j=1

l(hwτ (xk,j), yk,j) + λβk, (8)

Algorithm 1 FFL+AD steps for any round τ ≥ 2

Input: (i) Local models wτ
1 , w

τ
2 , · · · , wτ

K at τ
(ii) Performance ρk = {a1, a2, · · · , al} for k ∈ {1, 2, · · · ,K}
(iii) Training loss Lk, ∀k
Output: A fair global model (wτ+1) and βk, ∀k

1: Compute a distance matrix D using Eq. 5
2: Identify suspicious models using K −medoid with K = 2
3: Set top-r← top r% performers from non-suspected clients
4: Compute φ using Eq. 6

/* Let S denote the number of suspected models */
5: Assign each model s ∈ [S] to a top-r client

/* Let ρs = {a1, a2, · · · , al} and ρ̂s = {â1, â2, · · · , âl} be the
performance reported by the suspected client and predicted by a
top performer, respectively */

6: Set dirty-labels← []
7: for each model s ∈ [S] do
8: dirty-labels[s]← []
9: for j = 1 to l do

10: if aj − âj > φ then
11: dirty-labels[s]← dirty-labels[s] ∪ j

12: attacked-label = argmax
j

{count(dirty-labels[s][j])}, ∀s, j

13: for each s ∈ [S] do
14: if attacked-label ∈ dirty-labels[s] then
15: Mark the client (who sent model s) as an attacker.

/* Let Kben be the number of benign clients */
16: Compute aggregated model wτ+1 =

∑Kben
k=1 pkw

τ+1
k

17: for k = 1 to K do
18: Compute boosting factor βk for client ck using Eq. 7
19: return wτ+1 along with βk to ck

Note: Each client ck obtains wτ+1
k using Eq. 8 and uploads to

the server for the next round τ + 1.

where the term λβk is a regularizer to penalize the spread of loss
across the clients and λ ∈ R

+ balances fairness and performance.
Higher the value of λ, the more the fairness. We choose λ empirically
from a range [0, 5] with an increment of 0.5 where both performance
and fairness are maximum.
Optimization: Given the boosting factors, at any round τ , the global
objective (defined in Eq. 4) translates to the following:

min
wτ

F (wτ )
Δ
=

Kben∑
k=1

pkFk(w
τ ) +

Kben−top-r∑
i=1

λβi. (9)

By limiting the boosting only to benign clients, the suspected clients
never get boosted, thus avoiding the adverse effect that may occur
due to the boosting of likely attackers. The value of boosting term
varies across the benign clients and it gets updated in every round.

Remark 5. By sending the boosting factor (a single scalar value) as
a piggyback with the global model, the fairness does not impose any
communication overhead.

Remark 6. Higher the value of β, the more the emphasis on a
client’s model. As the objective of the server is to minimize the total
empirical loss (defined in Eq. 9), the low-performing benign clients
would receive more importance as they would incur a higher loss.

Aggregation at round τ : Finally, the global model is computed as
wτ+1 =

∑Kben
k=1 pkw

τ+1
k . By excluding the malicious models from

aggregation, their effect is automatically eliminated from the global
model. As τ increases, the attackers’ models become apparent as they
come very close to each other and their performances drop drastically
on the targeted label. Algorithm 1 summarizes the steps of FFL+AD.
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In a similar work, q-FFL [23], the fairness is also achieved by
up-weighting the empirical loss of clients with a static factor q as∑K

k=1
pk
q+1

F q+1
k (w). However, q-FFL may yield a worse model w∗

if a low-performing client is an attacker. In addition, the reweighing
of all the clients (including top-performers) may delay the conver-
gence. Another work on the same track is AFL [31], which attempted
to overcome this limitation by boosting only low-performers, how-
ever, it can not withstand insider attackers besides that it employed
static boosting. In contrast, FFL+AD applies variable boosting and
consistently reduces the disparities at every round, thereby produc-
ing an optimal model faster than q-FFL and AFL (see Section 5.3).

4.4 Convergence Guarantee

Considering FedAvg [29] for aggregation, the convergence guaran-
tee of FFL+AD is similar to FedAvg with non-IID data [24] except
one difference that is the influence of regularization term (see Eq. 8)
on the training process for benign clients. For deriving our conver-
gence results, we adopt Assumptions 1 − 3 [24, 26, 42, 36], on the
local objective functions Fk, where 1 ≤ k ≤ K. To follow standard
notations, we re-use β, but it does not refer to the boosting factor.

Assumption 1. Fk is β-smooth, i.e., there exists a constant β ∈
[0,∞) such that, ∀w,w′ ∈ R

d,

Fk(w)− Fk(w
′) ≤ (w − w′)T∇Fk(w

′) +
β

2

∥∥w − w′∥∥2

2
.

Assumption 2. Fk is μ-strongly convex, i.e., there exists a constant
μ ∈ [0,∞) such that, ∀w,w′ ∈ R

d,

Fk(w)− Fk(w
′) ≥ (w − w′)T∇Fk(w

′) +
μ

2

∥∥w − w′∥∥2

2
.

Assumption 3. For a uniformly random chosen data batch ζ
(t)
k from

local data Dk at device k, the variance of stochastic gradients is
bounded by a constant σ > 0, i.e.,

E
ζ
(t)
k

∼Dk

∥∥∥∇Fk(w
τ,(t)
k ; ζ

(t)
k )−∇Fk(w

τ,(t)
k )

∥∥∥2

≤ σ2
k,

where t denotes a single local update within round τ . The norm of
stochastic gradients is bounded by a constant G > 0,

E
ζ
(t)
k

∼Dk

∥∥∥∇Fk(w
τ,(t)
k ; ζ

(t)
k )

∥∥∥2

≤ G2.

Degree of heterogeneity: Assume w∗ and w∗
k be the optimized

global and local model, respectively. The degree of heterogeneity
across K devices can be quantified as

Γ = F (w∗)−
K∑

k=1

pkF (w∗
k)

Large the value of Γ, the higher the degree of heterogeneity. Ideally,
Γ→ 0 as the learning advances when the data is IID.

Theorem 1. Let I denote the total number of local updates that each
client performs at every FL round τ . Under Assumptions 1 to 3 with
defined β, μ, σk, G, κ = β

μ
, γ = max{8κ, I}, learning rate ητ,(t) =

2
μ(γ+τI+t)

, and data heterogeneity Γ, the FedAvg with our scheme

FFL+AD would satisfy the following

E[F (wT )]− F (w∗) ≤ 2κ

γ + T IK

(
A+ E

∥∥ϕτ,(t)
∥∥2
2
B

μ
+ C

)
,

where, A =

K∑
k=1

p2k + 6LΓ + 8(I − 1)2G2,

B =

K∑
k=1

p2k + 8(I − 1)2, C =
μγ

4
E
∥∥w1 − w∗∥∥2 (10)

Proof. Our proof has two main parts. The first part includes deriving
new bounds similar to Assumption 3 for our scheme FFL+AD, and
the latter presents the convergence guarantee using those bounds.
(i) New bounds with our scheme: Let ϕτ,(t) denote the amount of
change in gradients due to the regularization term (defined in Eq. 8).
Within τ -th FL round for t-th local update, the model on the client
ck is essentially updated (by expanding Eq. 3) as:

∇F
′
k(w

τ,(t)
k ; ζ

(t)
k ) = ∇Fk(w

τ,(t)
k ; ζ

(t)
k ) + ϕτ,(t)

w
τ,(t+1)
k = w

τ,(t)
k − ητ,(t)∇F

′
k(w

τ,(t)
k ; ζ

(t)
k ), (11)

Now, the expected distance between raw gradients (without
FFL+AD) and the gradients with FFL+AD is

E

∥∥∥∇F
′
k(w

τ,(t)
k ; ζ

(t)
k )−∇Fk(w

τ,(t)
k ; ζ

(t)
k )

∥∥∥2

2

= E

∥∥∥ϕτ,(t)
∥∥∥2

2
(12)

By using Eq. 12 and norm triangle inequality, the new bound on the
variance of stochastic gradients for Assumption 3 is

E

∥∥∥∇F
′
k(w

τ,(t)
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(t)
k )−∇Fk(w
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k )
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k )−∇Fk(w

τ,(t)
k )
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≤E
∥∥∥ϕτ,(t)
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2
+ σ2

k (13)

Similarly, the new bound on the norm of gradients is

E

∥∥∥∇F
′
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k )
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2
+G2 (14)

(ii) Convergence guarantee: From the FedAvg convergence (Theo-
rem 1 in [24]), we have

E[F (wT )]− F (w∗)

≤ κ

γ + T

(
2D

μ
+

μγ

2
E
∥∥w1 − w∗∥∥2

)
(15)

where, T is the total number of gradient updates across all clients
to reach an optimal solution, which is equivalent to T IK, D =∑K

k=1 p
2
kσ

2
k + 6LΓ + 8(I − 1)2G2, and w1 is an initial model at

the server. Now, by substituting the value of D and applying the new
bounds from Eq. 13 and 14, we can re-write Eq. 15 as

≤ κ

γ + T IK

⎛
⎝2

{∑K
k=1 p

2
k(E

∥∥ϕτ,(t)
∥∥2
2
+ σ2

k) + 6LΓ
}

μ

+
2
{
8(I − 1)2(E

∥∥ϕτ,(t)
∥∥2
2
+G2)

}
μ

+
μγ

2
E
∥∥w1 − w∗∥∥2

⎞
⎠

≤ 2κ

γ + T IK

(
A+ E

∥∥ϕτ,(t)
∥∥2
2
B

μ
+ C

)
, (16)
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where, A =

K∑
k=1

p2k + 6LΓ + 8(I − 1)2G2,

B =

K∑
k=1

p2k + 8(I − 1)2, C =
μγ

4
E
∥∥w1 − w∗∥∥2

Under Assumptions 1, 2, 3 and Theorem 1, the global model con-
verges to a fair optimal solution w∗ at a rate of O( I

T ). We get this
rate upon simplifying Eq. 10.

Remark 7. Theorem 1 shows a convergence rate O( I
T ) similar to

O( I
2

T
) in FedAvg (T is the total number of gradient updates across

all clients); however, it is affected by the amount of change in gradi-
ents (denoted by ϕτ,(t)) due to boosting.

5 Experimental Evaluation

In this section, we empirically demonstrate that fairness is achiev-
able in the presence of insider targeted attackers. Our scheme offers
better fairness than the strong baseline algorithms, with almost no
compromise on average accuracy.

5.1 Datasets and Implementation Details

We evaluate the effectiveness of our scheme on image classifica-
tion tasks using two benchmark datasets: MNIST [20] and Fashion-
MNIST [40]. These datasets have been extensively used in the
FL [13, 23, 31, 12]. MNIST consists of 70, 000 labeled images (with
dimension 28 × 28) of handwritten digits from 0 − 9. We train a
digit classification model comprising of 2 convolutional neural net-
work (CNN) followed by 2 fully connected layers. Fashion-MNIST
dataset also consists of 70, 000 images (with dimension 28×28) be-
longing to 10 different categories such as “Tshirt”, “Trouser”, “Bag”,
etc. Since its classification is more complex than MNIST, we employ
a deeper model with 6 CNN and 1 fully connected layers.
Implementation details: We simulated our FL framework with a
server and 100 clients, in Python programming language using Py-
Torch libraries. The classification model was trained for 30 commu-
nication rounds with 5 local epochs at each client in every round.
The model adopts an SGD optimizer with a learning rate = 0.01
and momentum = 0.5. For non-IID data distribution, we employ
Dirichlet distribution [38, 2] with a hyper-parameter α = 0.9. The
fairness balance parameter λ, used in Eq. 8, is fine-tuned over the
range [0.5, 1, 1.5, · · · , 4.5, 5] for both datasets. We performed mul-
tiple experiments to choose an appropriate value of λ and set it
to 3 for MNIST and 4.5 for Fashion-MNIST (see Appendix here:
https://drive.google.com/file/d/1YaGpiqDvZoQexwQUpS_autOwpq
F4Y91N/view?usp=sharing). The source code is available at
https://github.com/agupta582/FFL-AD.
Attack simulation: For label-flipping attackers, we flip (replace) the
labels of the images of digit “2” by “8” in MNIST and images of
“Trouser” by label “Bag” in Fashion-MNIST. For backdoor attack-
ers, we embedded a plus (“+”) pattern of size 5 × 5 pixels into the
images (see Appendix). Each attacker injects corruption into 50% of
the total images and modifies their labels to the targeted labels (“8”
and “Bag” respectively for MNIST and Fashion-MNIST dataset.).

5.2 Analyzing Robustness (without Fairness)

With a varying fraction of attackers (including both label-flipping
and backdoor), we conduct experiments to quantify the impact of

corruption on test accuracy and report the results1 for FFL+AD, Fe-
dAvg, and strong prior defenses including FoolsGold [11], Krum [5],
and FedAvg-RLR [33], in Figure 3. FFL+AD achieves steady perfor-
mance regardless of the fraction of attackers. At 40% fraction, with
an absolute accuracy gain of 6.5% for MNIST and 8.3% for Fashion-
MNIST, FFL+AD is more robust than a highly robust scheme Fools-
Gold. It is important to note that FedAvg is still the best option when
the corruption level of low.
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Figure 3: Impact of attackers on the test accuracies.

Next, we report the attack success rate (ASR) [38] in Figure 4.
ASR is calculated as # successfully attacked samples

# attacked samples . The lower the ASR, the
better the robustness. FFL+AD consistently outperforms the prior
schemes with almost negligible ASR, indicating the effectiveness
at mitigating the impact of attackers on the targeted labels (i.e.,
“2” and “Trouser”). Although FedAvg-RLR and FoolsGold perform
quite similarly to ours in some cases, they never gave better ASR.
Besides that, FFL+AD also improves the fairness of the model (see
Section 5.4). Though FedAvg reaches a good average accuracy up to
10% fraction of attackers, it failed on ASR badly for both datasets.
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Figure 4: Attack success rate on the attacked label for both datasets.

5.3 Analyzing Fairness (without Attackers)

We analyze the fairness of the global model, trained over 50 rounds,
based on the variance of test performances (i.e., accuracy) achieved
by all 100 clients. The results, reported in Figure 5, also include two
state-of-the-art algorithms, q-FFL (specifically q-FedAvg with q = 5
for both the datasets) [23], AFL [31], and a baseline scheme FedAvg.
For the q-FFL and AFL implementation, we reused the source code
from https://github.com/litian96/fair_flearn. The results clearly indi-
cate that FFL+AD continuously improves the fairness by reducing
the variance (Var) as training progresses and it converges after 30th

round with variance 17.6, whereas q-FFL and AFL could hardly drop
till 112.4 and 106.5, respectively for Fashion-MNIST dataset in no-
attacker case. While FFL+AD, q-FFL, and AFL show a downward

1 Implementation of the prior defense methods including Krum and Fools-
Gold, is borrowed from [38].
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Table 1: Accuracy and fairness comparison in the presence of targeted attackers. [Acc: Accuracy, Var: variance over the clients’ performances]

Schemes

MNIST dataset Fashion-MNIST dataset

no-attacker 20% attackers 40% attackers no-attacker 20% attackers 40% attackers

Acc. (%) Var Acc. (%) Var Acc. (%) Var Acc. (%) Var Acc. (%) Var Acc. (%) Var
q-FFL 94.6 91.5 89.3 135.7 78.1 185.3 86.2 112.4 78.9 147.8 68.1 181.6
AFL 94.2 103.2 81.9 122.6 69.3 166.5 85.2 106.5 75.3 152.5 62.3 191.6

FoolsGold 95.9 170.2 94.2 205.6 93.8 193.2 87.2 188.3 85.9 219.4 85.3 229.5
FedAvg-RLR 96.2 176.2 92.2 197.5 91.6 210.1 85.5 182.6 86.5 211.4 84.8 221.3

FedAvg 96.6 195.1 91.8 210.4 76.2 227.4 88.9 186.5 85.8 212.3 63.2 267.2
FFL+AD (Ours) 97.2 20.2 96.9 24.1 96.9 28.7 89.2 17.6 88.9 22.1 89.4 23.5

trend, FedAvg could not stabilize because it does not incorporate any
fairness improvement strategy and the clients have non-IID data.
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Figure 5: Variance of the test performances over the FL rounds.
[Lower the variance, the better the scheme]

Additionally, we carried out experiments with a varying number
of clients to analyze the spread of test accuracies, as depicted via box
plots in Figure 6. Besides the gain in average accuracy, our scheme
outperforms q-FFL by achieving much lesser disparities among the
clients. For instance, with 100 clients for MNIST dataset, the dif-
ference between the lowest and highest performer is ≈ 8.6% for
FFL+AD, which is more than 20% for q-FFL.
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Figure 6: Spread of test accuracies with a varying number of clients.

5.4 Fairness in the Presence of Attackers

Finally, we carry out the experiments for analyzing fairness in the
presence of the attackers (including both label-flipping and back-
door) and report the average test accuracy (Acc) and variance (Var)
of the accuracies across all clients, in Table 1. FFL+AD outperforms
(substantially) all the competitive schemes, specifically when the
percentage of attackers increases. In spite of that q-FFL and AFL
were originally developed to deal with the fairness issue, they show
large variance values (e.g., more than 150 with 40% attackers). It
is because of boosting the attackers’ models unknowingly. On the
other side, while focusing on robustness, FoolsGold, and FedAvg-
RLR achieved comparatively good accuracy in all the cases, but they
failed to yield a fair model as Var > 190 for both datasets when the
corruption level is high.

Additionally, we plot the histogram of test accuracy distribution
across 60 benign clients (excluding all 40 attackers) for Fashion-
MNIST dataset in Figure 7. It is clear that our scheme can achieve
almost uniform distribution by squeezing the spread between 84.8%
and 91.1%, though Ditto algorithm [22] (the code is borrowed from
https://github.com/litian96/ditto) also managed to reduce the vari-
ance but the average accuracy dropped by around 4%. In contrast,
the fair scheme q-FFL shows a much higher variation (from 52.2%
to 73.7%) than other algorithms. See Appendix for more results.
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Figure 7: Distribution of the test accuracies across 60 benign clients
(excluding 40 attackers) for Fashion-MNIST dataset.

6 Conclusion

We proposed a novel fair federated learning scheme with an at-
tacker detection method, abbreviated as FFL+AD. By isolating the
targeted attackers with the help of K −medoid and top performers,
our scheme is adept at reducing the performance disparities (across
participants) to a large extent by strategically boosting the model
weights of low-performers (only benign clients). We presented a
novel regularization framework for the local objective function to im-
prove fairness. Under standard assumptions, FFL+AD follows a con-
vergence rate similar to FedAvg with new bounds. With non-IID data
across 100 clients including 40% attackers, our experimental results
demonstrated that FFL+AD can outperform the strong prior algo-
rithms on fairness and attack success rate while achieving a compet-
itive accuracy on image classification tasks. Currently, the proposed
solution can detect only the attackers who share a common malign
objective and must corrupt the same target label, which we plan to
address in the future besides scaling the solution for non-targeted at-
tackers and more diverse datasets such as CIFAR-100 and ImageNet.
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