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Abstract. Large Language Models have shown great capability
to comprehend natural language and provide reasonable responses.
However, previous researches have shown weak performance of these
models on low-resource (long-tail) languages. It remains to be a prob-
lem to mitigate the performance gap between long-tail languages and
rich-resource ones, which is referred to as long-tail language represen-
tation collapsing. Though some previous works can generate pseudo-
parallel corpora with the auto-regressive generation, this generation
progress is time-consuming and remains low quality, particularly for
long-tail languages. In this paper, we propose a (X) Cross-lingual
Bootstrapped Unsupervised Fine-tuning Framework (X-BUFF) to mit-
igate long-tail language representation collapsing. X-BUFF iteratively
updates cross-lingual PLMs in a curriculum way. In each iteration of
X-BUFF, we (1) select sentences with complementary semantics from
monolingual corpora in long-tail languages. (2) match these selected
sentences with semantic equivalent sentences in many other languages
to create parallel sentence pairs, which we then merge with previous
sentence pairs to build a larger and more difficult bootstrapped parallel
queue. (3) fine-tune the PLMs with the bootstrapped parallel queue.
Extensive experiments show that X-BUFF can mitigate the long-tail
language representation collapsing problem in cross-lingual PLMs
and achieve significant improvements over the previous baselines on
several cross-lingual evaluation benchmarks.

1 Introduction

Large language models (LLMs) (e.g., ChatGPT, GPT-3 [9], LaMDA
[44], PaLM [14], etc.) have led to great improvements on numerous
natural language tasks, such as text generation [37], text classification
[42] and natural language inference [7, 49]. However, in the cross-
lingual scenario, these LLMs have shown weak performance on many
languages [29, 37], even lag behind some traditional Pre-trained Lan-
guage Models (PLMs) [38, 39, 18] on low resource languages. Hence,
it remains to be solved how to improve cross-lingual transferability
on natural language tasks, especially on low-resource languages.

The typical cross-lingual PLMs, such as mBERT [18], XLM [16],
and XLM-R [15], have demonstrated promising knowledge trans-
ferability across a huge number of languages. Cross-lingual PLMs
usually involve multilingual masked language modeling (MLM) [18]
or translation language modeling (TLM) [16] as the training objective.
The goal of both tasks is to reproduce each masked token given the
rest original ones. They typically perform token-level optimization,
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Figure 1: Performance discrepancy between top-20 and long-tail 92
languages on Tatoeba [4], involving three promising cross-lingual
PLMs: XLM-R [15], INFOXLM [11] and HICTL [47].

without sufficient sentence-level optimization. This poses a big chal-
lenge for cross-lingual models to capture the exact meaning of the
whole sentence. To this end, various methods have been developed
to learn sentence-level representations that can express global seman-
tics, with several well-designed techniques such as contrastive learn-
ing [26, 47, 23, 11, 30, 52, 53] and disentanglement [50]. Although
these methods have improved the capability of language-agnostic
representations, studies reveal that the performance of cross-lingual
transfer fluctuates within a wide range among different languages.

We investigate this on a cross-lingual sentence retrieval task, e.g.,
Tatoeba [4], and evaluate performance without fine-tuning on all 112
languages. We observe that XLM-R [15] demonstrates an absolute
48% discrepancy of retrieval accuracy between the top 20 languages
and the rest (we refer to these languages as long-tail languages).
And this statistic further rises to 51% and 54% towards the perfor-
mances of HICTL [47] and INFOXLM [11], respectively. We call this
the representation collapsing problem of long-tail languages. This
result severely hinders the usage of cross-lingual PLMs, especially
on those tasks in long-tail language scenarios. Some existing works
[28, 36] have tried to generate a pseudo-parallel corpus to balance the
scale of parallel corpora across languages. However, the generation
of pseudo-parallel corpora is often time-consuming and shows low
quality, particularly for long-tail languages. For some languages (such
as pa, or, ps, etc.), generating pseudo-parallel corpora is not even
available.

The underlying theme of this problem is that the amount of parallel
data varies dramatically across languages. More concretely, parallel
corpora are mainly distributed in a few dozen head languages, while
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most long-tail languages only possess a small amount of bilingual
data [2, 5]. With this in mind, we argue that existing state-of-the-art
techniques have severe limitations to learning better cross-lingual rep-
resentations. For those languages without parallel data, it is difficult to
pre-train a cross-lingual encoder with contrastive learning. Inspired by
the bootstrapping algorithm in information extraction [8, 1], we try to
take a small parallel corpus as a seed and gradually accumulate more
parallel sentence pairs with certain rules. However, as semantics are
abstract, it is still hard to apply traditional bootstrapping methods [22]
to accumulate sentence pairs, for we cannot find universal traceable
syntax rules among any two parallel sentences.

In this paper, we propose X-BUFF, which aims at fine-tuning the
long-tail language representations of cross-lingual PLMs with mono-
lingual corpora in a curriculum way. X-BUFF forms the supervision
signal by iteratively constructing parallel sentence pairs and simulta-
neously fine-tuning the cross-lingual PLM within each iteration. The
iteratively accumulated parallel sentence pairs are denoted as boot-
strapped parallel queue. Specifically, in each iteration of X-BUFF, we
(1) select sentences with semantics complement to bootstrapped par-
allel queue, where semantic similarity is measured via a cross-lingual
PLM. (2) match these chosen sentences with semantic equivalent sen-
tences in many other languages using a semantic relation classifier to
create parallel sentence pairs, which we then merge into bootstrapped
parallel queue. (3) fine-tune the cross-lingual PLM and semantic re-
lation classifier with the bootstrapped parallel queue. During the
expansion of the bootstrapped parallel queue, the changes in the se-
mantic level of the queue will provide training samples ranging from
“easy” to “hard”. Hence, fine-tuning the two neural modules alongside
the expansion of bootstrapped parallel queue provides an intrinsic
curriculum learning [6, 32]. Extensive experiments are conducted on
5 cross-lingual tasks: XNLI [17], AmericasNLI [19], WMT21 QE
Task 1 [43], Tatoeba [4] and MultiEURLEX [10], which cover dif-
ferent types with more than 50 languages. Results demonstrate that
X-BUFF significantly outperforms state-of-the-art results on these 5
tasks. Moreover, X-BUFF greatly improves the performance of long-
tail languages. In summary, our contributions are as follows:

• To mitigate long-tail language representation collapsing, we pro-
pose X-BUFF, which can fine-tune the long-tail language repre-
sentations of cross-lingual PLMs with monolingual corpora in a
curriculum way.

• To provide comprehensive and high-quality supervision signals,
X-BUFF unifies the construction of parallel corpora and the training
of cross-lingual representations in a boot-strapped framework.

• To better adapt to new long-tail languages, we finetune the cross-
lingual PLM in a curriculum way using training samples from
bootstrapped parallel queue ranging from “easy” to “hard”.

• Extensive experiments are conducted on several cross-lingual tasks,
covering more than 50 languages and 4 different types. Results
demonstrate X-BUFF outperforms the state-of-the-art on these
tasks.

2 X-BUFF: Cross-lingual Bootstrapped
Unsupervised Fine-tuning Framework

We propose X-BUFF, which can fine-tune the long-tail language repre-
sentation of cross-lingual PLMs with excessive monolingual corpora.
X-BUFF can iteratively construct a bootstrapped parallel queue with
monolingual corpora and simultaneously fine-tune neural modules.
Each iteration contains three steps, as illustrated in Figure 2, (1) search

sentences with complementary semantics. (2) match chosen comple-
ment sentences to parallel sentence pairs and update bootstrapped
parallel queue. (3) curriculum fine-tune cross-lingual PLM with the
new bootstrapped parallel queue. Details about the iteration process
are in §2.2. The iteration will first start on one long-tail language and
continues to other long-tail languages until convergence on this long-
tail language. We further demonstrate the whole process of X-BUFF

in Algorithm 1.

2.1 Basic Notations

Long-tail Languages Languages that possess only a few parallel
bilingual data, or do not have any parallel data, are referred to as long-
tail languages T . These long-tail languages usually have excessive
monolingual data. In X-BUFF, for one long-tail language x ∈ T ,
we denote its monolingual corpus as Dx = {xd} with xd to be the
sentence in the monolingual data.

Anchor Languages Languages with large parallel corpora are
denoted as anchor languages, and they can be easily aligned into
the unified continuous space by traditional pre-training techniques.
Hence, we use sentences in these languages as anchor points to help
map other long-tail languages to the representation space. In X-BUFF,
we group all sentences in anchor languages together as an anchor
language corpus Dk = {kd′}, where kd′ means the sentence in
anchor language corpus.

Bootstrapped Parallel Queue We refer to the parallel corpus
we construct at iteration t as bootstrapped parallel queue Qt

〈x,k〉. It
contains parallel sentence pair 〈xq,kq〉, where xq are selected from
monolingual long-tail language corpus Dx, and kq denotes a semantic
equivalent counterparts of xq matched from anchor language corpus
Dk. The bootstrapped parallel queue will iteratively accumulate new
sentence pairs and it expands as a snowball.

Complement Sentence/Parallel Set In iteration t, we refer to the
sentences we selected in step 1 as complement sentence set Ct

〈x〉,
which contains sentence xc whose semantics are complement to
sentences in bootstrapped parallel queue. Then, in step 2, we refer
to the matched parallel sentence pairs as complement parallel set
Ct
〈x,k〉, which contains sentence xc in long-tail languages and its

semantic equivalent counterparts kc in anchor language corpus Dk.
Sentence pair 〈xc,kc〉 in complement parallel set is accumulated into
bootstrapped parallel queue during each iteration t.

2.2 Iteration Process of X-BUFF

X-BUFF will first start on one long-tail language and continues to
other long-tail languages until convergence on this long-tail language.

Initialization

We first initialize the bootstrapped parallel queue Q0
〈x,k〉 with the few

parallel bilingual data for long-tail language x. If long-tail language
x does not possess any bilingual data, we set Q0

〈x,k〉 = ∅.

Step 1: Select Sentences with Complementary Semantics

To enrich the semantic diversity of the bootstrapped parallel queue,
X-BUFF focuses on selecting sentences, showing minimum semantic

P. Guo et al. / Mitigating Long-Tail Language Representation Collapsing via Cross-Lingual Bootstrapped Unsupervised Fine-Tuning 941



Semantic Relation
Classifier

Candidate Sentence Pair

Anchor Language Corpus

Decision
Boundary

Positive  Pairs
Negative Pairs

Complement Parallel Set

Curriculum Fine-tuning

Cross-Entropy Fine-tune

Step 1: Select Sentences with Complementary Semantics

Stop Iteration
when

Complement Sentence Set

Bottom-K

Cross-lingual
PLM

Semantic Overlapping Calculation
Long-tail Language Corpus

Sort
Mean

Bootstrapped Parallel Queue

+ - + - + -

+ - + - + -

+ - + - + -

Predict Semantic Relation

Contrastive Fine-tune

Step 3: Curriculum Fine-tune PLM

Step 2: Match Complement Sentence Set to Parallel

Figure 2: Illustration of one iteration for X-BUFF, involving three steps. Step 1: We select sentences x9,x4,xd (dark blue) from long-tail
language corpus Dx, for the semantics in these sentences is complement to bootstrapped parallel queue Qt

〈x,k〉. Step 2: We retrieve sentences
in anchor languages from Dk to search sentences (dark green) which are semantic equivalent to sentences in Step 1. Step 3: We use the new
searched sentence pairs (Ct

〈x,k〉) to update bootstrapped parallel queue Qt
〈x,k〉 and use it to fine-tune cross-lingual PLM E and semantic relation

classifier G. The whole process convergences when Ct
〈x,k〉 = ∅.

overlap with the existing sentences in bootstrapped parallel queue,
from monolingual corpus Dx. To accurately model the semantic rela-
tionship between bootstrapped parallel queue and monolingual corpus,
we apply a cross-lingual PLM E to encode sentences into continuous
dense representations. Formally, given a sentence x, the continuous
representation is formulated as:

γx = g
(
E(x; ΘE)

)
(1)

where E(·; ΘE) denotes the Cross-lingual PLM with a set of trainable
parameters ΘE , γx means the output sentence representations, and
g(·) is the function to normalize ||γx|| = 1. In X-BUFF, we take the
final hidden states of “[CLS]” token as sentence representation.

Formally, the semantic similarity between the sentence xd from
monolingual corpus and bootstrapped parallel queue Qt

〈x,k〉 formu-
lates as the mean-averaged of the similarity score between xd and
every sentence pairs 〈xq,kq〉 in bootstrapped parallel queue:

s(xd,Qt
〈x,k〉) = E〈xq ,kq〉∼Qt

〈x,k〉
s(xd, 〈xq ,kq〉)

= E〈xq ,kq〉∼Qt
〈x,k〉

γx
d · γxk

q

(2)

where we use the fact that ||γx
d || = ||γxk

q || = 1 and γxk
q denotes

the representation for sentence pairs 〈xq,kq〉, which calculates as
the mean average of two sentence representations. Later, we take N
sentences from monolingual corpus with the lowest similarity score

Figure 3: Illustration about construct complement sentence set. We
rank all sentences in long-tail language corpus in descending order
according to similarity and choose the bottom-N sentences to con-
struct complement sentence set. As we have selected the bottom-N
sentences at time t, we can only select less dissimilar sentences in
iteration t+ 1.

to build complement sentence set Ct
〈x〉:

Ct
〈x〉 =

{
xd

∣∣∣min
(
s(xd,Qt

〈x,k〉), N
)
,xd ∈ Dx

}
(3)

where min(s,N) denotes the N sentences which have the minimum
semantic similarity s, as shown in Figure 3. These sentences can
complement the original semantic information in bootstrapped parallel
queue, making it more informative and comprehensive.

If bootstrapped parallel queue Q0
〈x,k〉 = ∅, we will randomly select

some sentences from Dx as complement sentence set C0
〈x〉.
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Figure 4: Illustration about curriculum fine-tuning. We use triangles
to show the query xc and its positive sample kc. The pink dot refers
to new-added negative samples while the grey one means previous
negative samples. With the expansion of bootstrapped parallel queue,
the discrepancy between d+ and d− decreases, which demonstrates
Q〈x,k〉 can provide sentence pairs ranging from easy negative samples
to hard negative samples.

Step 2: Match Complement Sentence Set to Parallel

To build parallel sentence pairs for long-tail languages, X-BUFF

matches each sentence in complement sentence set xc ∈ Ct
〈x〉 with

semantic equivalent sentences retrieved from anchor language corpus
Dk. We first group sentence xc with all sentences kd′ in anchor lan-
guage corpus as candidate sentence pairs, and use a semantic relation
classifier G to predict semantic relationship for each candidate sen-
tence pair. Take one candidate sentence pair xc and kd′ as input, it
calculates:

G(xc,kd′ ; ΘG) = σ
(
wT (γx

c − γk
d′ ) + b

)
(4)

where G(·) is the output confidence score, ΘG = {w, b} refers to the
parameters of classifier G and σ(·) is the sigmoid function. The classi-
fier takes the sentence representations γx

c and γk
d′ from cross-lingual

PLM E as inputs. We take the sentence pairs with confidence score
over a threshold δ as the corresponding semantic equivalent sentence
for the sentence xc. Formally, we match complement sentence set to
complement parallel set Ct

〈x,k〉 as:

Ct
〈x,k〉 =

{
〈xc,kd′ 〉

∣∣G(xc,kd′ ) > δ,xc ∈ Ct
〈x〉,kd′ ∈ Dk

}
(5)

After the construction of complement parallel set, X-BUFF will up-
date the bootstrapped parallel queue Qt

〈x,k〉 with complement parallel
set Ct

〈x,k〉:

Qt+1
〈x,k〉 ← Qt

〈x,k〉 + Ct
〈x,k〉 (6)

Step 3: Curriculum Fine-tune PLM with new Bootstrapped
Parallel Queue

Intrinsic Curriculum in Bootstrapped Parallel Queue In itera-
tion t of X-BUFF, we build the complement sentence set Ct

〈x〉 using
the most dissimilar N sentences with the current bootstrapped par-
allel queue Qt

〈x,k〉, as demonstrated in Eq. 3. With t increasing, the
similarity relationship between Ct

〈x〉 and Qt
〈x,k〉 will also increase.

This is intuitive for more dissimilar sentences that are already selected
in the previous steps, as illustrated in Figure 3. Hence, the similarity
relationship between complement parallel set Ct

〈x,k〉 and bootstrapped
parallel queue Qt

〈x,k〉 has:

s(Ct−1
〈x,k〉,Q

t−1
〈x,k〉) < s(Ct

〈x,k〉,Q
t
〈x,k〉) < s(Ct+1

〈x,k〉,Q
t+1
〈x,k〉) (7)

This reveals that we expand the bootstrapped parallel queue with
sentence pairs from dissimilar to similar, naturally organized in a
curriculum order. Next, we will introduce the specific log-likelihood
function to curriculum fine-tune each module in detail.

Algorithm 1: X-BUFF Algorithm

Input: Long-tail languages set T , monolingual corpus Dx for each
long-tail language x, and anchor language corpus Dk.

Output: Cross-lingual EncoderE(·; ΘE ).
for long-tail language x ∈ T do

t ← 0 ;
while not convergence do

/* Step 1: Select Sentences with
Complement Semantics */

if Qt
〈x,k〉 = ∅ then

Construct Ct
〈x〉 with random sentences from Dx ;

else
for xd ∈ Dx do

Calculate semantic overlapping between xd and
Qt

〈x,k〉 with Eq. 2 ;
end

Construct Ct
〈x〉 by selecting N dissimilar sentences

according to Eq. 3 ;
end

/* Step 2: Match Complement Sentence Set
to Parallel */

for 〈xc,kd′ 〉 ∈
(
Ct
〈x〉 ×Dk

)
do

Predict the semantic relationship between xc and
kd′ with Eq. 4 ;

end

Construct Ct
〈x,k〉 according to Eq. 5 ;

Qt+1
〈x,k〉 ← Qt

〈x,k〉 + Ct
〈x,k〉 ;

/* Step 3: Curriculum Fine-tuning */
for 〈xc,kc〉 ∈ Ct

〈x,k〉 do

Sample negative sentences kq from Qt
〈x,k〉;

Calculate L(ΘE ) with Eq. 8, update ΘE ;
Calculate L(ΘG) with Eq. 9, update ΘG ;

end

t ← t+ 1 ;
end

end

Fine-tuning Cross-lingual PLM E We apply contrastive learning
(INFONCE [35]) to update parameters ΘE . Formally, given a parallel
sentence pair 〈x,k〉, INFONCE loss encourages x to be as similar as
possible to k (the positive sample) but dissimilar to other instance k′

(the negative sample). To apply curriculum fine-tuning, in iteration t,
we choose parallel sentence pair 〈xc,kc〉 from complement parallel
set Ct

〈x,k〉 and sampling negative samples from previous bootstrapped
parallel queue Qt−1

〈x,k〉. Formally, the likelihood function to update ΘE
is:

L(ΘE) = −
|Ct

〈x,k〉|∑
c=1

log
[ es(xc,kc)

es(xc,kc) +
∑

kq∈Qt−1
〈x,k〉

es(xc,kq)

]
, (8)

where |Ct
〈x,k〉| denotes the total number of parallel sentence pairs

in Ct
〈x,k〉. This function will first fine-tune Cross-lingual PLM to

separate positive samples with easy negative samples (s(xc,kq) �
s(xc,kc)), and later focus on hard negative samples (s(xc,kq) <
s(xc,kc)) as illustrated in Figure 4.

Fine-tuning Semantic Relation Classifier G The curriculum fine-
tuning process for semantic relation classifier is similar to that for
cross-lingual encoder. We take a sentence pair 〈xc,kc〉 from com-
plement parallel set Ct

〈x,k〉 and assign its semantic relation label to 1
(semantic equivalent). Then, We pair xc with instances kq sampled
from previous bootstrapped parallel queue Qt−1

〈x,k〉 as negative pairs
with label 0. During fine-tuning, parameters in cross-lingual PLM are
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XNLI & Americans NLI (Accuracy)

Model\Language en ar bg de el es fr hi ru sw th tr ur

XLM-R 88.68 83.45 86.58 83.46 84.96 84.78 83.15 79.47 81.06 82.31 80.19 82.64 77.98
HICTL 90.39 86.75 87.76 86.12 86.67 87.37 85.38 83.45 82.88 83.76 82.46 85.78 80.94
INFOXLM 90.25 83.64 86.38 85.98 85.09 87.68 86.58 83.46 82.95 82.91 80.89 84.52 80.87
X-BUFF 91.58 88.89 89.45 86.67 87.03 88.24 87.31 86.25 84.68 87.85 84.13 88.97 86.90

vi zh aym bzd cni gn hch nah oto quy tar shp Avg.

XLM-R 78.86 77.57 48.97 50.43 41.78 58.23 42.33 54.70 35.89 59.41 51.73 41.38 68.80
HICTL 79.85 80.98 49.68 51.21 42.39 58.82 43.11 55.10 36.00 59.70 52.28 42.03 70.43
INFOXLM 81.34 80.75 49.88 51.32 42.44 58.85 43.09 55.29 36.12 59.73 52.29 42.08 70.18
X-BUFF 83.47 83.82 51.13 52.23 43.59 59.74 44.23 55.33 39.14 60.06 52.87 43.12 72.28

MultiEURLEX (Accuracy)

Model\Language en de fr it es pl ro nl el hu pt cs mt

XLM-R 67.56 66.78 67.87 68.12 67.94 66.75 67.94 67.65 66.23 65.96 67.54 67.51 61.98
HICTL 68.03 67.94 69.05 68.98 69.43 68.23 69.31 68.56 67.21 67.12 68.43 68.68 63.22
INFOXLM 68.15 68.56 69.87 69.32 69.89 68.83 70.11 69.23 67.11 67.47 68.99 69.47 63.84
X-BUFF 70.03 70.43 71.02 69.94 70.45 69.68 71.35 70.57 69.85 68.48 70.02 70.43 66.88

sv bg da fi sk lt hr sl et lv Avg.

XLM-R 67.56 66.92 67.43 66.88 66.72 66.12 67.62 67.23 65.93 67.04 66.93
HICTL 68.32 67.24 68.53 67.98 67.63 67.24 68.45 68.37 67.45 68.14 67.98
INFOXLM 68.82 67.88 69.05 68.59 68.54 67.93 68.78 68.57 67.98 68.45 68.50
X-BUFF 70.41 69.41 71.37 69.98 70.47 71.35 70.86 69.76 70.23 69.82 70.12

WMT21 QE Task 1 (Pearson)

Model\Language en-de en-zh et-en ne-en ro-en ru-en si-en en-cs en-ja km-en ps-en Avg.

XLM-R 41.23 56.63 79.77 81.21 89.15 77.49 57.83 54.71 33.55 61.23 63.54 63.30
HICTL 49.58 57.92 79.22 83.51 90.48 78.68 57.46 55.57 34.18 62.54 64.79 64.90
INFOXLM 51.67 53.45 77.47 83.41 88.95 78.81 58.08 56.44 32.54 63.48 61.66 64.18
X-BUFF 58.04 58.43 80.23 85.12 89.67 82.86 59.23 56.74 36.44 64.01 65.13 66.90

Table 1: Evaluation results on 4 cross-lingual tasks: XNLI [17], AmericasNLI [19], MultiEURLEX [10] and WMT21 QE Task 1 [43]. We
highlight long-tail languages with the color red, and the best results are marked with bold font. All results are from our re-implementation of
previous methods with the same model size and training corpora as X-BUFF.

fixed, and only parameters ΘG are updated as follows:

L(ΘG) = −
|Ct

〈x,k〉|∑
c=1

[
log G(xc,kc)

+ μ
∑

kq∈Qt−1
〈x,k〉

log
(
1− G(xc,kq)

)] (9)

where μ is the coefficient of the negative example loss. The actual
numbers of positive samples and negative samples may vary a lot, so
we give the negative part a small weight to balance the numerical size.

2.3 X-BUFF Algorithm

Algorithm 1 describes the X-BUFF process for long-tail language x.
After X-BUFF convergence on language x, we repeat the same process
on other languages until convergence on all long-tail languages.

3 Experiments

To comprehensively evaluate the cross-lingual transferability of X-
BUFF, we conduct experiments on 5 cross-lingual benchmarks with
more than 50 languages. In this section, we first introduce the training
configuration and then provide detailed evaluation results.

Figure 5: Analysis of different fine-tuning policies. We report the zero-
shot averaged accuracy on all 112 languages in Tatoeba benchmark
at different iterations. “Random Fine-tune” denotes we randomly
select N sentence pairs to fine-tune PLM, while “Separated Fine-
tune” means we first use a frozen cross-lingual PLM to construct all
parallel corpora, then use constructed parallel corpora to fine-tune
encoder. “Curriculum Fine-tune” achieves better accuracy and even
convergences faster than the others.

3.1 Setup

3.1.1 Corpus Segmentation

In X-BUFF, we build anchor language corpus Dk with sentences in the
top 25 languages 1 with the richest resources covered by MultiUN [54],
CCNet-100 [15], CCAligned [20], CCMatrix [41] and WMT parallel

1 Anchor languages in X-BUFF: ar, bg, cs, de, es, el, fr, id, hu, fi, it, ja, ko, nl,
pl, pt, ro, ru, sv, tr, zh, he, ca, et, vi, en

P. Guo et al. / Mitigating Long-Tail Language Representation Collapsing via Cross-Lingual Bootstrapped Unsupervised Fine-Tuning944



Model\Language af ar bg bn de el es et eu fa fi fr he hi hu id it ja

XLM-R 59.4 50.6 72.0 45.6 89.3 61.2 77.6 51.8 38.5 71.4 72.9 76.7 66.2 73.0 65.3 77.7 68.1 62.9
HICTL 63.1 51.1 76.5 46.7 94.9 68.2 80.5 59.7 41.8 77.1 78.4 80.2 70.1 78.3 71.8 81.1 73.9 66.1
INFOXLM 66.3 54.2 79.7 49.6 93.0 70.3 85.2 62.4 44.8 78.3 81.8 81.2 74.1 82.9 76.9 86.9 76.7 69.1
X-BUFF 69.0 60.3 83.1 62.4‡ 92.3 72.5 85.3 67.0 56.2‡ 78.6 83.7 83.5 75.7 83.2 80.6 85.1 83.4 73.2

jv ka kk ko ml mr nl pt ru sw ta te th tl tr ur vi zh

XLM-R 15.5 53.2 51.4 62.7 66.3 59.4 81.2 84.5 77.1 19.5 28.1 37.9 28.7 36.8 69.1 26.4 78.1 69.6
HICTL 19.5 57.1 54.7 67.8 71.9 62.2 87.7 89.0 77.5 26.3 33.1 39.4 33.2 43.1 71.0 27.7 80.2 74.5
INFOXLM 18.1 61.7 57.2 70.4 74.2 65.5 91.8 91.6 81.1 27.2 37.8 42.2 36.6 48.0 74.8 32.2 82.5 78.3
X-BUFF 23.4‡ 65.4‡ 64.7‡ 73.2 73.5 66.4 89.3 92.4 83.1 51.0‡ 47.5‡ 50.1‡ 52.1‡ 60.3‡ 76.3 48.6‡ 80.2 84.3

Table 2: Evaluation results on 36 language pairs of the Tatoeba sentence retrieval tasks [4]. The best results are marked with bold font. We
highlight greatly improved results with ‡ and long-tail languages with the color red.

data [3]. As for long-tail language set T , we choose languages that
are in CCNet-100 but not covered in anchor language corpus Dk and
take the corresponding large-scale monolingual corpus in CCNet-100
as long-tail monolingual corpus Dx. To improve the retrieval accuracy
and efficiency, we divide anchor language corpus into different shards
according to domains or releasing date (otherwise randomly dividing
shards). Shards typically contain about 250k entries.

3.1.2 Model Settings

We implement the cross-lingual PLM E with XLM-R large model
[15]. As for semantic relation classifier, we take one fully-connected
layer, with the size of weight matrix w and bias b being R

1024. We
first warm up two modules on anchor language corpus through Eq. 8
and Eq. 9 on 8 V100 GPUs, then start X-BUFF iteration on long-tail
languages. We set a batch size of 256 accumulating the gradient of 4
iterations and a learning rate of 4e-5 with a cosine decay learning rate.
The Adam optimizer (β1=0.9, β2=0.999) [27] is adopted. We choose
N = 200 sentences and adopt δ = 0.8 and μ = 0.3.

3.1.3 Baselines

To be fair, we re-implement several cross-lingual PLMs with our
settings. Specifically, we choose: (1) XLM-R [16], which applies mul-
tilingual MLM tasks on a large CCNet-100 corpus; (2) HICTL [47],
which continues training on XLM-R using hierarchical contrastive
learning; (3) INFOXLM [11], which is initialized with XLM-R and
trains with cross-lingual contrast, multilingual MLM and TLM.

3.2 Experimental Analysis

3.2.1 Consistent improvements over downstream tasks

We test X-BUFF on five different cross-lingual tasks, and results are
shown in Table 1 and 2. In general, these five tasks can be divided
into two main categories: (1) classification-based cross-lingual tasks:
XNLI, AmericasNLI, and MultiEURLEX. X-BUFF achieves 72.28
% accuracy on XNLI & AmericasNLI task, outperforming all pre-
vious baselines with up to 4.9 % improvements. Further test on the
legal-topic classification task, MultiEURLEX, shows a 70.12% top-1
accuracy, outperforming XLM-R, HICTL and INFOXLM by a 4.8%,
3.2% and 2.4%, respectively. (2) retrieval-based cross-lingual tasks:
WMT21 QE Task 1 and Tatoeba. X-BUFF achieves a 66.90 correlation
score on WMT21 QE Task 1, outperforming several strong baselines
by 3.6%∼7.1%. Similar results can be found on Tatoeba. As illus-
trated in Table 2, X-BUFF consistently outperforms previous strong
baselines by 11.6%∼28.4% on average. Consistent improvements
over different types of tasks demonstrate the robustness of X-BUFF

and further reveal that X-BUFF can capture and align essential seman-
tics, which is useful for different tasks across many languages.

Figure 6: Effects of Curriculum Difficulty N . We report the zero-shot
averaged accuracy on all 112 languages in Tatoeba benchmark at
different iterations, where we directly evaluate PLM on Tatoeba test
set. N = 200 achieves the best retrieval accuracy.

3.2.2 Performance on long-tail language representation

To thoroughly analyze the effectiveness of X-BUFF on mitigating the
collapse of long-tail language representations in cross-lingual PLMs,
we highlight long-tail languages with color red in Table 1 and 2. These
five tasks contain 37 different long-tail languages in total. Compared
the performance of long-tail languages with other languages, we can
observe that all models show performance discrepancies. INFOXLM
demonstrates an absolute 34.2% discrepancy, while this statistic fur-
ther rises to 35.4% and 37.2% on HICTL and XLM-R, respectively.
X-BUFF shows the minimum performance discrepancy with 25.8%.
On the performance of long-tail languages, X-BUFF significantly
outperforms XLM-R, HICTL and INFOXLM by 21.0%, 13.7%, and
10.6%, respectively, on average among all long-tail languages. What’s
more, as shown in Table 2, X-BUFF substantially improves top-1 ac-
curacy by 10%-32% on multiple long-tail languages. This confirms
that X-BUFF can construct reliable parallel sentence pairs and provide
sufficient semantic relation signals with only monolingual corpora. X-
BUFF can mitigate the collapse of long-tail language representations.

3.2.3 Analysis on the unified boot-strapped framework

To examine the importance of the unified boot-strapped framework of
X-BUFF, we conduct a “Separated Fine-tune” experiment on Tatoeba,
as shown in Figure 5. In “Separated Fine-tune” setting, we separate
the construction of parallel corpora and fine-tuning of PLMs. We first
construct parallel corpora for long-tail languages with a frozen PLM,
and then fine-tune the encoder with the constructed parallel corpora.
The great improvement of “Curriculum Fine-tune” compared to “Sep-
arated Fine-tune” shows that these two progress can reciprocate with
each other. We further observe that the scale of bootstrapped parallel
queue is about 20% larger in “Curriculum Fine-tune” than in “Sep-
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arated Fine-tune” setting, which indicates that an updated PLM can
benefit the construction of parallel corpus, and a more confidential
and larger parallel corpus can, in return, provide sufficient semantic
alignment signals to fine-tune PLMs.

3.2.4 Analysis of curriculum fine-tuning

We introduce a variant of curriculum fine-tuning paradigm to investi-
gate the performance of curriculum fine-tuning on Tatoeba benchmark.
Specifically, instead of gradually selecting sentences with comple-
mentary semantics (step 1), we randomly select N sentences from
monolingual corpus Dx, pair them to parallel sentence pairs, and
use them to fine-tune the PLM. The results are reported as “Random
Fine-tune” in Figure 5. From the results, we can conclude that train-
ing samples organized in an increasing-difficulty order can provide
performance improvements. Moreover, our curriculum fine-tuning
reaches the same performance 30% faster than “Random Fine-tune”
and reaches the peak performance quicker, which demonstrates cur-
riculum fine-tuning design can faster adapt to new long-tail languages.

3.3 Parameter Analysis

3.3.1 Impact of curriculum difficulty N

N impacts the curriculum difficulty of bootstrapped parallel queue
Q〈x,k〉 by controlling the selection of new sentences to complement
parallel corpus. Figure 6 illustrates how the hyper-parameter N af-
fects the fine-tuning performance. We depict the accuracy curves with
different values N on Tatoeba benchmark. From Figure 6, we can
observe that gradually increasing N significantly improves the train-
ing efficiency, while only slightly influencing the accuracy, as in the
comparison between N = 50, N = 100, and N = 200. However,
assigning larger values to N (e.g. 400) does not further speed up
convergence and also hinders model performance. We conjecture that
(1) a small number of N will lead to a slow expansion of bootstrapped
parallel queue, which severely drags down the training efficiency of
the cross-lingual encoder. (2) when N reaches 400, the expansion
speed of the data scale is so fast that our modules are not competent
enough to construct parallel sentence pairs in high quality. This further
leads to a noisy corpus and in return degrade the model performance.
Heuristically, we set N = 200 to achieve a balance between the
expansion speed of bootstrapped parallel queue and the competence
of the cross-lingual encoder.

Confidence threshold δ 0.5 0.6 0.7 0.8 0.9
Tatoeba (Acc.) 20.47 22.89 23.48 23.76 23.64
balance coefficient μ 0.1 0.2 0.3 0.4 0.5
Tatoeba (Acc.) 22.78 23.39 23.76 23.67 23.46

Table 3: Effects of δ and μ on Tatoeba benchmark. We report the
zero-shot accuracy on Tatoeba with different values of δ and μ.

3.3.2 Impact of δ and μ

Table 3 shows how the hyper-parameter δ and μ affect the performance
on Tatoeba benchmark. δ controls how strictly we select semantic
equivalent sentences. The setting of δ = 0.8 achieves the best results.
μ balances the importance of positive samples and negative samples
at curriculum fine-tuning for semantic relation classifier. From Table
3, we can find that μ = 0.3 achieves the best performance.

4 Related Works

Substantial works [4, 13, 21] have shown that cross-lingual PLMs
have achieved promising cross-lingual transferability. An intuitive
way to train such a cross-lingual PLM is to shift the training objective
from monolingual PLMs to a multilingual scenario, such as mBERT
[18], XLM-R [15], mBART [33], mT5 [51], etc. Besides token-level
pre-training objectives, researchers have designed explicit sentence-
level pre-training objectives to align cross-lingual sentences and learn
language-agnostic representations. We categorize the sentence-level
pre-training objectives into two kinds: supervised sentence-level cross-
lingual pre-training and unsupervised sentence-level cross-lingual
pre-training.

4.1 Supervised Sentence-level Cross-lingual
Pre-training

The most widely-used alignment supervision is the large parallel
corpora. Researches, such as XLM [16], Unicoder [26] and VECO
[34], have applied language modeling on parallel corpora. HiCTL
[48], INFOXLM [11], AMBER [25] and dual momentum contrast[46]
aggregate contrastive learning for cross-lingual pre-training. Another
line of works [40, 45] distills a language-agnostic representation
from original monolingual PLMs or Cross-lingual PLMs, respectively.
S2DM [50] disassociates semantics from syntax in representations
from cross-lingual PLMs, and XLM-E [12] jointly trains a generator
and a discriminator from scratch.

4.2 Unsupervised Sentence-level Cross-lingual
Pre-training

Without sentence relation supervision signal, Researches have tried
various methods to train cross-lingual representation. Some [28, 36]
produced a synthetic parallel corpus with unsupervised machine trans-
lation model and then derived cross-lingual Pre-training with synthetic
parallel corpus. Similarly, ERNIE-M [36] proposed a back-translation
masked language modeling, which first generated pseudo-parallel
sentences and later applied to cross-lingual pre-training. Instead of
translation methods, DuEAM [24] adopted a frozen anchor module to
compute the semantic similarity, and used a learner module to approx-
imate similarity from the anchor, while MARGE [31] self-supervised
the reconstruction of target text by retrieving a set of related texts and
conditioned on them to generate the original.

5 Conclusion

We propose a novel Cross-lingual Bootstrapped Unsupervised Fine-
tuning Framework (X-BUFF) to mitigate the representation collapsing
problem of long-tail languages through fine-tuning the representations
of long-tail languages. X-BUFF iteratively fine-tunes a cross-lingual
PLM with three steps: (1) Select sentences whose semantics com-
plement the current parallel queue. (2) Match selected sentences to
parallel sentence pairs. (3) Fine-tune the PLM in a curriculum way.
Further experiments on 5 cross-lingual downstream tasks show that
X-BUFF can mitigate long-tail representation collapsing problem and
achieve significant improvements over previous baselines.
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Ondřej Bojar, ‘Unsupervised multilingual sentence embeddings for par-
allel corpus mining’, in Proc. of ACL, (2020).

[29] Viet Dac Lai, et al. Chatgpt beyond english: Towards a comprehensive
evaluation of large language models in multilingual learning, 2023.

[30] Seonghyeon Lee, Dongha Lee, Seongbo Jang, and Hwanjo Yu, ‘Toward
interpretable semantic textual similarity via optimal transport-based
contrastive sentence learning’, in Proc. of ACL, (2022).

[31] Mike Lewis and Marjan, et al Ghazvininejad, ‘Pre-training via para-
phrasing’, in Proc. of NeurIPS, (2020).

[32] Xuebo Liu and Houtim, et al Lai, ‘Norm-based curriculum learning for
neural machine translation’, in Proc. of ACL, (2020).

[33] Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan
Ghazvininejad, Mike Lewis, and Luke Zettlemoyer, ‘Multilingual de-
noising pre-training for neural machine translation’, Transactions of the
Association for Computational Linguistics, (2020).

[34] Fuli Luo, Wei Wang, Jiahao Liu, Yijia Liu, and Bin, et al Bi, ‘VECO:
Variable and flexible cross-lingual pre-training for language understand-
ing and generation’, in Proc. of ACL, (2021).

[35] Aäron van den Oord and Yazhe, et al Li, ‘Representation learning with
contrastive predictive coding’, CoRR, abs/1807.03748, (2018).

[36] Xuan Ouyang and Shuohuan, et al Wang, ‘ERNIE-M: Enhanced multi-
lingual representation by aligning cross-lingual semantics with monolin-
gual corpora’, in Proc. of EMNLP, (2021).

[37] Wenbo Pan and Qiguang Chen, et al. A preliminary evaluation of chatgpt
for zero-shot dialogue understanding, 2023.

[38] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christo-
pher Clark, Kenton Lee, and Luke Zettlemoyer, ‘Deep contextualized
word representations’, in Proc. of NAACL, (2018).

[39] Alec Radford and Karthik, et al Narasimhan, ‘Improving language under-
standing by generative pre-training’, URL https://s3-us-west-2. amazon-
aws. com/openai-assets/researchcovers/languageunsupervised/language
understanding paper. pdf, (2018).

[40] Nils, et al Reimers, ‘Making monolingual sentence embeddings multi-
lingual using knowledge distillation’, in Proc. of EMNLP, (2020).

[41] Holger Schwenk, Guillaume Wenzek, Sergey Edunov, Edouard Grave,
Armand Joulin, and Angela Fan, ‘CCMatrix: Mining billions of high-
quality parallel sentences on the web’, in Proc. of ACL, (2021).

[42] Richard Socher, Alex Perelygin, Jean Wu, and Jason, et al Chuang,
‘Recursive deep models for semantic compositionality over a sentiment
treebank’, in Proc. of EMNLP, (2013).

[43] Lucia Specia, Frédéric Blain, Marina Fomicheva, Chrysoula Zerva, Zhen-
hao Li, Vishrav Chaudhary, and André F. T. Martins, ‘Findings of the
WMT 2021 shared task on quality estimation’, in Proceedings of the
Sixth Conference on Machine Translation, (2021).

[44] Romal Thoppilan and Daniel De Freitas, et al. Lamda: Language models
for dialog applications, 2022.

[45] Nattapong Tiyajamorn, Tomoyuki Kajiwara, and Yuki, et al Arase,
‘Language-agnostic representation from multilingual sentence encoders
for cross-lingual similarity estimation’, in Proc. of EMNLP, (2021).

[46] Liang Wang and Wei, et al Zhao, ‘Aligning cross-lingual sentence repre-
sentations with dual momentum contrast’, in Proc. of EMNLP, (2021).

[47] Xiangpeng Wei and Rongxiang Weng, et al, ‘On learning universal
representations across languages’, in Proc. of ICLR, (2021).

[48] Xiangpeng Wei, Heng Yu, Yue Hu, Rongxiang Weng, Weihua Luo,
and Rong Jin, ‘Learning to generalize to more: Continuous semantic
augmentation for neural machine translation’, in Proc. of ACL, (2022).

[49] Adina Williams, Nikita Nangia, and Samuel Bowman, ‘A broad-
coverage challenge corpus for sentence understanding through infer-
ence’, in Proc. of NAACL, (2018).

[50] Linjuan Wu, Shaojuan Wu, Xiaowang Zhang, Deyi Xiong, Shizhan Chen,
Zhiqiang Zhuang, and Zhiyong Feng, ‘Learning disentangled seman-
tic representations for zero-shot cross-lingual transfer in multilingual
machine reading comprehension’, in Proc. of ACL, (2022).

[51] Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou,
and Aditya, et al Siddhant, ‘mT5: A massively multilingual pre-trained
text-to-text transformer’, in Proc. of NAACL, (2021).

[52] Yuhao Zhang and Hongji, et al Zhu, ‘A contrastive framework for learn-
ing sentence representations from pairwise and triple-wise perspective
in angular space’, in Proc. of ACL, (2022).

[53] Kun Zhou and Beichen, et al Zhang, ‘Debiased contrastive learning of
unsupervised sentence representations’, in Proc. of ACL, (2022).

[54] Michał Ziemski, Marcin Junczys-Dowmunt, and Bruno Pouliquen, ‘The
United Nations parallel corpus v1.0’, in Proc. of LREC, (2016).

P. Guo et al. / Mitigating Long-Tail Language Representation Collapsing via Cross-Lingual Bootstrapped Unsupervised Fine-Tuning 947


