
Effective and Efficient Community Search with Graph
Embeddings

Xiaoxuan Goua, Xiaoliang Xua, Xiangying Wua, Runhuai Chena, Yuxiang Wanga;*, Tianxing Wub and
Xiangyu Kec

aHangzhou Dianzi University, School of Computer Science, China
bSoutheast University, School of Computer Science and Engineering, China

cZhejiang University, School of Software Technology, China

Abstract. Given a graph G and a query node q, community search
(CS) seeks a cohesive subgraph from G that contains q. CS has
gained much research interests recently. In the database research
community, researchers aim to find the most cohesive subgraph satis-
fying a specific community model (e.g., k-core or k-truss) via graph
traversal. These works obtain good precision, however suffering from
the low efficiency issue. In the AI research community, a new thought
of using the deep learning model to support CS without relying on
graph traversal emerges. Supervised end-to-end models using GCN
are presented, which perform efficiently, but leave a large room for
precision improvement. None of them can achieve a good balance be-
tween the efficiency and effectiveness. This motivates our solution:
First, we present an offline community-injected graph embedding
method to preserve the community’s cohesiveness features into the
learned node representations. Second, we resort to a proximity graph
(PG) built from node representations, to quickly return the commu-
nity online. Moreover, we develop a self-augmented method based on
KL divergence to further optimize node representations. Extensive
experiments on seven real-world graphs show our solution’s superi-
ority on effectiveness (at least 39.3% improvement) and efficiency
(one to two orders of magnitude faster).

1 Introduction

Graph is a prevalent model to represent entities (i.e., nodes) and their
relationships (i.e., edges) in many of today’s real-world information
networks [56, 16, 47, 34, 7], e.g., social networks, collaboration net-
works, and criminal networks. For example, authors in a collabora-
tion network are represented as nodes and the co-authorship between
authors is indicated by an edge. Graph-based data analytics has at-
tracted extensive research interests [38], among which community
search (CS) is a fundamental problem [54, 6]. Given a graph G and a
query node q, CS aims to find a cohesive subgraph from G that con-
tains q. CS has been widely applied in many real-life applications
[36], such as event organization [44], influence spread [30], graph
clustering [21], and biological data analysis [13]. Currently, research
on the CS problem can be classified into two main categories.

Cohesiveness-aware CS. CS has been widely studied in the
database research community. The key of such work is to define an
appropriate community model to measure the community’s cohesive-
ness [18, 10]. A community is often modeled as a k-core (denoted by

∗ Corresponding Author. Email: lsswyx@hdu.edu.cn

��

��

��

��

��

���

���
���

��	
��

��

���
�
��

�

��

�

��

� �������������

����

�����

�
�

�

�	

��

Figure 1. An example of k-core on an undirected graph

Hk) of which each node has a degree at least of k [12, 44]. As shown
in Figure 1, all nodes belong to a 1-core H1 as every node has at least
one neighbor; H2 includes nodes except v15; H3 is the combination
of two connected components Ĥ1

3 and Ĥ2
3 , we use Ĥi

k to denote the
i-th connected component of Hk (also known as a connected k-core,
defined in Definition 2). The larger the k is, the more cohesiveness
the community has. Besides k-core, many models such as k-truss
[26], k-ECC [23], and k-clique [11] have also been considered for
CS. More details are introduced in our related work (§6). The biggest
advantage of such work is that the definition of community is flexi-
ble. Users select an existent or define a new community model with
a large enough k, according to the cohesiveness requirement of their
applications [20]. No matter which model is used, the essence is to
find the subgraph satisfying the specific model via a heavy weight
graph traversal method. Even some dedicated prune strategies for
speed-up purpose are designed, it is still time-consuming especially
for large graphs, e.g., from hundreds of milliseconds to tens of sec-
onds to respond [47, 10, 54]. This motivates an emerging research
area: Artificial Intelligence (AI)-enabled CS.

AI-enabled CS. A new thought is to leverage the deep leaning
model to directly support CS without relying on the graph traversal
with prune. Recently, [28, 27] design a supervised end-to-end model
using the graph convolutional network (GCN) to map a query node
q (represented as a d-dimensional vector) into a set of nodes (rep-
resented as a community vector where each dimension has a value
of 1 or 0 to indicate a node belonging to the same community of q
or not). In this solution, ground-truths (i.e., human-annotated com-
munities) are required as the supervised information, which help up-
date the model parameters by considering the differences between
the output community vector and the ground-truth. The CS’s ef-
ficiency is improved to some extent as the time-consuming graph
traversal is skipped. Instead, a well-trained AI model is deployed to
return communities immediately. However, it still has three main

ECAI 2023
K. Gal et al. (Eds.)
© 2023 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA230358

891

drawbacks. First, it leaves much room for effectiveness improve-
ment (e.g., the best F1-score is only 54% on Cora dataset). Second,
it requires prior-knowledge of existing communities as supervised
information for training, which is impractical especially for applica-
tions with cold start problems. Finally, the output vector only points
out the involvement of a community (i.e., 0-1 value of each dimen-
sion) but ignores the inherent relationship between nodes, e.g., the
similarity of a node to the query node. So, it is impossible to lever-
age the plain output vector for more meaningful downstream tasks,
e.g., the recommendation with priority that recommends more high-
quality items to users who are more similar to the query user from
the same community.

Our solution. With the aforementioned methods’ pros and cons
in mind, we present a general CS framework with graph embeddings
in §3.1 that involves an effective offline learning stage and an ef-
ficient online search stage, which achieves a good balance between
effectiveness and efficiency. For offline learning stage, we first take k-
core as the community model to present a community-injected graph
embedding method based on a community-oriented triplet sampling
to preserve the community’s cohesiveness features into learnable
node representations (§3.2), so that two nodes are similar in terms
of their representations if they belong to the same community. Next,
we enable the above method to be scalable with various cohesive-
ness parameter k via a lightweight triplet sampling with little over-
head (§3.3). To the best of our knowledge, we are the first to embed
the community cohesiveness features into the node representations,
making it possible to support CS by directly measuring a node’s sim-
ilarity to the query node q. Thus, for online search stage, we resort to
a proximity graph (PG) built from the node representations, to return
the most similar nodes to q, as the desired community (§3.4). More-
over, we develop a self-augmented method based on KL divergence
to further optimize the node representations in §4.

Contributions. Our solution’s superiority is four-folded. First,
comparing with the existing AI solutions, we can well embed the
community cohesiveness features into the node representations, thus
significantly improve the CS’s effectiveness (at least 39.3% improve-
ment on F1-score). Second, we take k-core as the community model
and do not rely on the supervised ground-truths. It can easily extend
to other models, such as k-truss and k-ECC, by simply replacing
k-core community with others in §3.2-3.3. Third, thanks to the ex-
cellent performance of PG on information retrieval [52], our online
search stage is more efficient (e.g., 0.323 ms per query on average)
compared with the methods in both DB and AI area. Finally, we
provide the community nodes with their representations, so we can
obtain the similarity between nodes and leverage it for more mean-
ingful tasks. Our contributions can be summarized as follows.

• We present a CS framework with graph embeddings involving an
offline learning and an online search stage.

• For offline stage, we propose a k-core injected graph embedding
method to preserve the cohesiveness features for arbitrary k. For
online stage, we build a PG atop node representations to quickly
return communities.

• We optimize the node representations through a self-augmented
method based on KL divergence.

• Extensive experiments on 7 real-world graphs show that ours has
up to one to two orders of magnitude faster than existing solu-
tions, and achieves an acceptable F1-score of 87.89% on average
(at least 39.3% improvement compared to existing AI solutions).

2 Problem Definition

We consider an undirected graph G = (V,E) with a node set V
and an edge set E. Given a node v ∈ V , we denote its neighbors by
N(v) and use deg(v) to indicate v’s degree, i.e., deg(v) = |N(v)|.
When the context has ambiguity, we will clarify the degree in a cer-
tain graph as deg(v,G). Next, we introduce the k-core model that is
widely used to represent a community [2, 19].

Definition 1 (k-core [5]). Given a undirected graph G = (V,E) and
a non-negative integer k, a k-core of G is the largest subgraph Hk ⊆
G, such that ∀v ∈ Hk has degree at least k, i.e., deg(v,Hk) ≥ k.

Note that, the larger the k is, the more the cohesiveness Hk has.
However, a k-core may be a disconnected subgraph which is not in
line with the inherent connectivity constraint of a community, so we
define the connected k-core as follows.

Definition 2 (Connected k-core [47]). Given a undirected graph
G = (V,E) and a non-negative integer k, a connected k-core of
G is a connected component Ĥk ⊆ Hk ⊆ G, such that ∀v ∈ Ĥk,
deg(v, Ĥk) ≥ k.

Generally, a Hk usually contains multiple Ĥk, we add a super-
script to denote a specific one as Ĥi

k if necessary. We are interested
in the following community search (CS) problem.

Problem 1 (CS problem [12]). Given a undirected graph G =
(V,E), a query node q ∈ V , and a non-negative integer k, return
the nodes in the connected k-core containing q as the community of
q.

Example 1. In Figure 1, k-cores with different k ∈ [1, 3], i.e.,
{H1,H2,H3}, are marked in different colors, where H3 is the combi-
nation of two separate connected 3-cores Ĥ1

3 and Ĥ2
3 . Given q = v5

and k = 3, all nodes {v1, v2, v5, v6, v7} in Ĥ1
3 are returned as the

desired community of q.

3 CS with Graph Embeddings

3.1 Framework Overview

Figure 2 shows our CS framework with graph embeddings that con-
sists of two stages: offline graph embedding and online community
search. For offline stage, we aim to obtain the node representations by
considering the community’s cohesiveness features. Two key issues
should be solved, that are (1) how to embed a k-core community’s
cohesiveness features w.r.t. a specific k into the learned node repre-
sentations, i.e., community-injected graph embedding (§3.2) and (2)
how to extend it to a general case where k would be an arbitrary
value (§3.3). As a result, two nodes are similar if they belong to the
same k-core community. It’s worth mentioning that, we can extend
to other community models, e.g., k-truss and k-clique, by simply re-
placing k-core with other models in §3.2 and §3.3. For the online
phase, we build a proximity graph (PG) which is based on node rep-
resentations, to return the most similar nodes to the query node as the
desired community (§3.4).

3.2 Community-injected Graph Embedding

Given a graph G = (V,E) and an input k, the basic idea of
community-injected graph embedding is illustrated in Figure 2 (left
top): First, we leverage a GNN model to capture the original
topology features of G for getting the node representations V =

X. Gou et al. / Effective and Efficient Community Search with Graph Embeddings892

{�v1, · · · , �v|V |}, where �v is a node v’s representation. Second, we in-
ject the community’s cohesiveness features w.r.t. a specific k in terms
of triplet samples to optimize GNN model’s parameters via a triplet
loss. We would like to shorten the distance of nodes from the same
community and enlarge that of nodes from different communities.

GNN model. Many different GNN models are available to choose,
such as GCN [29], GraphSAGE [22], and GAT [50], etc. Given a
graph G = (V,E), we use a GNN model to obtain the initial repre-
sentation of each node v ∈ V , denoted by �v. We provide the general
intra-layer processes of a GNN model as follows, where u ∈ N(v)
is a neighbor of v.

�v(l+1) = Dr(φ(AGG(�u(l)W (l+1) + b(l+1)))) (1)

Note that, �v(l+1) ∈ R
d(l+1)

is the representation of v with d(l+1)

dimensions in the (l + 1)-th layer, �u(l) ∈ R
d(l) is the representa-

tion of each u ∈ N(v) from the l-th layer, and the input �v(0) ∈ R
d is

the one-hot representation of v. Besides, W (l+1) ∈ R
d(l)×d(l+1)

and
b(l+1) ∈ R

d(l+1)

are trainable weights and bias, respectively. More-
over, AGG(·) is an aggregation function such as AVG, SUM, MAX, or
MIN, φ(·) is the non-linear activation function, e.g., ReLU(·), and
Dr(·) is the dropout method [45] to relieve overfitting in neural net-
works. The original graph topology features will be embedded into
the obtained representation �v(l+1) after several epochs of training. As
the beginning, in our implementation, we directly adopt the classical
GCN model to explore the feasibility of our solution. In the future,
we will pay more attention on the design of GNN models for CS.

��������	�

����������

������������������

����	���
	�

����	���
���	���

������	���
�

����������

�����	
 �����

����	���	�

			

�����

����	���	�

			

����������	�

�����������
��������	

�

����	�

�����
����

�����������
�
����������

�����������
���	���

���
�������
��������

���
�������
��������

������
��		
����������

�������������	�������

��������	�

��� ����������

��������	�

��� ��
�������

Figure 2. Framework of GNN-based community search

Community-oriented triplet sampling. Intuitively, two nodes are
similar if they are from the same k-core community. So, we adopt the
following triplet sampling with two steps to collect triplet samples as
training data, to update the node representations from GNN model.

(1) Core-decomposition. Given a graph G and a cohesiveness pa-
rameter k, we apply a classic core-decomposition (CD) method to
obtain the k-core Hk of G. We refer readers to [3] for details, but
highlight the basic idea of CD here. First, we delete all nodes with
deg(·) < k from G as they never be included in Hk. Since delet-
ing a node v will affect v’s neighbor’s degree, we must check if
each u ∈ N(v) still satisfies the k-constraint after deleting v. If
deg(u) < k, u is deleted too. We repeat this until all remained nodes
have deg(·) ≥ k, thus returning Hk. Next, we conduct a breadth-first

search on Hk to find all connected components {Ĥ1
k . . . Ĥn

k } of Hk.
We refer each Ĥi

k as a real community and refer G \ Hk as a fake
community H̃k. So, each node in G either belongs to a Ĥi

k or a H̃k,
and we can define a community-oriented triplet sample as follows.

(2) Seed node and positive/negative sample. We denote a
community-oriented triplet sample by 〈v+, vs, v−〉, where v+
(v−) is the positive (negative) sample w.r.t. a seed node vs. We
randomly select one node from a community H (H could be a Ĥi

k

∈Hk or H̃k) as vs, then we get v+ and v− as follows.

Definition 3 (Positive sample). Given a community H containing a
seed node vs, a node in H \ vs is a positive sample v+ w.r.t. vs, i.e.,
v+ is in the same community as vs.

Definition 4 (Negative sample). Given a community H containing a
seed node vs, a node in G \H is a negative sample v− w.r.t. vs, i.e.,
v− is in a different community from vs.

Given a certain vs from a specific H , we collect one positive sam-
ple v+ from H and n negative samples {v1− . . . vn−} from other n
communities except H to form n triplet samples. We repeat it until
sufficient triplet samples are collected. In §5, we show the effect of
sample size on effectiveness.

Example 2. Figure 3 illustrates 2 real communities Ĥ1
3 , Ĥ

2
3 and

1 fake community H̃3 of the graph in Figure 1, for k = 3. If we
randomly select 3 seed nodes from the 3 communities, then we have
3× 2 = 6 triplet samples in total. For example, given vs = v1 from
Ĥ1

3 , we can collect v+ = v7 and {v10, v3} as 2 negative samples
from communities different from Ĥ1

3 .

���
���

��	��

��
��

����	

����

��

�

��

��

��

��

���

���
�� �� ��

��
 ��� �

��
 ��� ��

�	 �� ��
�	 �� ���

����
�

�

��

�

��
�
��

���� !������ �������� ���� !������ �������� ���� !������ ��������

Figure 3. Community-oriented triplet sampling

Training with triplet loss. Given a set of triplet samples as the
training data, we use a margin-based triplet loss to update the pa-
rameters ΘG of GNN model. The basic idea is to make nodes from
the same community 〈vs, v+〉 closer in the vector space and nodes
from different communities 〈vs, v−〉 as far away as possible. So, we
minimize the triplet loss in Eq. 2:

L(ΘG) = max{δ(�vs, �v+)− δ(�vs, �v−) + c, 0} , (2)

where �vs, �v+, �v− are the representations of seed node, positive, and
negative sample, respectively. The margin hyperparameter c (we em-
pirically choose c = 1) is used to ensure that v+ is closer to vs than
v− in terms of cosine distance δ.

3.3 Scalability on Various Cohesiveness

We now extend the above method for various cohesiveness param-
eter k. First, we introduce an important inclusive hierarchy prop-
erty of k-core. Then, we take the GNN model for k-core as a pre-
trained model for (k-1)-core, and design a lightweight triplet sam-
pling method based on the inclusive hierarchy property to fine-tune
the model with little overhead.

X. Gou et al. / Effective and Efficient Community Search with Graph Embeddings 893

Proposition 1. Given a graph G and an integer k > 0, for ∀Ĥk �= ∅,
there exists a Ĥk−1 such that Ĥk ⊆ Ĥk−1.

Proposition 2. Given a graph G and a node v ∈ G with the degree
as deg(v,G) < k, we have v /∈ Ĥk.

Above two propositions directly follow the observation that each
node v ∈ Ĥk has k ≤ deg(v, Ĥk) ≤ deg(v,G).

Theorem 1. Given a node v ∈ Ĥk, we have: (1) v ∈ Ĥk−1, (2)
for ∀v ∈ Ĥk−1 \ Ĥk, v must belong to the fake community H̃k, i.e.,
v ∈ H̃k, and (3) v has a degree of deg(v,G) ≥ k − 1.

Proof. For (1), it holds according to Proposition 1. For (2), suppose
∃v ∈ Ĥk−1\Ĥk that comes from another connected k-core Ĥ ′

k, then
Ĥk, Ĥ ′

k must be connected, which is contradictory to the fact that
they are two separate connected k-cores. Thus, for ∀v ∈ Ĥk−1 \Ĥk,
we have v ∈ H̃k. For (3), we have deg(v,G) ≥ k − 1 as v ∈ Ĥk−1

(Proposition 2).

Theorem 2. Given a connected (k-1)-core Ĥk−1 that Ĥk−1∩Hk =
∅, then we have Ĥk−1 ⊆ H̃k.

Proof. The theorem directly follows the observation.

��
��

�
��

��
��

���
����	�

��

����
��� −

�

�

���

�

��

�
��

��

�
��

�

��

�
�� 	

��

�
��

�

��

�
��Δ

��

�
��Δ

	

��

�
��Δ

��� −Δ

Figure 4. Community evolution from k to k − 1

We summarize four cases of the community evolution from k to
k − 1 in Figure 4, based on Theorem 1 (case 1-3) and Theorem 2
(case 4). (1) Ĥk−1 = Ĥk (red circle), (2) Ĥk−1 contains one Ĥk

(green circle), (3) Ĥk−1 contains more than one Ĥk (orange and blue
circles), i.e.,

⋃m
i=1 Ĥ

i
k ⊂ Ĥk−1, and (4) Ĥk−1 ⊆ H̃k if Ĥk−1 ∩

Hk = ∅ (dark grey circle). For simplicity we use ΔĤk−1 to denote
the incremental part (Ĥk−1 \ Ĥk) of each Ĥk−1 and ∀v ∈ ΔĤk−1

has deg(v,G) ≥ k − 1 (Theorem 1 (3)). We next target on ΔĤk−1

to design a lightweight triplet sampling as follows.
(1) Compute ΔĤk−1. We extract all nodes with deg(v,G) ≥ k−

1 from H̃k as candidates ΔV , then we run CD on the graph of Hk ∪
ΔV to find all connected (k-1)-cores {Ĥ1

k−1 . . . Ĥ
n
k−1}, thus getting

each ΔĤi
k−1.

(2) Triplet sampling w.r.t. fake community. We use ΔHk−1 =
{ΔĤ1

k−1 . . .ΔĤn
k−1} to denote the incremental part of Hk−1. So,

the fake community H̃k is divided into two disjoint parts H̃k−1 and
ΔHk−1. We expect to peel ΔHk−1 from H̃k. To be more precise,
we expect ΔHk−1 to be as far away from H̃k−1 as possible. Thus,
we collect a triplet sample as follows. First, we randomly select two
nodes from H̃k−1 as the seed node and positive sample. Then, we
randomly select one node from ΔHk−1 as the negative sample.

(3) Triplet sampling w.r.t. real communities. Since ΔĤi
k−1 ⊆

Ĥi
k−1, we need to make nodes from ΔĤi

k−1 are closer to that from
Ĥi

k−1 and as far away from nodes of another Ĥj
k−1 (i �= j) as possi-

ble. Thus, we collect a triplet sample as follows. First, we randomly

select one node from ΔĤi
k−1 as a seed node. Then, we randomly se-

lect one node from Ĥi
k−1 as a positive sample. Finally, we randomly

select one node from ∀Ĥj
k−1 with i �= j as a negative sample.

Figure 2 (left bottom) shows that, we fine-tune the inherited GNN
model for (k-1)-core by using the above triplet samples and the same
triplet loss as Eq. 2, thus obtaining the node representations w.r.t. the
cohesiveness parameter of k − 1.

3.4 Online Community Search with PG

Given a graph G = (V,E) with the node representations V =
{�v1, · · · , �v|V |} for a specific k and a query node q, we expect to
return the most similar nodes to q from V as the community of q, by
measuring the similarity between �q and �v ∈ V . It is reasonable as we
already embed the community’s cohesiveness features into V , thus
two nodes are likely to be similar if they are from the same commu-
nity (see case study in §5). We build a proximity graph (PG) [35, 32]
for all nodes in V based on V , and then quickly return the top-n
similar nodes from PG as the result.

��������	

���������

����	�������	���	�

 ���"������#��������$��%�#������������&������

�������#��������$��%�#������������&������

��		&�#'$���&	��
��������#��	�

�

�

�����
(�����)������
���������

(�����)������
�������������

�����

�����

Figure 5. Optimization with KL divergence

(1) PG construction. We construct PG in a insert manner based
on the node similarity (e.g., cosine similarity). For ∀v ∈ V , it has
a corresponding node v∗ in PG with a node representation �v∗ = �v.
Given an empty PG, we start inserting from a randomly selected v ∈
V : First, we create a node v∗ for v in PG. Second, we take v∗ as a
query node to find its top-r nearest nodes from the current PG and
add edges between the r nodes and v∗. Here, r is a pre-defined upper
bound of the # neighbors in PG. We show r’s effect in §5. We repeat
this until all nodes in V have been inserted to PG.

(2) Top-n nodes retrieval from PG. Given a constructed PG and a
query node q, we start a greedy top-n nodes retrieval from a ran-
domly selected entry node s. First, we maintain a min-heap Cand
to record all candidate nodes for search expansion and a max-heap
Result to record the top-n nearest nodes to q; both are initialized
by 〈s, δ(�s, �q)〉. Next, we obtain a node v∗max ∈ Candwith the largest
similarity to q and a node v∗min ∈ Result with the smallest simi-
larity to q. If δ(�q,�v∗max) < δ(�q,�v∗min), we stop the search and re-
turn Result, as no candidate node is more similar to q than the
worst node in Result. Otherwise, we expand the search from v∗max

as it is the nearest node to q in Cand. We add v∗max’s neighbors to
Cand and Result, and remove the worst nodes from Result, if
|Result| > n. We repeat above until Cand is empty.

4 Optimization with KL Divergence

Ideally, two nodes from the same community would show a higher
similarity than others. However, this trend may not be obvious due to
the existence of difficult negative samples, e.g., nodes that are adja-
cent to the seed node vs but belong to different communities of vs. To
confront this challenge, we develop a self-augmented method based

X. Gou et al. / Effective and Efficient Community Search with Graph Embeddings894

on KL(Kullback-Leible) divergence to further optimize the quality
of node representations.

Intuition. Given a node vi ∈ Ĥj
k. If we can obtain the probabil-

ity of vi belonging to Ĥj
k (i.e., qij) based on the representation �vi,

then we can optimize �vi by emphasizing the value of qij [39, 51, 4].
Figure 5 illustrates our optimization with three steps.

(1) Compute the assignment distribution Q. We leverage the Stu-
dent’s t-distribution [49] to measure the similarity between �vi and
�ρj , where ρj is the centroid of Ĥj

k, thus getting qij as follows:

qij =
(1 + δ(�vi, �ρj)/α)

−α+1
2

∑
j′(1 + δ(�vi, �ρj′)/α)

−α+1
2

, (3)

where �ρj is initialized as the averaged vector of all node representa-
tions from Ĥj

k and α is a configurable parameter which is set as 1 for
all experiments. We consider each qij as the probability of assigning
a node vi to a community Ĥj

k, i.e., a soft assignment, so that the ma-
trix Q = [qij] is viewed as the distribution of all nodes’ assignments.

(2) Compute the target distribution P . Soft assignments with high
probability (nodes close to the centroid) are considered to be trust-
worthy in Q, so we emphasize such high confident assignments as
much as possible to make their node representations closer to the
centroid. Thus, we calculate a target distribution P = [pij] as:

pij =
q2ij/

∑
i qij∑

j′(q
2
ij′/

∑
i qij′)

, (4)

where pij is the target (or self-augmented) assignment and
∑

i qij is
the soft assignment frequency of Ĥj

k. Each qij ∈ Q is squared and
normalized so that the high confident qij ∈ Q will have even higher
confidence in the target distribution P .

(3) Training with KL divergence loss. Given Q and P , its nature to
optimize the node representations by making Q to approach P . So,
we have the following KL divergence loss.

L(ΘG) = KL(P ||Q) =
∑

i

∑

j

pij log
pij
qij

(5)

By minimizing Eq. 5, P helps learn a better representations that
ensure the nodes surround the community’s centroid are closer than
others. We call it a self-augmented method as P is computed from Q
and used to supervise the updating of Q.

Table 1. Dataset Statistics.

Datasets # Nodes # Edges davg kmax

Ca-AstroPh 18772 198110 21.1 56
Citeseer 3312 4732 2.7 7
Cora 2708 5429 3.9 4
Deezer 28281 92752 6.6 12
Facebook PPN 22470 171002 15.2 56
PPI 56944 818716 243.3 153
Pubmed 19717 44338 4.5 10

5 Experiments

We compared our solution with several deep learning methods as
well as traditional database methods from both the perspectives of
query effectiveness and efficiency on seven real-world datasets, ex-
plored the parameter sensitivity, provided ablation analysis, gave

the training time consumption, analyzed model size, and showed a
case study. Our code 1 were implemented in Python3.8, and all ex-
periments were conducted on 20 cores of a 3.7GHZ server (running
Ubuntu Linux) with 2 NVIDIA GeForce RTX 3090 (24G memory).

5.1 Setup

Datasets. Table 1 shows seven real-world networks’ statistics,
davg and kmax are the average degree and largest k of k-core. Ca-
AstroPh [31], Cora [43], Citeseer [40], and Pubmed [37] are cita-
tion networks. Deezer [42] is a social network. PPI [46] is a protein-
protein graph, and Facebook PPN [41] is a graph of Facebook sites.

Comparing methods. We compared representative CS methods in
both AI ((1)-(2)) and DB ((3)-(6)) areas with our solution ((7)-(8)).
(1) Simple-QD-GNN [28] is the first supervised end-to-end CS so-
lution based on GCN. (2) QD-GNN is the extend version of (1). (3)
FastBcore [20] proposes a CS method for finding (k,P)-core com-
munities. (4) S-Greedy [2] is a parameter-free CS method for mul-
tiple query nodes. (5) LEKS-path [47] presents a WC-index-based
CS method to find the intimate-core community. We implemented
two versions of our solution: (6) Ours-Triplet is the implementation
of §3 and (7) Ours-Triplet+KL is the one with the KL optimization
(§4). For ours, we used the same PG-based online search, and the
difference only comes from the offline learning stage.

Evaluation metric. We used F1-score (Eq. 6-8) and average re-
sponse time to measure the effectiveness and efficiency. We let
Dtest = {Dk

test, D
k−1
test , . . . } be test data, Dk

test = {Qk, Ck, Rk}
is the sub-test data for a specific k. Qk = {q1, . . . , qn} is the query
node set, Ck = {ckq1 , . . . , ckqn} records the communities of qi re-
turned by our method, and Rk = {rkq1 , . . . , rkqn} is the k-core com-
munities of qi.

F1k(Ck, Rk) =
2 · Prek(Ck, Rk) ·Reck(Ck, Rk)

Prek(Ck, Rk) +Reck(Ck, Rk)
(6)

Prek(Ck, Rk) =

∑n
i=1|ckqi ∩ rkqi |∑n

i=1|ckqi |
(7)

Reck(Ĉk, Rk) =

∑n
i=1|ckqi ∩ rkqi |∑n

i=1|rkqi |
(8)

Pre(Ck, Rk) is the precision of returned communities and
Rec(Ck, Rk) is the recall of returned communities. ckq and rkq are
the predicted and k-core community for query q which is from the
query set Qk respectively.

Parameters. We tried all possible k in a dataset from kmax to 2
for offline graph embedding. We set the epoch for training with triplet
loss (§3) and KL divergence loss (§4) as 20 and 10, respectively. For
learning rate, we used a combined strategy of warm-up followed by
cosine annealing, and we set the batch-size to 2048. Besides, we built
PG with r = 9.

5.2 Experiment Results

Effectiveness and Efficiency. Experimental results over all
datasets are summarized in Table 2. We emphasize the best perfor-
mance of our solutions with bold values. Moreover, "-" indicates that

1 https://anonymous.4open.science/r/EECSGNN-2AC4/

X. Gou et al. / Effective and Efficient Community Search with Graph Embeddings 895

https://anonymous.4open.science/r/EECSGNN-2AC4/

Table 2. Effectiveness (left, F1-score in %) and efficiency results (right, query time in millisecond) on all datasets

Methods Ca-AstroPh Citeseer Cora Deezer Facebook PPN PPI Pubmed

Ours-Triplet 83.65 0.125 88.21 0.331 93.04 0.083 81.99 0.339 94.04 0.369 83.03 0.344 78.12 0.130
Ours-Triplet+KL 86.08 0.123 89.96 0.330 93.33 0.085 83.48 0.211 95.31 0.370 83.66 0.323 83.38 0.128

Simple-QD-GNN 40.47 5.490 28.50 0.819 54.02 0.546 0.82 14.48 32.16 7.820 0.685 46.061 17.13 5.989
QD-GNN 42.80 26.052 28.10 2.305 44.09 1.692 6.04 65.119 38.95 37.378 - - 15.54 28.650
FastBcore 100.0 80.43 100.0 3.20 100.0 1.96 100.0 62.56 100.0 78.22 100.0 2168.67 100.0 28.17
S-Greedy 100.0 34.900 100.0 0.092 100.0 2.228 100.0 94.783 100.0 5.183 100.0 51.857 100.0 94.629

LEKS-path 100.0 70.030 100.0 32.647 100.0 24.647 100.0 95.293 100.0 138.267 100.0 27079.59 100.0 113.047

(a) Effect of k on CS’s effectiveness (left three figures) and efficiency (right three figures)

(b) Effect of r on CS’s effectiveness (left three figures) and efficiency (right three figures)

Figure 6. Parameter sensitivity: effect of k and r on effectiveness and efficiency on Ca-AstroPh, Facebook PPN, and PPI

Table 3. Ablation analysis on all datasets.

Datasets T w/o FT T w/o FT+KL T T+KL

Ca-AstroPh 83.65 86.08 76.18 77.76
Citeseer 88.21 89.96 80.65 83.98
Cora 93.04 93.33 83.56 85.54
Deezer 81.99 83.48 71.51 73.46
Facebook PPN 94.04 95.31 82.64 90.62
PPI 83.03 83.66 81.28 81.95
Pubmed 78.21 83.38 76.69 77.98

a solution hardly implements in a dataset. In a nutshell, ours achieve
a good trade-off between effectiveness and efficiency. Specifically,
compared with AI solutions, ours significantly improve the F1-score
by 61.01% on average for all datasets (at least 39.3% for Cora
dataset). Our F1-socre of 87.89% on average still have room for im-
provement compared with the exact DB-based solutions, however,
in terms of efficiency, ours is up to one to two orders of magnitude
faster than others. The larger the dataset is, the more the efficiency
improvement we have. For example, we only require 0.323 ms to
response a query for the largest PPI, which is 142 X faster than AI
solution and at least 160 X faster than DB solutions.

Parameter sensitivity. We explored the effect of cohesiveness pa-
rameter k, r neighbors of a PG, and sample size on the performance
of Ours-Triplet and Ours-Triplet+KL. Due to the page limit, we pro-
vide the results on three datasets.

(1) Effect of k. As shown in Figure 6(a), the CS’s effectiveness and
efficiency are stable w.r.t. different k, which means that our solution
is scalable to various cohesiveness parameter k. To be more precise,
for any query node with an arbitrary k, we can quickly return a com-
munity with an acceptable quality.

(2) Effect of r. We varied r from 2 to 14 to build different PGs to
evaluate the effect of r on CS’s effectiveness and efficiency. Figure
6(b) shows that the efficiency decreases as r increases, because in the
greedy search over a PG, we have to measure the distance from each

of r neighbors to the query node, so the larger the r, the more time is
required. Moreover, it’s nature to see that the effectiveness increases
as r increases. A trade-off can be achieved when we set r = 9.

Figure 7. Effect of sample size on CS’s effectiveness

(3) Effect of sample size. The sample size is critical to the graph
embedding’s quality, thus affecting the CS’s effectiveness. We kept
other parameters unchanged and varied the sample size to see its ef-
fect(value from 0 to 1 indicates the sample size). From Figure 7, we
found that F1-score is positively correlated to the sample size.

Ablation analysis. To verify the effectiveness of the fine-tune
strategy with lightweight sampling in §3.3 and the KL optimiza-
tion in §4, we implemented additional two versions of our solution:
(1) Ours-Triplet w/o FT (shorten as T w/o FT) is the one without
fine-tune strategy and (2) Ours-Triplet w/o FT+KL (T w/o FT+KL)
is the one with KL optimization. It’s worth mentioning that Ours-
Triplet (T) is the one with the fine-tune strategy and Ours-Triplet+KL
(T+KL) is the KL optimized version. We set the same configurations
and show the results for kmax − 1 of each dataset in Table 3. Ours-
Triplet outperforms Ours-Triplet w/o FT with 7.09% improvement
on average, showing that the fine-tune strategy is effective. Besides,
the KL optimized versions perform better than that w/o KL, prov-
ing that the KL optimization is effective. For example, there is a
2.68% improvement on average between Ours-Triplet w/o FT+KL
and Ours-Triplet w/o FT and 1.86% improvement between Ours-
Triplet+KL and Ours-Triplet.

X. Gou et al. / Effective and Efficient Community Search with Graph Embeddings896

Table 4. Training time consumption (left, time in second) and model
size(right, parameter size in MByte) on all datasets.

Datasets Triplets training Finetuning Simple QD-GNN QD-GNN

Ca-AstroPh 988.6 1.2 497.3 1.2 4269.5 7.1 26211.2 15.0
Citeseer 705.2 0.2 495.3 0.2 249.3 1.3 629.4 2.5

Cora 331.0 0.2 166.2 0.2 293.3 1.1 581.4 2.1
Deezer 2887.1 1.8 1433.9 1.8 3390.5 11.0 26253.3 22.0

Facebook PPN 158.4 1.4 81.1 1.4 9071.1 8.5 39987.7 17.0
PPI 2243.7 2.8 88.21 2.8 35149.4 17.0 - -

Pubmed 2943.5 1.3 945.2 1.3 6683.5 7.4 27568.9 15.0

Training time consumption. We conducted experiments to mea-
sure the average training time consumed for all datasets, as presented
in Table 4(the left column of each method). Training time predomi-
nantly comprises of two key components: (1) the time consumption
required for triplets training, (2) the time consumption required for
fine-tuning using KL optimization, (3) Simple QD-GNN’s training
time consumption, and(4) QD-GNN’s training time consumption. By
calculating the average training time, we find that Simple QD-GNN
and QD-GNN time consumption is 2X and 9X slower than Triplets
training, and is 12X and 30X slower than fine-tuning.

Model size. From the perspective of the saved model size(the right
column of each method), our model has significantly fewer param-
eters compared to QD-GNN, the average parameters of our model
are 1/5 of simple QD-GNN and 1/10 of QD-GNN), which is also a
reason why our training is faster than QD-GNN.

Case study. A case study on the largest PPI dataset for k = 7 is
illustrated in Figure 8, where the node representations are visualized
w.r.t. vector similarity. Here, we only provide 30% of nodes from
PPI due to the page limit. We select three query nodes with green
(q1), red (q2), and blue (q3) stars, and provide the k-core commu-
nities of each q with corresponding colors. Note that, most of the
k-core members are similar to the query node q and only a small
number of nodes (with colored circle) are scattered far away from q.
For example, there are 76%, 80%, and 90% of k-core members are
distributed around q1, q2, and q3, respectively, showing that our node
representations can well reflect the original community involvement,
thus benefiting the CS’ effectiveness.

6 Related Works

CS in DB area. According to the graph types, it has two sub-
categories. (1) CS on homogeneous graphs. Many works focus on
modeling the cohesive community based on k-core [3, 5, 19, 2], k-
truss [1, 24, 26, 33], k-clique [11, 48, 55], and k-ECC [23]. However,
they ignore the CS on attributed graphs. Thus, many works define
different metrics of attribute cohesiveness and integrate it with the
structure cohesiveness for CS [8, 9, 16, 15, 17, 25, 34, 56]. (2) CS
on heterogeneous graphs. The meta-path P is often used to indi-
cate the relation between two node types, based on which some com-
munity models are proposed, e.g., (k,P)-core [20], (k,P)-Btruss,
and (k,P)-Ctruss [53]. No matter which model is used, the essence
is to find the cohesive subgraph via graph traversal, which is time-
consuming (e.g., from hundreds of milliseconds to tens of seconds to
respond [47, 10, 54]). This motivates the CS in AI area.

CS in AI area. Recently, [28, 27] design a supervised end-to-end
model based on GCN to map an input query node (represented as
a d-dimensional vector) into a set of nodes (represented as a com-
munity vector). [14] applies meta-learning algorithms to CS, and

solves problems with the small data. In these solutions, datasets with
ground-truths (i.e., human-annotated communities) are required as
the input supervised information. However, the ground-truths are
usually unavailable in real-life applications and the effectiveness still
have a large room for improvement. This inspires us to design our
CS solution with graph embeddings, which achieves a good balance
between effectiveness and efficiency.

������
����
�

�������	��

�

�
� ��������
�

Figure 8. Case study on the PPI dataset

7 Conclusion

In this paper, we first present an offline community-injected graph
embedding method to preserve the community’s cohesiveness fea-
tures into node representations, through community-oriented triplet
sampling. Second, we resort to a proximity graph (PG) built from
the node representations, to quickly return the community online. Fi-
nally, we develop a self-augmented method based on KL divergence
to optimize the node representations. We conduct experimental study
on seven real-world graphs and results show that our solution can
achieve a balance between effectiveness and efficiency. In the future,
we will investigate how to extend our solution to other community
models, such as k-truss and k-clique, over different graph types, e.g.,
weighted graphs and attribute graphs.

8 Acknowledgments

This work was supported by the National NSF of China (62072149
and 62006040), the Primary R&D Plan of Zhejiang (2021C03156
and 2023C03198), and the Fundamental Research Funds for the
Provincial Universities of Zhejiang (GK219909299001-006).

References

[1] Esra Akbas and Peixiang Zhao, ‘Truss-based community search: a
truss-equivalence based indexing approach’, PVLDB, 10(11), 1298–
1309, (2017).

[2] Nicola Barbieri, Francesco Bonchi, Edoardo Galimberti, and Francesco
Gullo, ‘Efficient and effective community search’, Data Min. Knowl.
Discov., 29(5), 1406–1433, (2015).

[3] Vladimir Batagelj and Matjaz Zaversnik, ‘An o (m) algorithm for cores
decomposition of networks’, arXiv, cs.DS/0310049, (2003).

[4] Deyu Bo, Xiao Wang, Chuan Shi, Meiqi Zhu, Emiao Lu, and Peng Cui,
‘Structural deep clustering network’, in WWW, pp. 1400–1410, (2020).

[5] Francesco Bonchi, Arijit Khan, and Lorenzo Severini, ‘Distance-
generalized core decomposition’, in SIGMOD, pp. 1006–1023, (2019).

[6] Lijun Chang and Lu Qin, ‘Cohesive subgraph computation over large
sparse graphs’, in ICDE, pp. 2068–2071, (2019).

[7] Huajun Chen, Ning Hu, Guilin Qi, Haofen Wang, Zhen Bi, Jie Li, and
Fan Yang, ‘Openkg chain: A blockchain infrastructure for open knowl-
edge graphs’, Data Intell., 3(2), 205–227, (2021).

[8] Lu Chen, Chengfei Liu, Rui Zhou, Jianxin Li, Xiaochun Yang, and Bin
Wang, ‘Maximum co-located community search in large scale social
networks’, PVLDB, 11(10), 1233–1246, (2018).

X. Gou et al. / Effective and Efficient Community Search with Graph Embeddings 897

[9] Yankai Chen, Yixiang Fang, Reynold Cheng, Yun Li, Xiaojun Chen,
and Jie Zhang, ‘Exploring communities in large profiled graphs’,
TKDE, 31(8), 1624–1629, (2019).

[10] Yankai Chen, Jie Zhang, Yixiang Fang, Xin Cao, and Irwin King, ‘Ef-
ficient community search over large directed graph: An augmented
index-based approach’, in IJCAI, pp. 3544–3550, (2020).

[11] Wanyun Cui, Yanghua Xiao, Haixun Wang, Yiqi Lu, and Wei Wang,
‘Online Search of Overlapping Communities’, in SIGMOD, pp. 277–
288, (2013).

[12] Wanyun Cui, Yanghua Xiao, Haixun Wang, and Wei Wang, ‘Local
Search of Communities in Large Graphs’, in SIGMOD, pp. 991–1002,
(2014).

[13] Joel Dudley, Tarangini Deshpande, and Atul J. Butte, ‘Exploiting drug-
disease relationships for computational drug repositioning’, Briefings
Bioinform, 12(4), 303–311, (2011).

[14] Shuheng Fang, Kangfei Zhao, Guanghua Li, and Jeffery Xu Yu, ‘Com-
munity search: A meta-learning approach’, (2022).

[15] Yixiang Fang, Reynold Cheng, Yankai Chen, Siqiang Luo, and Jiafeng
Hu, ‘Effective and efficient attributed community search’, VLDBJ,
26(6), 803–828, (2017).

[16] Yixiang Fang, Reynold Cheng, Xiaodong Li, Siqiang Luo, and Jiafeng
Hu, ‘Effective Community Search over Large Spatial Graphs’, PVLDB,
10(6), 709–720, (2017).

[17] Yixiang Fang, Reynold Cheng, Siqiang Luo, and Jiafeng Hu, ‘Effective
community search for large attributed graphs’, PVLDB, 9(12), 1233–
1244, (2016).

[18] Yixiang Fang, Xin Huang, Lu Qin, Ying Zhang, Wenjie Zhang, Reynold
Cheng, and Xuemin Lin, ‘A survey of community search over big
graphs’, VLDBJ, 29(1), 353–392, (2020).

[19] Yixiang Fang, Zhongran Wang, Reynold Cheng, Hongzhi Wang, and Ji-
afeng Hu, ‘Effective and efficient community search over large directed
graphs’, IEEE Trans. Knowl. Data Eng., 31(11), 2093–2107, (2019).

[20] Yixiang Fang, Yixing Yang, Wenjie Zhang, Xuemin Lin, and Xin Cao,
‘Effective and efficient community search over large heterogeneous in-
formation networks’, PVLDB, 13(6), 854–867, (2020).

[21] Christos Giatsidis, Fragkiskos D. Malliaros, Dimitrios M. Thilikos, and
Michalis Vazirgiannis, ‘Corecluster: A degeneracy based graph cluster-
ing framework’, in AAAI, eds., Carla E. Brodley and Peter Stone, pp.
44–50, (2014).

[22] William L. Hamilton, Zhitao Ying, and Jure Leskovec, ‘Inductive repre-
sentation learning on large graphs’, in NeurIPS, pp. 1024–1034, (2017).

[23] Jiafeng Hu, Xiaowei Wu, Reynold Cheng, Siqiang Luo, and Yixiang
Fang, ‘Querying Minimal Steiner Maximum-connected Subgraphs in
Large Graphs’, in CIKM, pp. 1241–1250, (2016).

[24] Xin Huang, Hong Cheng, Lu Qin, Wentao Tian, and Jeffrey Xu Yu,
‘Querying k-truss community in large and dynamic graphs’, in SIG-
MOD, pp. 1311–1322, (2014).

[25] Xin Huang and Laks V. S. Lakshmanan, ‘Attribute-driven community
search’, PVLDB, 10(9), 949–960, (2017).

[26] Xin Huang, Laks V. S. Lakshmanan, Jeffrey Xu Yu, and Hong Cheng,
‘Approximate Closest Community Search in Networks’, PVLDB, 9(4),
276–287, (2015).

[27] Yuli Jiang, Yu Rong, Hong Cheng, Xin Huang, Kangfei Zhao, and Jun-
zhou Huang, ‘QD-GCN: query-driven graph convolutional networks
for attributed community search’, arXiv, abs/2104.03583, (2021).

[28] Yuli Jiang, Yu Rong, Hong Cheng, Xin Huang, Kangfei Zhao, and
Junzhou Huang, ‘Query driven-graph neural networks for commu-
nity search: From non-attributed, attributed, to interactive attributed’,
PVLDB, 15(6), 1243–1255, (2022).

[29] Thomas N. Kipf and Max Welling, ‘Semi-supervised classification with
graph convolutional networks’, in ICLR, (2017).

[30] Maksim Kitsak, Lazaros K Gallos, Shlomo Havlin, Fredrik Liljeros,
Lev Muchnik, H Eugene Stanley, and Hernán A Makse, ‘Identification
of influential spreaders in complex networks’, Nature physics, 6(11),
888–893, (2010).

[31] Jure Leskovec, Jon M. Kleinberg, and Christos Faloutsos, ‘Graph evo-
lution: Densification and shrinking diameters’, ACM Trans. Knowl.
Discov. Data, 1(1), 2, (2007).

[32] Wen Li, Ying Zhang, Yifang Sun, Wei Wang, Mingjie Li, Wenjie
Zhang, and Xuemin Lin, ‘Approximate nearest neighbor search on high
dimensional data - experiments, analyses, and improvement’, IEEE
Trans. Knowl. Data Eng., 32(8), 1475–1488, (2020).

[33] Qing Liu, Minjun Zhao, Xin Huang, Jianliang Xu, and Yunjun Gao,
‘Truss-based community search over large directed graphs’, in SIG-

MOD, pp. 2183–2197, (2020).
[34] Qing Liu, Yifan Zhu, Minjun Zhao, Xin Huang, Jianliang Xu, and Yun-

jun Gao, ‘VAC: vertex-centric attributed community search’, in ICDE,
pp. 937–948, (2020).

[35] Yury A. Malkov and Dmitry A. Yashunin, ‘Efficient and robust ap-
proximate nearest neighbor search using hierarchical navigable small
world graphs’, IEEE Trans. Pattern Anal. Mach. Intell., 42(4), 824–
836, (2020).

[36] Xiaoye Miao, Yue Liu, Lu Chen, Yunjun Gao, and Jianwei Yin, ‘Reli-
able community search on uncertain graphs’, in ICDE, pp. 1166–1179,
(2022).

[37] Galileo Mark Namata, Ben London, Lise Getoor, and Bert Huang,
‘Query-driven active surveying for collective classification’, in Interna-
tional Workshop on Mining and Learning with Graphs (MLG), (2012).

[38] Jeff Z. Pan, Elspeth Edelstein, Patrik Bansky, and Adam Wyner, ‘A
knowledge graph based approach to social science surveys’, Data In-
tell., 3(4), 477–506, (2021).

[39] Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Lina Yao, and
Chengqi Zhang, ‘Adversarially regularized graph autoencoder for graph
embedding’, in IJCAI, pp. 2609–2615, (2018).

[40] Ryan A. Rossi and Nesreen K. Ahmed, ‘The network data repository
with interactive graph analytics and visualization’, in AAAI, eds., Blai
Bonet and Sven Koenig, pp. 4292–4293, (2015).

[41] Benedek Rozemberczki, Carl Allen, and Rik Sarkar, ‘Multi-scale at-
tributed node embedding’, J. Complex Networks, 9(2), (2021).

[42] Benedek Rozemberczki and Rik Sarkar, ‘Characteristic functions on
graphs: Birds of a feather, from statistical descriptors to parametric
models’, in CIKM, pp. 1325–1334, (2020).

[43] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Gal-
lagher, and Tina Eliassi-Rad, ‘Collective classification in network data’,
AI Mag., 29(3), 93–106, (2008).

[44] Mauro Sozio and Aristides Gionis, ‘The community-search problem
and how to plan a successful cocktail party’, in KDD, pp. 939–948,
(2010).

[45] Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov, ‘Dropout: A simple way to prevent neural
networks from overfitting’, J. Mach. Learn. Res., 15(1), 1929–1958,
(2014).

[46] Chris Stark, Bobby-Joe Breitkreutz, Teresa Reguly, Lorrie Boucher,
Ashton Breitkreutz, and Mike Tyers, ‘Biogrid: A general repository for
interaction datasets’, Nucleic Acids Res., 34(Database-Issue), 535–539,
(2006).

[47] Longxu Sun, Xin Huang, Ronghua Li, Byron Choi, and Jianliang
Xu, ‘Index-based intimate-core community search in large weighted
graphs’, IEEE Trans. Knowl. Data Eng., (2020).

[48] Charalampos E. Tsourakakis, Francesco Bonchi, Aristides Gionis,
Francesco Gullo, and Maria A. Tsiarli, ‘Denser than the densest sub-
graph: extracting optimal quasi-cliques with quality guarantees’, in
KDD, pp. 104–112, (2013).

[49] Laurens Van der Maaten and Geoffrey Hinton, ‘Visualizing data using
t-sne’, Journal of machine learning research, 9(11), (2008).

[50] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana
Romero, Pietro Lio, and Yoshua Bengio, ‘Graph attention networks’,
arXiv, abs/1710.10903, (2017).

[51] Chun Wang, Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, and
Chengqi Zhang, ‘Attributed graph clustering: A deep attentional em-
bedding approach’, in IJCAI, pp. 3670–3676, (2019).

[52] Mengzhao Wang, Xiaoliang Xu, Qiang Yue, and Yuxiang Wang, ‘A
comprehensive survey and experimental comparison of graph-based
approximate nearest neighbor search’, PVLDB, 14(11), 1964–1978,
(2021).

[53] Yixing Yang, Yixiang Fang, Xuemin Lin, and Wenjie Zhang, ‘Effective
and Efficient Truss Computation over Large Heterogeneous Informa-
tion Networks’, in ICDE, pp. 901–912, (2020).

[54] Kai Yao and Lijun Chang, ‘Efficient size-bounded community search
over large networks’, PVLDB, 14(8), 1441–1453, (2021).

[55] Long Yuan, Lu Qin, Wenjie Zhang, Lijun Chang, and Jianye Yang,
‘Index-based densest clique percolation community search in net-
works’, IEEE Trans. Knowl. Data Eng., 30(5), 922–935, (2018).

[56] Zhiwei Zhang, Xin Huang, Jianliang Xu, Byron Choi, and Zechao
Shang, ‘Keyword-centric community search’, in ICDE, pp. 422–433,
(2019).

X. Gou et al. / Effective and Efficient Community Search with Graph Embeddings898

	Introduction
	Problem Definition
	CS with Graph Embeddings
	Framework Overview
	Community-injected Graph Embedding
	Scalability on Various Cohesiveness
	Online Community Search with PG

	Optimization with KL Divergence
	Experiments
	Setup
	Experiment Results

	Related Works
	Conclusion
	Acknowledgments

