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Abstract. This paper focuses on graphical models for modelling
preferences in combinatorial space and their use for item optimisa-
tion. The preferential optimisation task seeks to find the preferred
item containing some defined values, which is useful for many
recommendation settings in e-commerce. We show that efficient
(i.e., with polynomial time complexity) preferential optimisation is
achieved with a subset of cyclic CP-nets called conditional acyclic
CP-net. We also introduce a new graphical preference model, called
Conditional-Optimality networks (CO-networks), that are more con-
cise than conditional acyclic CP-nets and LP-trees but have the same
expressiveness with respect to optimisation. Finally, we empirically
show that preferential optimisation can be used for encoding alter-
natives into partial instantiations and vice versa, paving the way to-
wards CO-nets and CP-nets unsupervised learning with the minimal
description length (MDL) principle.

1 Introduction

Online shopping services, like video-on-demand streaming services
and product configurators for computers, cars, or kitchens, rely on
recommendation and customisation of the user experience to boost
sales [29]. Recommendations are essential in large, combinatorial
product spaces, where the number of alternatives can lead to over-
choice confusion [17]. In such a case, a user is overwhelmed by the
possibilities and cannot choose. A common tool in configurators is
optimal completion, where the configurator automatically completes
a partially configured product by maximising the product’s utility for
the user. Recommendation, and optimal completion, in particular, are
typically based on a modelling of user preferences. However, except
when the number of attributes is very small, it is intractable to repre-
sent a linear order over the space of all possible alternatives in exten-
sion, so for a decision-maker to give their preferences, some structure
is needed. Several types of graphical representations of preferences
have been studied in the literature. Combinatorial preferences can be
modelled with numerical models, such as GAI-nets [14] and ensem-
ble ranking function [12], or by ordinal graphical models, such as
lexicographic preferences trees (LP-trees [11]) and conditional pref-
erences networks (CP-nets [4]). We focus on the latter models be-
cause the optimal completion query can be answered in polynomial
time with LP-trees and acyclic CP-nets with the Forward Sweep al-
gorithm [4].
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LP-trees are graphical representations of a linear (total) order
based on the relative importance of attributes: to compare two al-
ternatives, their value for the most important attribute is compared.
If they are different, then we can conclude which alternative is pre-
ferred. Otherwise, the second most important attribute is used for
comparison, and so on. CP-nets are based on ceteris paribus prefer-
ences and only encode the comparison between two outcomes that
differ by the value of only one variable. Therefore, some alternatives
may be incomparable, even by transitivity. However, since CP-nets
do not encode attribute importance, they are more compact than LP-
trees. So, these two model classes have a trade-off: LP-trees describe
total orders, and CP-nets are more compact. However, CP-nets are
more general in the sense that they can represent, albeit partially,
any preference relation, whereas LP-trees can only represent (gener-
alised) lexicographic preference relations.

Our contributions can be summarised as follow:

• we show that conditional acyclic CP-nets, introduced by [28], are
exactly the CP-nets for which Forward Sweep, a polytime algo-
rithm for preferential optimisation, can be applied to;

• we introduce an even more compact version of CP-nets, called
CO-nets (conditional optimality networks), that can be used to an-
swer optimisation queries (under some structural condition) about,
in particular, but not restricted to, generalised lexicographic pref-
erences;

• we show that preferential optimisation can be used for encoding
and decoding data effectively in a Minimum Description Length
approach to learning preferences with an empirical comparison to
popular compression algorithms, paving the way towards unsuper-
vised learning of CP-nets with the (MDL) principle.

Section 2 gives some background about preferences models. Sec-
tion 3 proves the the characterisation of conditional acyclic CP-nets
as the set of CP-nets which efficient preferential optimisation. Sec-
tion 4 presents conditional optimality networks and their associated
optimisation algorithm. Section 5 studies the relationship between
different subclasses of LP-trees and CP-nets concerning the opti-
misation query. Finally, Section 6 presents a new encoding and de-
coding technique based on preferential optimisation experimentally
compared to popular compression algorithms. Section 7 concludes.

2 Background and notations

Combinatorial Domain We consider a combinatorial domain over
a finite setX of discrete attributes that characterise the possible alter-
natives. Each attribute X ∈ X has a finite set of possible values X .
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X denotes the Cartesian product of the domains of the attributes in
X , its elements are called alternatives. We often use the symbols o,
o′, o1, o2, . . . to denote alternatives. In the following, n is the number
of attributes in X , and d is a bound on the size of the domains of the
attributes: for every X ∈ X , 2 ≤ |X| ≤ d.

For a subset U of X , we will denote by U the Cartesian product
of the domains of the attributes in U , every u ∈ U is an instantiation
of U , or partial instantiation (of X ). If v is an instantiation of some
V ⊆ X , v[U ] denotes the restriction of v to the attributes in V ∩ U .
We say that instantiations u ∈ U and v are compatible if v[U ∩V ] =
u[U ∩ V ], written u ∼ v. If U ⊆ V and v[U ] = u, we say that v
extends u, also written u ⊆ v.

Preference relations In this paper, we consider only preference
relations that do not allow for indifference: such a preference relation
is a linear order over X , that is, a total, transitive, irreflexive binary
relation over X , often denoted with curly symbol �. For alternatives
o, o′ ∈ X , o � o′ indicates that o is strictly more preferred to o′.

In many settings, one is essentially interested in finding some al-
ternative that is optimal in some restricted set of alternatives, in the
sense that no other alternative “beats” it / is strictly more preferred
in that set. In particular, in interactive configuration settings, given a
partial instantiation u ∈ U already built by a user, it can be useful to
show the user what is the best completion of u, according to her pref-
erences. We denote opt(u,�) the most preferred – according to � –
alternative compatible with u; it exists and is unique in a linear or-
der; in later sections we will study some incomplete representations
of preferences, and we will use the same notation opt(u,�)when the
most �-preferred alternative compatible with u exists and is unique.
We say that alternative o, such that o[U ] = u, is u-undominated if
and only if there is no alternative o′ such that o′[U ] = u and o′ � o.
o is undominated if there is no alternative o′ such that o′ � o.

Graphical models It has long been observed that, given the expo-
nential size of X , for any practical purpose one must make the as-
sumption that the preference relations of interest exhibit some struc-
ture. Several models that have been studied in the AI literature to rep-
resent preference relations separate the information into three com-
ponents: 1) a graph (or sometimes a hypergraph), representing some
relationship between attributes; 2) some local information about pref-
erences, in tables associated with the nodes of the graph; 3) a rule to
aggregate the local preferences into a global binary relation over X .
We focus below on two such models: Conditional Preference Net-
works (CP-nets) and Lexicographic Preference Trees (LPTs).

CP-nets CP-nets have been introduced by [4] as a tool to
make explicit a particular kind of structure, called preferential
(in)dependence. We give below a slightly more general definition1

of preferential independence than that of [4]:

Definition. Attribute X is said to be preferentially independent of
attribute Y �= X given u ∈ U for some U ⊆ X \ {X,Y } with re-
spect to preference relation � if for every x, x′ ∈ X, y, y′ ∈ Y , v ∈
X \ (U ∪ {X,Y }), uvxy � uvx′y if and only if uvxy′ � uvx′y′.
We write that X is preferentially independent of Y if X is preferen-
tially independent of Y given the empty assignment u = 
.

1 Although the initial definition of CP-nets allows for indifference in condi-
tional preference table, [4] also point out that this leads to some difficulty
in the semantics of CP-nets.

Note that preferential independence is not necessarily symmetric.
A CP-net is a structure that captures / represents the preferential inde-
pendencies inherent in a given preference relation. Figure 1a depicts
a CP-net ϕ0. More generally, a CP-net is a triple ϕ = (X ,Pa,CPT),
where:

• Pa associates to every attribute X ∈ X , a subset Pa(X) of
X \ {X}, thus Pa defines a directed graph over X , where there
is an edge (X,Y ) if and only if X ∈ Pa(Y ). Pa(Y ) is the set of
parents of Y ;

• CPT is a set of conditional preference tables, one table CPT(X)
for every attribute X: CPT(X) contains, for every instantiation u
of Pa(X), a rule u : >, where > is a linear order over X .

Example 1. For the CP-net ϕ0 of figure 1a, Pa(A) = {} and
CPT(A) = {a > ā}, Pa(B) = {A,C} and CPT(B) = {a∨c̄ : b >
b̄, āc : b̄ > b}.

Let us call swap any pair of alternatives that have identical values
for every attribute except one. A CP-net ϕ orders every swap {o, o′}
as follows: let X be the only attribute such that o[X] �= o′[X],
let u = o[Pa(X)] = o′[Pa(X)], let u : > be the corresponding
rule in CPT(X), then (o, o′) is a worsening swap (w.r.t. ϕ) if and
only if o[X] > o′[X]. The transitive closure of all the worsening
swaps sanctioned by ϕ is, by definition, transitive, and we denote
it by �ϕ. It is not necessarily irreflexive, and not complete in gen-
eral. Figure 1b depicts �ϕ0 : edges o o′ represent the worsen-
ing swaps sanctioned by ϕ0. Some of them are redundant since im-
plied, by transitivity of �ϕ0 , by other swaps: for instance the fact
that abc �ϕ0 ābc is implied by the worsening swaps (abc, abc̄),
(ābc̄, abc̄), (ābc̄, ābc).

CP-net induced by a preference relation Given a preference re-
lation (linear order) � over X , it is possible to define a CP-net
ϕ� = (X ,Pa�,CPT�) that captures the preferential independen-
cies between attributes that are inherent in �: for every pair of at-
tributes X,Y ∈ X , X ∈ Pa�(Y ) if and only if Y is not preferen-
tially independent of X (w.r.t. �). Then, for every X ∈ X and every
u ∈ Pa�(X), CPT�(X) contains the rule u : >, where > is the
linear order over X such that x > x′ if and only xuv � x′uv for
every v ∈ X − (Pa�(X) ∪ {X}).
Example 2. The CP-net induced by the linear order abc � abc̄ �
ab̄c̄ � ab̄c � ābc̄ � āb̄c̄ � āb̄c � ābc is ϕ0. For instance, whatever
the values x and y given to B and C respectively, it holds that axy �
āxy, thus A does not preferentially depend on B, nor on C, and
CPT(a) = {a > ā}.

Lexicographic Preference Trees LP-trees generalise lexico-
graphic orders, which have been widely studied in decision mak-
ing [10]. As an inference mechanism, they are equivalent to search
trees used by [5], and formalised by [27, 28]. As a preference repre-
sentation, and elicitation, language, slightly different definitions for
LP-trees have been proposed by [2, 7, 9].

In the formal model proposed by [2], a lexicographic preference
tree, or LP-tree for short, is composed of two parts: a rooted tree
indicating the relative importance of the attributes, and tables indi-
cating how to compare outcomes that agree on some attributes. An
example of a LP-tree is depicted in Figure 1c. Each node of the im-
portance tree is labelled with an attribute X ∈ X , and is either a
leaf of the tree, or has one single, unlabelled outgoing edge, or has
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A

a>ā

B

a∨c̄ : b>b̄
āc : b̄>b

C

ā∨b̄ : c̄>c
ab : c>c̄

(a) A CP-net ϕ0.

abc

abc̄

ab̄c̄

ab̄c

ābc̄

āb̄c̄

āb̄c

ābc

(b) A graphical rep-
resentation of �ϕ0 .

A

B

C

C

B

a
ā

a>ā

b>b̄

b:c>c̄
b̄:c̄>c

c̄>c

c̄:b>b̄
c:b̄>b

abc � abc̄ � ab̄c̄ � ab̄c
� ābc̄ � āb̄c̄ � āb̄c � ābc

(c) LP-tree ψ0 and the cor-
resp. pref. relation �ψ0

A a>ā

B b>b̄

C c̄>c

abc̄ � abc � ab̄c̄ � ab̄c
� ābc̄ � ābc � āb̄c̄ � āb̄c

(d) A linear LP-tree and the
corresponding pref. relation

A

a

B

a∨c̄ : b
āc : b̄

C

ā∨b̄ : c̄
ab : c

(e) A CO-net ϕ∗
0.

Figure 1: Examples of a CP-net, two LP-trees and a CO-net.

|X| outgoing edges, each one being labelled with one of these val-
ues. No attribute can appear twice in a branch. For a given node N ,
Anc(N) denotes the set of attributes that label nodes above N . The
values of attributes that are at a node above N with a labelled out-
going edge influence the preference at N . We denote by Inst(N) the
set of nodes above N with a labelled outgoing edge and inst(N) the
tuple of values of the edge labels between the root and N . Also, we
define NonInst(N) = Anc(N)� Inst(N).

Moreover, one conditional preference table CPT(N) is associated
to each node N of the tree: if X is the attribute that labels N , then
the table contains rules of the form v : >, where > is a linear order
> over X, and v ∈ V for some V ⊆ NonInst(N). The rules in
CPT(N) must be consistent: given two rules v : > and v′ : >′, it
must be the case that v and v′ are not compatible. Moreover, we im-
pose that LP-trees are complete: every attribute must appear exactly
once on every branch, and for any u ∈ NonInst(N), there must be
one rule v : >∈ CPT(N) such that u and v are compatible.

Every LP-tree ϕ induces a linear order over X , denoted �ϕ: for
any node N labelled by X , consider a pair of alternatives o and o′

such that o[Inst(N)] = o′[Inst(N)] = inst(N) and o[X] �= o′[X]:
N is said to decide the pair (o, o′); furthermore, there must be unique
rule v : > in CPT(N) such that o[NonInst(N)] = o′[NonInst(N)]
is compatible with v: then o �ϕ o′ if and only if o[X] > o′[X].

Figure 1c also shows the preference relation induced by the de-
picted LP-tree ψ0, which is also that of example 2, so ϕ0 = ϕ�ψ0

.
An LP-tree is said to have unconditional preferences if, for a given

attribute X , every node labelled with X contains a unique, identical
rule 
 : >. We denote UP-LPT the class of such LP-trees. In partic-
ular, figure 1d depicts a linear LP-tree: it has unconditional prefer-
ences, and a single branch. It is a strong restriction on expressiveness:
linear LP-trees represent the usual, unconditional lexicographic pref-
erence relations.

Brauning et al. [7, 6] extend the expressiveness of LP-trees by al-
lowing to label a node with a set of attributes, considered as a single
high-dimensional attribute; we do not consider such LP-trees here.

3 Conditional acyclicity and the Forward Sweep
procedure

Boutilier et al. [4] proved that, when a CP-net ϕ is acyclic, it has a
unique undominated alternative, which can be computed in polyno-
mial time with the Forward Sweep procedure. We prove in this sec-
tion that this approach characterises the class of conditionally acyclic
CP-nets, introduced by [28], that strictly contains the class of those
CP-nets, the graph of which is acyclic.

Definition ([28]). CP-net ϕ is conditionally acyclic if there is some
LP-tree ψ such that �ψ extends �ϕ.

The CP-net ϕ0 of figure 1a is conditionally acyclic, since �ϕ0 is
contained in �ψ0 where ψ0 is the LP-tree of figure 1c. In fact, ψ0 is
the only LP-tree which has ϕ0 as induced CP-net.

We introduce the following notation: given CP-net ϕ =
(X ,Pa,CPT), for every attribute X ∈ X and every partial instanti-
ation u ∈ U for some U ⊆ X , Paϕ(X|u) is the set of attributes of
which X is not independent given u.

For the CP-net on figure 1a, although Pa(C) = {A,B},
Pa(C|ā) = ∅: whatever the value of B, when A = ā, the order-
ing over C is: c̄ ≥ c.

Algorithm 1 below is a generic Forward Sweep algorithm. It ini-
tialises an empty instantiation inst at line 1, and iteratively expands
inst by choosing an attribute at line 3, choosing a value for that
attribute at line 4, and adding this value to inst. FSgen is non-
deterministic, as it leaves open the choices of attribute and value at
every iteration.

Algorithm 1: Generic Forward Sweep (FSgen) from [4]
Data: ϕ, a CP-net
Result: o ∈ X

1 inst ← 

2 while possible do

3 choose X ∈ X − Var(inst), s.t. Paϕ(X|inst) = ∅
4 choose x ∈ X
5 inst ← inst · x
6 if Var(inst) = X then return inst;
7 else return FAILURE;

We will adapt this algorithm in later sections to perform various
tasks of interest, and in particular to compute the undominated alter-
native of some conditionally acyclic CP-net as the Forward Sweep
procedure proposed by [4].

We close this section with a proposition that shows that algorithm
FSgen characterises the class of conditionally acyclic CP-nets.

Proposition 1. Algorithm FSgen always succeeds, whatever the
choices of variables or values at lines 3 and 5, if and only if ϕ is
conditionally acyclic.

In particular, if the input CP-net ϕ is not conditionally acyclic,
there is at least one sequence of choices at lines 3 and 4 that will
lead to failure: at some point, there is no more X ∈ X − Var(inst),
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s.t. Paϕ(X|inst) = ∅. Note that the algorithm is not intended to be
a practical tool to check if a given CP-net is conditionally acyclic,
as checking that the algorithm never fails requires a number of trials
that is exponential in the n: this problem is PSPACE-complete [28].

Proof. [28] proves that a CP-net ϕ is equivalent to a set of CP-
statements that essentially corresponds to the union of the local pref-
erence rules in the conditional preference tables inϕ for all attributes.
[8] gives an algorithm that computes a complete LP-tree that is con-
sistent with a given conditionally acyclic sets of CP-statements. The
algorithm is as follows: 2

Algorithm 2: Build complete LP tree (from [8])
Data: ϕ set of CP-statements
Result: LP-tree ψ complete, s.t. �ψ ⊇ �ϕ, or FAILURE

1 ψ ← {an unlabelled root node}
2 while ψ contains some unlabelled node do

3 choose unlabelled node N of ψ
4 (X,>) ← chooseAttribute(N,ϕ)
5 if X = FAILURE then return FAILURE;
6 label N with (X,>)
7 if Anc(N) ∪X �= X then

8 for x ∈ X do

9 add new unlabelled node to ψ
10 attach this node to N with edge labelled with x

11 return ψ

Essentially, given a yet unlabelled node N , the algorithm calls at
step 4 the helper function chooseAttribute that returns an attribute
X and a linear order over > over X , and expands the tree at step 8
with a child for N for every value in X . [8] prove that the algorithm
succeeds if and only if ϕ is conditionally acyclic.

The reader is referred to [8] for details about the helper function
chooseAttribute in the context of sets of CP-statements. It is not
difficult to see that in the case of CP-nets, this condition amounts to
picking an attribute X such that all rules u : >∈ CPTϕ(X), where
u is consistent with the instantiations made above N , specify the
same order over X; that is, this condition amounts to the fact that
Pa(X|inst) = ∅.

Thus line 4 in the algorithm above is similar to lines 3 and 4 in
FSgen, except that in FSgen a single value x is associated to X at
line 4, instead of a linear order > at line 4 in the above algorithm.

Moreover, whereas the above algorithm expands the current node
at line 8 with one subtree for every possible value of the chosen at-
tributeX , FSgen only expands inst at line 5 in a unique way with the
chosen value x.

Therefore, building a tree with the above algorithm amounts to
several runs of the FSgen algorithm to build all branches in paral-
lel. Thus, FSgen always succeeds, for all possible choices at lines 2
and 5, if and only if the above algorithm succeeds, if and only if ϕ is
conditionally acyclic.

4 Conditional Optimality Networks

As far as optimisation is concerned, it turns out that the only informa-
tion that is needed, in a conditionally acyclic CP-net, is the optimal

2 The algorithm proposed by [8] is more general in that it takes another input
which is a bound on the number of attributes allowed at each node of the
tree; the algorithm that we give here is a restriction where this bound is set
to 1, that, we build LP-trees with exactly one attribute at each node.

values in the preference tables. Taking that into account, in this sec-
tion, we define a “lightweight” version of CP-nets, that we call Con-
ditional Optimality Networks, or CO-nets for short. They are similar
to CP-nets, but only contains information about optimality. We will
prove that this information is sufficient to reason about a given linear
order, provided that the induced CO-net is conditionally acyclic.

Definition. A CO-net over X is a tuple N = (X ,Pa,COT), where
Pa defines a directed graph over X , and where COT is a conditional
optimality table, such that, for every attribute X , and every u ∈
Pa(X), COT(X,u) contains a single values of X , the optimal value
for X given u.

For example, figure 1e shows the CO-net induced by the LP-tree
ψ0. Given a preference relation � over X , there is a unique CO-net
that captures the information about conditional optimality contained
in �, let us denote it by ϕ∗

� = (X ,Pa,COT): X ∈ Pa(Y ) if Y is
not independent ofX for optimality, according to the next definition,
and COT in ϕ∗

� contains, for every attribute Y ∈ X and every u ∈
Pa(Y ), the only undominated value of Y , given u.

Definition. Attribute Y is said to be independent for optimality of
attribute X �= Y given u ∈ U for some U ⊆ X \ {X,Y } with
respect to preference relation � if for every x, x′ ∈ X, y ∈ Y , v ∈
X \ {X,Y }, uvxy is uvx-undominated if and only if uvxy′ is uvx′-
undominated. We write that Y is independent of X for optimality if
Y is independent of X for optimality given the empty assignment
u = 
.

Note that, given a preference relation�, preferential independence
implies independence for optimality. Therefore, the graph of the CP-
net induced by � contains the graph of the CO-net induced by �;
furthermore, since, in the induced CP-net, the CPTs contain linear
orders over domains of the variables, they also contain the informa-
tion about optimal values. Thus the induced CO-net is weaker than
the induced CP-net. Obviously, in the case where all variables are
binary, the induced CO-net is equivalent to the induced CP-net.

We now consider an instantiation of the Forward Sweep algorithm
that specifically computes the only undominated completion of a par-
tial instantiation u, given a conditionally acyclic CP-net or CO-net.

Algorithm 3: Forward Sweep for optimisation (FSopt)
Data: ϕ = CP-net or CO-net, U ⊆ X , u ∈ U
Result: opt(u, ϕ)

1 inst ← 

2 while possible do

3 choose X ∈ X − Var(inst), s.t. Paϕ(X|inst) = ∅
4 if X ∈ U then inst ← inst · u[X];
5 else inst ← inst · opt(X|inst);

6 if Var(inst) = X then return inst;
7 else return FAILURE;

Definition. We say that a CO-net is conditionally acyclic if the FSopt

always succeeds.

The next proposition shows that in the case where the CO-net in-
duced by some preference relation is conditionally acyclic, then it
contains all necessary information to compute opt(·,�).

Proposition 2. Let � be a preference relation over X . If the induced
CO-net, ϕ∗

�, is conditionally acyclic, then, for every u ∈ U for every
U ⊆ X , opt(u,�) = FSopt(u, ϕ∗

�).
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Proof. The proof is similar to that of lemma 3 in [4]. Let U ⊆ X ,
u ∈ U . By definition of conditional acyclicity, we know that FSopt

always succeeds; let o∗(u) be the alternative returned by the algo-
rithm when called with (U, u). Let Xi be the attribute chosen at the
ith iteration, x∗

i the value taken by the variableXi at the ith iteration,
and insti the value of inst after the ith iteration. We have inst1 = x∗

1,
inst2 = x∗

1x
∗
2, . . ., and instn = o∗(u). Let o be another alternative

such that o[U ] = u. Define sequence of alternatives (oi)i=n,...,1

as follows: on = o∗(u), and for every i = n, n − 1, . . . , 1:
oi−1 = oi except if Xi /∈ U , in which case oi−1 is identical to
oi except that oi−1[Xi] = o[Xi]. Then o0 = o. Moreover, for ev-
ery i = n, n − 1, . . . , 1, since o∗[Xi] = xi is the optimal value for
Xi given insti−1, we have that o∗[Xi] > o[Xi] and oi � oi−1, or
o∗[Xi] = o[Xi] and oi = oi−1; because o �= o∗(u), for at least one
i it must be the case that oi � oi−1. Thus o∗(u) � o0.

The important point here is that, if one wants to elicitate or learn
preferences to support a decision maker in tasks that only involve op-
timisation queries, then all what is needed is a conditionally acyclic
CO-net. Note that the above result does not hold anymore for non-
conditionally acyclic CO-nets, as shown on the next example.

Example 3. Consider two binary attributes A and B, and the fol-
lowing preference relation: ab � āb̄ � ab̄ � āb, with one un-
dominated alternative ab. The induced CO-net, depicted below, is
not conditionally ayclic; the partial order �ϕ defined by the in-
duced CP-net ϕ has two undominated alternatives : ab and āb̄.

The induced CO-net:

A
b : a
b̄ : ā

B
a : b
ā : b̄

The induced CP-net:

A
b : a>ā
b̄ : ā>a

B
a : b>b̄
ā : b̄>b

Besides, since the independence for optimality is weaker than the
preferential independence, it is possible for cyclic CP-nets to have
associated conditionally acyclic CO-nets. Remark that this can only
happen if there exist non-binary attributes.

Example 4. Consider two attributes A,B with A = {a1, a2, a3},
B = {b1, b2}, and the following preference relation: a1b1 � a1b2 �
a3b2 � a2b2 � a2b1 � a3b1. The induced CP-net is not condition-
ally acyclic but the induced CO-net is acyclic.

Induced CO-net:

Aa1 B

a1 : b1
a2 : b2
a3 : b2

Induced CP-net:

A

b1 : a1>a2>a3

b2 : a1>a3>a2

B

a1 : b1>b2
a2 : b2>b1
a3 : b2>b1

5 Expressiveness

In this section, we explore the relationship between some classes of
CO-nets and the classes of preference relations that induces them.

Separable preferences We start with some results about preferen-
tial separability. A preference relation is said to be separable (resp.
opt-separable) if for every pair of attributes (X,Y ), X is preferen-
tially independent of Y (resp. independent of Y for optimality).

By definition of CP-nets (resp. CO-nets), a preference relation
is separable (resp. opt-separable) if and only if the induced CP-net
(resp. CO-net) has no edge. Moreover, the preference relation de-
fined by an LP-tree ψ is separable if and only ψ ∈ UP-LPT; in other
words: the preference relation defined by ψ is separable if and only
if ψ has unconditional rules. Conversely, given a CP-net or a CO-net

ϕ with no edge, there are n! linear LP-trees that induce ϕ (defined by
the possible orderings of the attributes along the single branch of lin-
ear LP-trees), and even more LP-trees with unconditional preferences
but conditional importance (that is, LP-trees with several branches).
Note that there are also preference relations that induce ϕ and that
are not represented by any LP-tree.

In settings where one needs to learn the preferences of a deci-
sion maker for the sole purpose of optimisation, and if it can be as-
sumed that the decision-maker’s preferences are separable, the above
remark, combined with that of Prop. 2 formalises the unsurprising
fact that one only has to learn the optimal value for every attribute,
independently from the values of the other attributes.

Importantly, it should be noted that this does not extend to settings
where one would need to compare two alternatives: even if the un-
known preference relation is separable, comparing two alternatives
may require information that is not captured by the induced CP-net.

Unconditional importance It has long been recognised that CP-
nets alone cannot capture all the information needed to represent
most preference relations. LP-trees on the other hand completely
represent some preference relations, with some information about
the relative importance of the attributes: in a given branch, every at-
tribute is more important than all attributes below it in that branch,
for comparing alternatives that are decided in that branch. Figure 1c
shows a LP-tree where the relative importance of attributes B and C
are conditioned by the value for attribute A: for comparing alterna-
tives that have value a for A, B is more important than C; but C is
more important than B for comparing alternatives that have value ā
for A. Let UI-LPT denote the class of LP-trees with unconditional
importance, that is, where the ordering of the attributes is the same
in every branch; such an LP-tree is always equivalent to an LP-tree
with a single branch.

Proposition 3. Given ψ ∈ UI-LPT, the CP-net and CO-net induced
by �ψ are acyclic; and, given an acyclic CP-net or CO-net ϕ, there
exists some ψ ∈ UI-LPT such that ϕ is induced by �ψ .

Proof. Consider some LP-tree ψ ∈ UI-LPT with unconditional or-
der of importance X1, X2, . . . , Xn: in every branch, the node at
depth i is labelled with attribute Xi, and the preference rules at that
node can only depend onX1, . . . , Xi−1; thus in the induced CP-net /
CO-net, Pa(Xi) ⊆ {X1, . . . , Xi−1}. Therefore the graph is acyclic.
Conversely, given an acyclic CP-net ϕ, consider any topological or-
dering X1, . . . , Xn of the attributes, an LP-tree ψ such that �ψ in-
duces ϕ can be built that has a single branch, with the nodes labelled
from root to bottom with the attributes with in order X1, . . . , Xn,
and with the same CPT at node labelled with Xi in ψ as at node la-
belled with Xi in ϕ. If ϕ is a CO-net, an LP-tree can be constructed
in the same way, but one must also complete the preference table at
node labelled withXi with any local orderings overXi that have the
correct optimal value, given the values of the parents ofXi in ϕ.

Here again, given an acyclic CP-net / CO-net ϕ, there are prefer-
ence relations that induce ϕ but cannot be represented by any LP-
tree. However, the result above shows that in settings where one
needs to learn the preferences of a decision maker for the sole pur-
pose of optimisation, and if it can be assumed that the decision-
maker’s preferences can be represented with an LP-tree with un-
conditional importance, one can safely search for an acyclic CO-net.
This is important from the point of view of machine learning, since
it puts a strong bias on the search space, and also limits the amount
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of information that must be induced. For example, for n binary at-
tributes, there are 2n different CO/CP-nets but 2n × n! linear LP-
trees, and, in a conditionally acyclic CO/CP-nets, there are n nodes
and at mostO(n2) edges, while in a LP-tree there are at mostO(2n)
nodes and edges.

6 Forward Sweep for encoding / decoding data

Learning graphical models of preferences has mostly been attempted
in settings where the input data is a set of pairwise comparisons, that
is, pairs of alternatives (o, o′) where o is deemed preferred to o′. In
such settings, one attempts to learn a model ϕ such that o �ϕ o′:
this leads to an empirical loss function that counts the number of
"misordered" pairs in the input data. In the case of CP-nets, checking
if o �ϕ o′ holds is an NP-complete problem. Besides, and CP-nets
do not define a total relation, thus this empirical loss function is ill-
defined.

In order to alleviate these problems, works on learning CP-nets
often put some restrictions on the graphical structure of the CP-nets,
like a bound on the number of parents of each attribute [21, 16, 1,
e.g.], and/or restrict the input to some simple types of pairwise com-
parisons [18, 19, e.g.]. Learning LP-trees is easier [2, 7, 6, 22], but at
the cost of a significant loss in expressiveness.

Fargier et al. [9] propose to learn a preference relation from a dif-
ferent kind of data: a set of alternatives that have been chosen by
users of some decision-aid system. The idea is that the commoner a
value in this set of chosen alternatives, the more it is likely to charac-
terise the preferred alternative(s). We now show how this idea can be
combined with the Minimal Description Length induction principle
to enable a promising new way of learning CO-nets.

The idea of the MDL principle for machine learning is that, given
some data D and a class of possible models that may “explain” D,
one should choose the model H that enables the lossless compres-
sion ofD with minimum size [15]. Formally, if L(D|H) denotes the
length of the representation that permits to retrieve D knowing H ,
one can define the minimum description length forD given a class of
modelsH as L(D) = minH∈H

(
L(H)+L(D|H)

)
. MDL has been

successfully applied in the unsupervised learning of many classes of
models, such as Bayesian networks [25, 20], causal networks [23],
formal grammars [13], and applied to data mining in graphs [26].

When H is a CO-net, the size of H is simply the sum of the size
of the graph and of the size of the conditional optimality table:

L(H) = LN(|X |) +
∑
N∈X

(
LN(|Pa(N)|) + log2

(
|X | − 1

|Pa(N)|

)

+ |Pa(N)| log2 |N |
)

(1)

where LN is the length of the Rissanen universal integer encod-
ing [24], defined as LN(n) = log∗(1 + n) + log c0 where log∗

is the expansion log n+ log log n+ . . ., including only the positive
terms, and c0 is a constant, and where, slightly abusing notation, |N |
denotes the domain size of the attribute labelling N . These terms
encode, in order: the total number of nodes, and for each node, the
number of its parents, its set of parents and the optimal value for each
value of its parents.

As a preliminary step towards the application of the MDL princi-
ple to learn CO-nets, we propose in the remainder of this section a
simple way of “coding” alternatives, given a CO-net. The approach
makes use of the optimisation query. Given a strict partial order
�, consider an alternative o, and a partial instantiation u such that

Algorithm 4: Forward Sweep for encoding (FSenc)
Data: ϕ = CO-net, o ∈ X
Result: code(o, ϕ)

1 inst ← 
; code ← 

2 while possible do

3 choose X ∈ X − Var(inst), s.t. Paϕ(X|inst) = ∅
4 if o[X] �= opt(X|inst) then code ← code · o[X];
5 inst ← inst · o[X]

6 if Var(inst) = X then return code;
7 else return FAILURE;

opt(u,�) = o: u, being a partial instantiation, is shorter than the al-
ternative o, so it can be seen as short code for o – if there is a practical
algorithm to retrieve o from u, which is the case with conditionally
acyclic CO-nets since we know from proposition 2 that we can com-
pute opt(u,�) with the FSopt algorithm. Given o, there will be in
general several partial instantiations u such that opt(u,�) = o, but
if we can uniquely define one such partial instantation for every o,
then we have a way of encoding alternatives.

In the following, opt−1 denotes the inverse function of opt: given
an alternative o, opt−1(o,�) = {u|opt(u,�) = o}.
Definition. Let � be a strict partial order over X . Suppose that for
every o, opt−1(o,�) contains a unique u with minimal size. Then
we say that � is uniquely encoding, and we define code(o,�) to be
this unique minimal u in opt−1(o,�).

Example 5. Consider again the preference that corresponds to the
LP-tree of figure 1c: abc � abc � abc � abc � abc � abc �
abc � abc. Then opt(ab,�) = abc, because it is the most pre-
ferred alternative compatible with ab. In fact, opt−1(abc,�) =
{a, ab, ac, abc}. Therefore, code(abc,�) = a. It can be checked
that � is uniquely encoding.

The linear order ab � āb̄ � ab̄ � āb of example 3 is not uniquely
encoding: opt−1(āb̄) = {āb̄, b̄, ā}.

We already know that if a preference � induces a conditionally
acyclic CO-net, then the opt / decoding function can be computed
with the FSopt algorithm. The main result of this section is that in
this case, another instance of the Forward Sweep procedure, called
FSenc, and depicted in Algorithm 4, can be used to compute the code
function. We illustrate it on an example.

Example 6. Consider again the linear order that corresponds to the
LP-tree ψ0 of figure 1c, whose induced CO-net is depicted on fig-
ure 1e. Let o = abc, and suppose we want to compute code(abc,�)
with algorithm FSenc. At the first iteration of the “while” loop,
the only variable that has no parent is A, with optimal value a �=
o[A] = a, thus code ← a, and inst ← a. At the next iteration,
Pa(C|a) = ∅, with optimal value c = o[C], so code is not updated,
and inst ← ac. At the last iteration, the optimal value for B given
inst is b = o[B], thus the algorithm returns a.

Proposition 4. If the CO-net induced by a given preference rela-
tion � is conditionally acyclic, then � is uniquely encoding, and the
coding function can be computed with the FSenc algorithm in Algo-
rithm 4.

Proof. Let o be any alternative, and let u be the output of Algo-
rithm 4 for o. Let us show that opt(u,�) = o. As shown ear-
lier, opt(u) can be computed with Algorithm 3. Remark that, in
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Dataset LZMA PPMd bzip2 DEFLATE zstd LZ4 zpaq brotli separable CO-net CO-net
Small 95.80% 97.90% 97.46% 94.50% 96.22% 93.51% 94.46% 96.42% 92.19% 97.03%

Medium 96.04% 97.98% 97.71% 94.82% 96.45% 93.94% 95.21% 96.58% 91.21% 97.12%
Big 96.40% 97.93% 97.64% 94.90% 97.04% 94.29% 94.73% 97.23% 93.41% 97.67%

Table 1: Space savings for various compression algorithms on the three Renault datasets.

this decoding algorithm, the value of u[X] only affects the output
if u[X] �= opt(X|inst): otherwise, no matter whether u is defined
or not on X , x will have the same value. In this regard, Algorithm 4
simply computes the subset of o that have an impact on the decod-
ing, i.e., such that o[X] �= opt(X|o). Therefore, if we denote u the
output of Algorithm 4 for o, then opt(u,�) = o.

Now, let us show that u (defined on U ) is the unique minimal
instance such that opt(u) = o. Let v �= u (defined on V ) such
that opt(v) = o. Consider the traces of Algorithm 3 for u and v.
First, let us remark there exists an order of attributes selection that
is compatible with both the optimisation of u and v. Indeed, since
opt(u) = opt(v), if we denote instu (resp. instv) the content of
variable inst at any point of the execution of Algorithm 3 applied to u
(resp. v), then instu ⊆ opt(u) and instv ⊆ opt(v). Therefore, instu
and instv are always compatible. For this reason, the set of available
attributes for X , that only depends on Paϕ(X|inst), is the same for
u and for v. Let us denote L such an attributes selection order. Let
us now prove that opt(u[V ]) = opt(u) by comparing the execution
of Algorithm 4 on u, v and u[V ], denoted Tu, Tv and Tu[V ], for this
attributes selection orderL. LetXi be the variable chosen at iteration
i. Since u and v lead to the same optimal alternative, it means that the
same value of xi is chosen at each iteration. Either u[Xi] = v[Xi],
and therefore u[Xi] = u[V ][Xi], so the same value xi is chosen in
Tu[V ] and the execution still have the same values of inst. If u[Xi] �=
v[Xi], and because u ∼ v, at least one of u or v is not defined on
Xi. Let us assume (without loss of generality) that u is not defined on
Xi. In that case, u[V ] is not defined onXi either and Tu[V ] the same
value for xi as Tu. Therefore, the execution still have the same values
of inst. By recurrence, since the values of inst are the same at each
point of the executions, then opt(u[V ]) = opt(u). By assumption, u
is minimal for cardinality. ThereforeU � V , so u � v and |u| < |v|,
so u is the unique minimum for cardinality.

We are now able to compute the length of the compression of data
D, given some CO-net H that is uniquely encoding:

L(D | H) =
∑
o∈D

(
LN(|code(o,H)|) + log2

( |X|
|code(o,H)|

)

+
∑

x∈code(o,H)

log2(|X| − 1)

)
(2)

For each outcome o of the dataset, the terms encode, in order: the
length of the minimal code of o, the set of variables that are assigned
in this code, and the value for each attribute.

Compression experiment While MDL is typically used for model
selection and not compression, we propose to experimentally assess
the relevance of CO-nets and separable CO-nets in the context of
preference representations by comparing the length of the codes of
several datasets with implementations of efficient compression al-
gorithms configured for the highest compression ratio. Source code,
data and CO-nets are available online3.
3 https://github.com/PFGimenez/co-net-ecai23

The datasets are real-world sales history of cars from the Renault
car manufacturer: "Small" has 48 variables and is 2.7MB, "Medium"
has 44 variables and is 1.4MB and "Big" has 87 variables and is
3.2MB. These files are in a csv format which is a text format. They
can be easily compressed, as shown by the space savings in Table 1.
The three algorithms with the highest space saving are PPMd, bzip2,
and our encoding based on a CO-net. Separable CO-nets have the
lowest space saving of all methods in this Table, due to they very lim-
ited expressivity, but they still achieve 90%+ space saving. Table 1
does not include snappy and LZ77 algorithms because of their poor
compression efficiency: they obtained about 70% and 85% space
saving, respectively.

While a direct comparison is unfair because MDL is a theoretical
tool that does not need to comply with the technical constraints of file
formats and compression speed, we can still conclude that CO-nets
can represent the regularities of real-world datasets with an efficiency
similar to the most efficient compression algorithms.

7 Conclusion

While ubiquitous in many industrial applications, the preferential
optimisation query has been little studied on its own. By focusing
on graphical preferences models with efficient (polytime) preferen-
tial optimisation, CP-nets, and LP-trees, we showed that these two
popular models are, in fact, as expressive for this query, and that
conditionally acyclic CP-nets are exactly the CP-nets where Forward
Sweep can be applied. Besides, we proposed an even more compact
graphical model class, the CO-nets, that can be used for optimisation
even though they contain little information about the actual linear
order of preferences.

The method proposed by [9] to learn LP-trees can only be ap-
plied to models representing total orders, where the rank is defined.
LP-trees are useful models for preferences representation, but, as we
demonstrated here, one does not need attribute importance when the
optimisation query is the only query of interest. On the other hand,
CP-nets are just as expressive and much more succinct. However, the
learning approach of [9] is inapplicable to CP-nets because they do
not represent total orders.

In Section 6, we detailed how Forward Sweep can be used for
encoding and decoding alternatives for a given CO-net. Such pro-
cedures can be used with the MDL framework to learn CP-nets or
CO-nets by minimizing the MDL score. In this context, Prop. 1 is
especially important since it shows that conditionally acyclic CP-
nets (resp. CO-nets) are exactly the CP-nets (resp. CO-nets) where
the efficient Forward Sweep algorithm can be used for encoding and
decoding. Polytime encoding and decoding is paramount for scal-
able MDL learning, generally based on local greedy search. This is
a preliminary step towards unsupervised CP-nets and CO-nets learn-
ing with minimal description length (MDL) by adapting the polytime
Forward Sweep algorithm to encoding and decoding.
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