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Abstract. Preference learning is an essential component in numer-
ous applications, such as recommendation systems, decision-making
processes, and personalized services. We propose here a novel ap-
proach to preference learning that interleaves Gaussian Processes
(GP) and Robust Ordinal Regression (ROR). A Gaussian process
gives a probability distribution on the latent function values that
generate users’ preferences. Our method extends the traditional non-
parametric Gaussian process framework by approximating the latent
function by a very flexible parameterized function, that we call θ-
additive function, where θ is the parameter set. The set θ reflects the
degree of sophistication of the generalized additive model that can
potentially represent the user’s preferences. To learn what are the
components of θ, we update a probability distribution on the space
of all possible sets θ, depending on the ability of the parameterized
function to approximate the latent function. We predict pairwise pref-
erences by using the parameter set θ that maximizes the posterior dis-
tribution and by performing robust ordinal regression based on this
parameter set. Experimental results on synthetic data demonstrate the
effectiveness and robustness of our proposed methodology.

1 Introduction

Assuming a parametric decision model representing the preferences
of a Decision Maker (DM) and a learning set of DM’s preferences,
the Robust Ordinal Regression (ROR) framework aims to infer ro-
bust preferences by working on the polyhedron of parameters values
compatible with the expressed preferences. While the principles un-
derlying ROR date back to Lahdelma et al. [22], this framework has
gained increasing attention in multicriteria decision aiding [9, 10, 18]
and artificial intelligence [3, 16], especially in preference elicitation
problems with positive or negative interactions between criteria.

A question which is often eluded is how to select the decision
model representing the DM’s preferences. This model is usually as-
sumed to be chosen beforehand. For instance, we may use a simple
weighted average on the performances on the various criteria, or a
more complex aggregator as a Choquet integral [17, 19, 21], which
makes it possible to take into account synergies between criteria. Yet
the choice of the decision model is critical on the predicted prefer-
ences and taking into account the DM’s preferences for selecting the
model itself (upstream of the model parameters elicitation) has been
little studied until now.

A well-known and appealing preference learning framework in
this matter is that of Gaussian processes for preference elicitation
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[6, 8, 25], which makes it possible to approximate any possible util-
ity function defined on the set of alternatives. However, the fact that
Gaussian processes do not rely on an analytical formulation of the
utility function is both an advantage (for expressivity) and a dis-
advantage because the explanation of the preference predictions are
made difficult by the absence of this analytical form.

In this work, given a reference set of items, we assume that each
alternative corresponds to a subset of items. This can be viewed as
a special case of multiattribute decision making where each attribute
is binary and corresponds to the presence or not of an item in the
considered subset. The utility f(A) of a subset A of items is de-
fined as the sum of values of specific combinations of items that are
present in A (the singletons and the combinations of items that gen-
erate synergies). The form of f is close to a discrete Choquet inte-
gral [1, 5, 23] over binary vectors, expressed as the sum of Möbius
masses but relaxing some of its constraints (e.g., monotonicity of the
capacity). We denote by θ the set of combinations of items that are
considered in the sum. However, instead of assuming that the set θ is
known beforehand, we use a Bayesian approach to learn the specific
form of the decision model from the learning set of preferences. Put
another way, the decision model itself is learnt from the preference
data. Once the decision model is learnt, we use ROR to make pref-
erence predictions by circumventing the possible parameter values
based on the learning set of preferences.

Similarly to this work, Gilbert et al. [16] propose a preference
learning method based on a generalized additive utility function that
depends on θ. However, they do not adopt a Bayesian approach to
learn the set θ but instead consider all “simplest” sets θ that fit the
preferences in the learning set, which impacts the computational bur-
den. Learning a single set θ makes it possible to significantly allevi-
ate the calculations. Furthermore, the combination of a Bayesian ap-
proach to learn the decision model and a ROR approach to predict
preferences yields other interesting advantages. On the one hand,
learning a decision model instead of a more black-box approach
yields the advantage of explainability of the recommendations, as
the parameters of the model have a clear interpretation. On the other
hand, using ROR (instead of setting precise parameters’ values) al-
lows for more reliability when inferring new preferences, as some
preference instances may be rejected if the preference prediction for
this pair of alternatives is likely to be inaccurate given the available
preference data (i.e., no preferences prediction is made for this pair
of alternatives). Hence, the proposed method falls within the frame-
work of learning with rejection [11]. Before concluding this intro-
duction, let us mention the works by Bigot et al. [4] and Domsh-
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lak and Joachims [13], proposing preference learning methods also
based on generalized additive utility functions: the former is based
on a PAC-learner approach while the latter is based on a Support
Vector Machines (SVM) approach. These two methods differ never-
theless from ours, in particular because they do not fall within the
framework of learning with rejection.

The paper is organised as follows. Section 2 describes how to
perform robust ordinal regression for the generalized additive util-
ity model we use. Section 3 focuses on the Bayesian approach to
learn the “most probable” additive decomposition of the utility (i.e.,
to learn the decision model itself). Sections 4 and 5 are devoted to
the presentation of the results of numerical experiments.

2 ROR on the θ-additive model

We consider a DM expressing her preferences on a set A of alterna-
tives, where each alternative is described as a subset of elements in
F = {a1, a2, . . . , an}. Put another way, for each A ∈ A, we have
A⊆F . An alternative A can also be described by a binary vector of
length n, in which the ith component is 1 iff ai∈A.

2.1 The θ-additive model

In this work, we assume that the DM’s preferences are represented
using a generalized additive utility model where each alternative A
has a global utility f(A), and alternative A is strictly preferred to
alternative B, denoted by A�B, if and only if f(A)> f(B). The
simplest such model is the additive model [14], in which a parameter
w(a)∈R is defined for each element a∈F , such that for all A∈A,
f(A)=

∑
a∈A w(a). However, this model does not make it possible

to represent interactions (positive or negative) between the elements.
To this end, one may rely on the k-additive model, which assumes
the existence of a parameter w(S) ∈ R for each S ∈ [F ]k, where
[F ]k = {S ⊆ F : 1≤ |S| ≤ k} and f(A) =

∑
S∈[F]k IA(S)w(S),

with IA(S)= 1 if S⊆A and 0 otherwise. The parameter w(S) can
be seen as the “weight” of subset S. While choosing k strictly greater
than 1 makes it possible to account for synergies between subsets of
at most k elements, the size of the model may become prohibitively
expansive as k increases. Hence, to keep a compact representation,
we rely on the θ-additive model [16]; given a set θ ⊆ 2F and a set
function w : θ → R (also called weight function in the sequel), we
assume that f is of the form f(A) =

∑
S∈θ IA(S)wS , where wS is

a shorthand for w(S). We use the notation fθ,w(A) instead of f(A)
to make explicit that f is parameterised by weights wS for S ∈ θ.
Note that the additive (resp. k-additive) model is the special case in
which θ=F (resp. θ = [F ]k).

Before launching the learning method, we assume that both the
set θ and the set function w defined on θ are unknown. We detail in
Section 3 how to select a relevant set θ from a collection of pairwise
preferences expressed by the DM, which is the main contribution of
the paper. Prior to that, we describe in the following how to use robust
ordinal regression once the set θ is chosen.

2.2 Robust ordinal regression

We denote by R the set of strict pairwise preferences expressed by
the DM, i.e., R⊆{(A,B) ∈ A2|A � B}, from which the set func-
tion w is partially specified in order to predict other pairwise prefer-
ences. Besides, we denote by S the set of alternatives that appears in
R, i.e., S = {A ∈ A|∃B ∈ A, (A,B) ∈ R ∨ (B,A) ∈ R}.

Even when θ is learnt, the function fθ,w is still unknown as several
weight functions w on θ may be compatible with the preferences
observed inR. We denote byWR

θ the set of such weight functions:

WR
θ ={w : θ→R | ∀(A,B)∈R, fθ,w(A)>fθ,w(B)}.

Note that a pair {w,w′} of weight functions both in WR
θ may yet

lead to infer opposite preferences [2]. In order to infer further prefer-
ences not dependent on an arbitrary choice of the weight function in
WR

θ , we turn to a robust ordinal regression approach. More precisely,
we use the θ-ordinal dominance relation1.

Definition 1 (adapted from [16]) Let F be a set of elements, A⊆
2F a set of subsets of F and R a set of pairs (A,B)∈A2 such that
(A,B) ∈R iff A � B. The θ-ordinal dominance relation, denoted
by �R

θ , is defined for every A,B∈A by:

A �R
θ B ⇔ ∀w ∈ WR

θ , fθ,w(A) > fθ,w(B).

While the θ-ordinal dominance relation is independent from the
choice of a specific w ∈ WR

θ , it may obviously be partial, and we
define the rejection relation ��Rθ as:

A ��Rθ B ⇔ ∃w,w′ ∈ WR
θ ,

(fθ,w(A) ≥ fθ,w(B) and fθ,w′(B) ≥ fθ,w′(A)).

If A �R
θ B then one can predict, based on R and for the θ-additive

model, that A is strictly preferred to B. Otherwise, if A ��Rθ B then
no prediction is made (i.e., the prediction is rejected).

3 Learning θmap

Using R, this section explains how to learn the set θ used in the θ-
additive model. We rely on a Bayesian approach to find a set θmap

(map stands for maximum a posteriori) maximizing the posterior
distribution2

P(θ|R):

• We assume the existence of a latent function f : S → R which
associates to each element A ∈ S a utility value f(A). We start
by approximating a posterior distribution P(f |R) on f given the
available preferential data R, by using an appropriate likelihood
function P(R|f) and a prior P(f) (see Section 3.1).

• After that, since the objective is to derive a generalized additive
utility model, we model the conditional probability P(w|f,R) of a
weight functionw :θd→R given f , where d is the degree ofR and
θd=[F ]d (see Section 3.2). The degree ofR is the minimal integer
k such that the preferences inR can be represented by a k-additive
utility model. The better the values fθd,w(A) approximates the
values f(A) for A∈S, the higher is the probability P(w|f,R).

• Then, we sample vectors of weights from P(w|R) by using the
formula P(w|R) =

∫
f
P(w|f,R)P(f |R)df . We use the sampled

vectors of weights to derive a posterior P(θ|R) on the models θ
by using a prior P(θ) and a likelihood P(w|θ) (see Section 3.3).

• Finally, in order to compute θmap, we use a Markov Chain Monte
Carlo (MCMC) approach to sample models θ from the posterior
P(θ|R) (see Section 3.4).

Each of these steps is detailed in the following subsections. At the
end of this section, it should be clear that:

P(θ|R)=P(θ)

∫
w

[ ∫
f

P(w|f,R)P(f |R)df

]
P(w|θ)dw.

1 The idea of ordinal dominance based on a generalized additive utility func-
tion dates back to Fishburn and Lavalle [15].

2 Following Chu and Ghahramani [8] and by abuse of notation, we use sym-
bol P to denote both a probability mass function (for discrete variables) and
a probability density function (for continuous variables), to avoid confusion
with the latent (utility) function f .
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3.1 Posterior distribution P(f |R) on the valuation
functions f given the pairwise preferences in R

The posterior distribution on the valuation functions P(f |R) is learnt
by using a Gaussian process, similarly as in the work of Chu and
Ghahramani [8]. In the following, assuming that S={A1, . . . , AN},
the function f :S→R is viewed as a vector [f(A1), . . . , f(AN )].

It is standard to consider that each utility value f(A) is affected by
a Gaussian noise δ ∼ N (0, σf ) in the eyes of the DM, which yields
the following likelihood for a set R of pairwise preferences given f :

P(R|f) =
∏

(A,B)∈R

Φ

(
f(A)− f(B)

2σf

)
,

where Φ is the cumulative distribution function of the standard nor-
mal distribution N (0, 1). The prior we choose to consider for our
valuation functions f is a centered multivariate normal with a co-
variance matrix Σf :

P(f) =
1

2π
N
2 |Σf | 12

e
− 1

2
fTΣ−1

f
f
.

The covariance matrix Σf is obtained by applying the Mercer kernel
on each pair of alternatives A,B ∈ S, i.e, the ij-th element of Σf is
given by k(Ai, Aj), where

k(A,B) = exp

(
−k

2
(
−→
A −−→

B )T (
−→
A −−→

B )

)
, (1)

with
−→
A = [IA(a1), . . . , IA(an)] the vectorial representation of an

alternative A. Combining the likelihood P(R|f) and the prior P(f)
using Bayes rule, the maximum a posteriori fmap can be obtained by
minimizing the following cost function:

C(f) = −
∑

(A,B)∈R

ln

(
Φ

(
f(A)− f(B)

2σf

))
+

1

2
fTΣ−1

f f.

To approximate the posterior distribution P(f |R), we proceed us-
ing the Laplace approximation. This amounts to approximate the
posterior on f with a normal N (μf |R,Σf |R) where

μf |R = fmap = argmin
f

C(f),

σf |R = (Λ|fmap +Σ−1
f )−1,

where Λ is the Hessian matrix of shape (N,N) of the negative log-
likelihood w.r.t to f , i.e., Λi,j is the following second derivative:

Λi,j =
∂2

(
−∑

(A,B)∈R ln
(
Φ
(

f(A)−f(B)
2σf

)))
∂f(xi)∂f(xj)

.

Since there are few hyperparameters (only σf and k), they are fit-
ted on an approximation of the evidence using a grid-search approach
as done by Chu and Ghahramani [8].

3.2 Posterior P(w|f,R) on the weight vectors w given
the valuation function f and the preferences R

Let d be the degree3 of the preferences in R, i.e., the minimal inte-
ger value such that

∑
S∈[F]d wSIA(S)≥∑

S∈[F]d wSIB(S) for all
(A,B) ∈R. For the sake of model conciseness, we limit ourselves
to sets θ⊆ [F ]d (i.e., θ only contains sets of size less than d). Denot-
ing by S1, . . . , Sm the elements of [F ]d, we work in this section on
weight vectors w=[wS1 , . . . , wSm ]. The set S={A1, . . . , AN} of
alternatives can then be represented by a binary matrix D of shape

3 The computation of the degree of the preferences in R is explained in Sec-
tion 3.4.

(N,m) where Dij is 1 if Sj ⊆ Ai (the i-th alternative of S), and 0
otherwise.

From the matrix D and the valuation vector f , we perform a
Bayesian linear regression to obtain a distribution on the weight vec-
tors w. To evaluate this distribution, we use a Gaussian prior on the
weight vectors P(w) ∼ N (w|μw,Σw):

P(w) =
1

(2π)m/2|Σw|1/2 exp

(
−1

2
(w − μw)

TΣ−1
w (w − μw)

)
.

For a fixed set S and a fixed set θ (θ=θd), the distribution P(w|f,R)
does not depend onR and can be abbreviated by P(w|f). To find the
posterior distribution P(w|f), we apply Bayes theorem and combine
the expressions for the prior and likelihood:

P(w|f) ∝ exp

(
− 1

2σ2
w

(f −Dw)T (f −Dw)

)

× exp

(
−1

2
(w − μw)

TΣ−1
w (w − μw)

)
.

We have then P(w|f) ∼ N (w|μw|f ,Σw|f ), where:

Σ−1
w|f =

1

σ2
w

DTD +Σ−1
w ,

μw|f = Σw|f

(
1

σ2
w

DT f +Σ−1
w μw

)
.

The hyperparameters μw and Σw are fixed so that P(w) ∼ N (0, 1),
and the hyperparameter σw is fit by maximizing the marginal likeli-
hood defined by:

P(f |σw) =

∫
w

P(f |w, σ)P(w)dw.

The maximization is performed as follows. Since the likelihood
P(f |w, σ) ∼ N (f |Dw, σ2In) and the prior P(w) ∼ N (w|μw,Σw)
are both Gaussian, the marginal likelihood is also Gaussian:

P(f |σw) = N (f |Dμw, DΣwD
T + σ2

wIn).

We estimate σw by maximizing log P(f |σw), using a gradient de-
scent approach:

log P(f |σw) =

− n

2
log(2π)− 1

2
log |DΣwD

T + σ2
wIn|

− 1

2
(f −Dμw)

T (DΣwD
T + σ2

wIn)
−1(f −Dμw).

3.3 The posterior distribution on the parameters sets
P(θ|R)

A preliminary step to compute θmap with an MCMC approach is to
learn the posterior distribution P(θ|R) on the parameters sets θ. We
recall that we restrict our attention to sets θ ⊆ [F ]d, where d is the
degree of R. As a result, all models explored through our MCMC
approach will be encompassed within the set θd.

The core concept of our method to estimate P(θ|R) can be sum-
marized as follows: we sample random weight vectors utilizing the
distribution P(w|R) and assess the proportion of these vectors that
conform to the θ model. We consider that a weight vector w conform
to a θ model if the values of all parameters in [F ]d \ θ fall within the
range [−ε, ε].

We now present more formally the method using the classic
Bayesian framework. We have:

P(θ|R) =

∫
w

P(θ|w)P(w|R)dw.
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But since P(θ|w) ∝ P(w|θ)P(θ) we have:

P(θ|R) = P(θ)

∫
w

P(w|θ)P(w|R)dw

= P(θ)

∫
w

[∫
f

P(w|f)P(f |R)df

]
P(w|θ)dw.

In this expression, P(w|θ) captures the “compatibility” of the weight
vectors with the model θ. Although various functions could be em-
ployed to represent this compatibility, we will opt for the most
straightforward choice:

P(w|θ) =
{
1 if − ε ≤ wS ≤ ε ∀S ∈ [F ]d \ θ,
0 otherwise.

Using this expression for P(w|θ) and expressions P(w|f,R) and
P(f |R) previously given, P(θ|R) is approximated by using a Monte
Carlo sampling method, provided that a prior P(θ) is defined.

Various priors on θ could be adopted. As our aim is to promote
models with few parameters and the simplest possible interactions,
we consider a prior on each parameter and assume that the probabil-
ity of a given set θ is the product of the probabilities of its parameters.
To favour interactions involving few elements, the prior on a param-
eter is defined as a function of its cardinality:

P(θ) ∝
∏
S∈θ

1

k|S|
P(|S|)

where k|S|=
(

n
|S|

)
is the number of sets of |S| elements. For P(|S|),

we opt for the Half-Cauchy distribution with parameter γ, whose
probability density function is P(x; γ) = 2/

(
πγ

(
1 + x2/γ2

))
. Al-

though the Half-Cauchy distribution is continuous rather than dis-
crete, we have chosen it because of its ability to concentrate the prob-
ability mass to small cardinalities, hence favoring small sets S.

3.4 Computing θmap from P(θ|R)

To determine the parameter set θmap (that maximizes the posterior
distribution P(θ|R)), we employ an MCMC approach based on the
Metropolis-Hastings algorithm [7, 24].

To implement it, we take advantage of the fact that all the models
we sample are included in [F ]d={S1, . . . , Sm}, and map each θ to−→
θ =[1θ(S1), . . . ,1θ(Sm)], where 1θ(S)=1 if S∈θ, 0 otherwise.
We then define a proposal distribution Q(

−→
θ ′|−→θ ) that associates to

each vector
−→
θ a probability distribution on the next model

−→
θ ′ whose

posterior probability will be evaluated:

Q(
−→
θ ′|−→θ ) =

{
1

|θd| if dH(
−→
θ ′,

−→
θ ) = 1,

0 otherwise,

where dH is the Hamming distance on binary vectors.
Note that it may happen that θmap is not fully compatible with R

in the sense that WR
θmap

= ∅. In order to perform ROR with θmap,
we propose a post-treatment of R in order to obtain a subset R′ of R
(as large as possible) such that WR′

θmap
�= ∅. We proceed in a greedy

manner to build R′. First, we test in polynomial time whether the
polyhedron WR

θ is empty by solving the following linear program:

(Pθ)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

mineA,B ,vS

∑
(A,B)∈R eA,B

∑
S∈θ(IA(S)− IB(S))vS ≥ 1− eA,B , ∀(A,B) ∈ R

eA,B ≥ 0, ∀(A,B) ∈ R
vS ∈ R, ∀S ∈ θ

If the optimal objective value is 0, we conclude that WR
θ �= ∅.

We also use the linear programPθ to compute the degree of the set

R of pairwise preferences: the degree corresponds to the first integer
k in 1, 2, . . . such that WR

θk
�=∅, i.e., the optimal value of Pθk is 0.

For a pair of alternatives (A,B) �∈ R, the predictive distribution
P(f(A)> f(B)|R) can then be obtained through the estimation of
the posterior distribution P(f |R) by integrating on the f -space, as
explained in detail in paragraph “Gaussian Process” of Section 4.2.

Using these two concepts, if the polyhedronWR
θ is empty we pro-

ceed as follows:

1. We sort the preferences based on their likelihood which is esti-
mated using the predictive distribution P(f(A) > f(B)|R).

2. We add the preferences from the most likely to the less likely; we
test at each step if WR

θ is empty, and if it is the case we remove
the last added preference.

4 Numerical Setup

The purpose of the numerical tests is twofold: first, we try to de-
termine whether the model θmap we compute using our Bayesian
approach yields good results for the ROR; second, we evaluate the
prediction performances of our approach with two baseline mod-
els (Support Vector Classifier and Gaussian Process) using widely-
accepted metrics (Precision, Recall and F-score).

In this section, we succinctly explain how our data are generated.
We then present the baseline learning methods to which our approach
will be compared, and the evaluation metrics we will use.

4.1 Synthetic Data Generation

Following [16], we go through three steps to generate a synthethic
dataset of preferences: 1) sampling a random θ-additive function, 2)
associating it to a ranking function r, 3) using the function to collect
a set R of preferences.

Sampling a random θ-additive function. This phase is condi-
tioned by two parameters α and p. We start by sampling a model θ.
To do so, we initialise it to θ={{a1}, . . . , {an}} and then we add a
proportion α of all subsets S⊆F to it, sampled as follows:

1. We initialise S with a random item ai.
2. We augment the set S by appending an element that is randomly

sampled within F \ S.
3. We exit the process with probability p, otherwise go back to 2.

After that, each coefficient wS for S ∈ θ is sampled w.r.t. a normal
distribution N (0, 100). We obtain then a θ-additive function fθ,w.

Associating the θ-additive function to a ranking function. We
define an ordinal classification function r : A → {0, 1, . . . t − 1},
where t is the number of classes:

• We compute M=maxA∈A fθ,w(A) and m=minA∈A fθ,w(A).
• We divide the interval [m,M ] into t subintervals.

The class of each alternative A is the interval in which its utility
fθ,w(A) lies in (the higher the rank, the better the class).

Collecting the preferences. The preferences are collected by sam-
pling a setAtrain of alternatives, computing fθ,w(A) and thus r(A)
for each A∈Atrain, and deducing the preferences as follows:

R = {(A,B) ∈ A2
train|r(A) > r(B)}
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It should be noted that even though elements from different classes
can be compared, we assume that two elements belonging to the same
class remain incomparable (i.e., R is a strict weak ordering). For in-
stance, in hotel classification, knowing that two hotels have two stars
does not allow us to conclude that one is better than the other, or that
they are indifferent. It is sometimes said that incomparability reflects
a degree of ignorance [20].

4.2 Baseline Models

In this section, we discuss the baseline models against which our
proposed approach is compared.

We consider two widely-used baseline models for preference
learning. The first model is the Support Vector Classifier, a popular
supervised learning algorithm introduced by Vapnik [12] and widely
used in the context of preference learning (for example in [13]). The
second one is the classic Gaussian process approach for preference
learning, by Chu and Ghahramani [8].

Support Vector Classifier (SVC). To apply SVC to preference
learning, we first transform the preferences (A,B)∈R into vectors
by mapping each alternative into a |θ|-dimensional space:

v
(A,B)
θ =

−→
A θ −−→

B θ

where the vector
−→
A θ is defined as

−→
A θ = [IA(X1), . . . , IA(Xp)],

assuming that θ = {X1, . . . , Xp}. We associate then to each pref-
erence (A,B) two vectors, the vector v(A,B)

θ with the label 1 and
the vector v(B,A)

θ with the label 0. The algorithm proceeds by fitting
a hyperplane in a |θ|-dimensional space for a given θ that separates
the different classes of data points. The inference is then made for
each pair of alternative (S, T ) by predicting the label of the vector
v
(S,T )
θ and the label of the vector v(T,S)

θ . We predict that S � T

(resp. T � S) if the predicted label of v(S,T )
θ is 1 and the predicted

label of v(T,S)
θ is 0 (resp. the predicted label of v(S,T )

θ is 0 and the
predicted label of v(T,S)

θ is 1) otherwise no prediction is made.

Gaussian Process (GP). This method first approximates the dis-
tribution P(f |R) as detailed by Chu and Ghahramani [8] (and ex-
plained in Subsection 3.1). Then, the prediction is made by sup-
posing that for a pair of alternative A,B ∈ A the latent variable
ft=[f(A), f(B)] will follow a zero-mean gaussian distribution and
will be correlated to the N latent variables of the training samples
f = [f(A1), . . . , f(AN )] following the covariance function defined
using the Mercer kernel (see Equation 1):

[
fT

fT
t

]
∼ N

([
0
0

]
,

[
Σt kt
kT
t Σt

])
,

where

kt =

[
k(A,A1) . . . k(A,An)
k(B,A1) . . . k(B,An)

]
and

Σt =

[
k(A,A) k(A,B)
k(B,A) k(B,B)

]
.

The predictive distribution is then obtained by integrating over the
f -space:

P(ft|R) =

∫
f

P(ft|f)P(f |R)df,

and can be simplified into a gaussian N (μ∗,Σ∗) where

μ∗ = kT
t Σ

−1fmap,

Σ∗ = Σt − kT
t (Σt + Λ−1

map)
−1kt.

A prediction is made by computing

P(f(A) > f(B)) =

∫
ft

P(A � B|ft)P(ft|R)dft.

We predict A�B if this probability is greater than a threshold (gen-
erally 0.65).

4.3 Evaluation Metrics

An important aspect of the ROR approach is that it may not always
provide a prediction for a given pair of alternatives. As a result, the
evaluation of the ROR approach requires a special set of metrics to
assess and compare the quality of the trade-off between the num-
ber of predictions and their accuracy. In this section, we outline the
specific metrics that will be used to evaluate the ROR approach and
compare it to other methods. To define our metrics we consider the 9
cases that can occur in the confusion matrix defined below.

Confusion Matrix. For a given pair of alternatives (A,B) ∈ A2

each model could either infer that A is better than B (A � B), or
that A is worse than B (B � A) or it could return that the relation
between A and B is unknown. Then, as outlined in the section 4.1,
by comparing r(A) and r(B), we can have that A is indeed better
thanB if r(A) > r(B) or thatA is worse thanB if r(B) > r(A) or
that the relation between them is unknown if they belong to the same
class. Our metrics will then be based on the following confusion ma-
trix where the rows symbolizes the predicted output and the columns
the real outputs.

Predicted/Real (B)etter (W)orst (U)nknown
(B)etter BB BW BU
(W)orst WB WW WU

(U)nknown UB UW UU

Table 1. Confusion Matrix.

We now present the main metrics that we use in the experiments.

Precision. The precision is defined as the ratio between the num-
ber of correct predictions among all the predictions that were made.

P =
BB +WW

BB +WW +BW +WB +BU +WU
.

Recall. The recall is defined as the ratio between the number of
correct predictions among all the predictions that could be made.

R =
BB +WW

BB +WW +BW +WB + UB + UW
.

The precision metric thus penalizes the models that make unre-
liable predictions, while the recall metric penalizes the models that
avoid making predictions.

F-Score. F-score is a metric that combines precision and recall to
provide a balanced evaluation of a model’s performance. It is ob-
tained by computing the harmonic mean of precision and recall:

F = 2
P ×R

P +R
.
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As the F-score captures both precision and recall, it is an ideal metric
for evaluating the robustness and accuracy of the studied models.
Hence, we strongly rely on it when presenting our figures.

Prediction Correctness. This metric is similar to precision, ex-
cept that it does not take into account predictions that cannot be eval-
uated because we do not have preference information to verify if they
are correct or incorrect.

PC =
BB +WW

BB +WW +BW +WB
.

Prediction Rate. This metric does not take into account the cor-
rectness of the predictions, it simply evaluates the probability that the
model produces predictions:

PR = 1− UB + UW + UU

M
,

where M represents all the cases of Table 1 ( BB+WW +BW +
WB +BU +WU + UB + UW + UU ).

5 Numerical Results

The numerical tests, the results of which we present here, were car-
ried out on Google Colab (2 virtual CPU at 2.2GHz, 13GB RAM) us-
ing synthetic data generated as detailed above. The code is available
online at https://github.com/ouaguenouni/PMTK-GaussianProcess.

5.1 Experiment 1

This first experiment aims to compare the results obtained with our
approach using θmap and the results obtained by robust ordinal re-
gression with θd, where we recall that d is the degree of the prefer-
ences in R. Since the preferences are generated using a θ-additive
model, we also use the model θ that was used to produce the prefer-
ence data in R, denoted by θtrue.

Experimental Setting. The following parameters were used for
generating the preference data and implementing the MCMC part of
the learning process:

• For generating the preference data, we set |F|= 8, α= p= 0.1,
t = 12 (number of classes, see Section 4.1) and γ = 0.5 (scale
parameter, see paragraph “Prior on θ” of Section 3.3).

• In theMCMC part of the learning process, 1000 utility functions f
were sampled and, for each of them, 1000 weight vectors. These
vectors were used to sample 1000 models θ with the posterior
distribution P(θ|R) and with a burn-in period of 200. The value
of ε was set to 1e-3 using trial-and-error iterations, by looking for
a value ensuring that when |wS | ≤ ε, the parameter wS can be
safely assumed as not significant.

The tests were conducted on 400 datasets R. The size of R varies
from 10 to 600 pairwise comparisons. Remark that |F| = 8 implies
a total of 32640 possible pairwise comparisons between subsets of
F ; 600 comparisons is less then 2% of this total number. After each
training, the models were evaluated by considering the predictions
on the comparisons of 100 pairs of alternatives.

Results and discussions. The results are summarized in Table 2.
To facilitate our analysis, we divided our dataset of 600 preference
sets into three groups based on their size. The first group contains
datasets involving between 10 and 200 preference, the second group

contains datasets involving between 200 and 400 preferences, and
the third group contains datasets with more than 400 preferences.

In this experiment, we focus on two key metrics to evaluate the
performances of our models: Prediction Rate and Prediction Cor-
rectness. We see in Table 2 that the predictions made using θmap

are more frequent but less accurate than those made using θd. Thus
θmap offers an interesting tradeoff between the prediction rate and
the prediction correctness. This is due to the fact that the polyhedron
of compatible utilities yielded by the use of θmap is contained in
the one yielded by the use of θd (with a few exceptions that happen
when θmap is not compatible with R and the set R is post-treated to
remove some preferences). Therefore, the predictions that are made
using the robust ordinal regression with θd are most of the time also
made using θmap. However, as the dataset size increases, the loss
in accuracy attributable to θmap progressively decreases while the
gain in prediction rate increases resulting in an even more favourable
tradeoff between prediction rate and accuracy for θmap compared
to θd for datasets above 200 preferences. It is worth noting that al-
though θtrue is the model used to generate the data, it achieves the
worst compromise and especially for small datasets (less than 200
preferences) where the prediction rate is only about 6%. This has to
do with the fact that the polyhedron of compatible utilities is much
larger for θtrue than for θmap and θd, which badly impacts the pre-
diction rate.

|R| ∈ [10, 200] |R| ∈ [200, 400] |R| ∈ [400, 600]
θmap θd θtrue θmap θd θtrue θmap θd θtrue

PR 0.22 0.21 0.06 0.70 0.69 0.34 0.75 0.70 0.41
PC 0.96 0.97 1.00 0.98 0.99 1.00 0.99 0.99 1.00

Table 2. Average Prediction Rate and Prediction Correctness for ROR using
several definitions of θ (with |F|=8, thus 32640 possible comparisons).

5.2 Experiment 2

The second experiment aims to compare the results obtained with
our approach (ROR) using θmap with the results obtained with the
baseline models presented in Section 4.2. More precisely, we use
well-identified metrics to evaluate the tradeoff between the quantity
and the quality of predictions, and we study the evolution of this
tradeoff w.r.t. the size of the data.

Experimental Setting. The second experiment was conducted
with the same settings as the first one: we set |F|=8, α= p=0.1,
t = 12 (number of classes, see Section 4.1) and γ = 0.5 (scale pa-
rameter, see paragraph “Prior on θ” of Section 3.3). The size of R
is also between 10 and 600. This time we chose to keep the model
θmap for the SVC and the ROR approach, while the GP approach is
model-independent.

Prediction Rate Precision Recall F-score
ROR 0.75 0.816 0.912 0.85
SVC 1.0 0.679 0.982 0.799
GP 1.0 0.676 0.978 0.796

Table 3. Average performances for different metrics measured on prefer-
ences set R with |R| ∈ [250, 600] and |F| = 8.

Results and discussion. The obtained results depend on the size
|R| of the dataset:
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• Figures 1 and 2 illustrate the evolution of the metrics when the size
|R| varies between 10 and 250 (the curves show the mean and 95%
confidence interval). From Figure 1 we can see that our approach
performs relatively poorly on very small datasets (remember that
250 comparisons is less than 0.7% of all possible comparisons) in
terms of the tradeoff between the quantity and the quality of pre-
dictions. However, as the dataset size increases, the quality of the
tradeoff improves significantly. Figures 2-a and 2-b allow to bet-
ter understand the reasons for this evolution. They indeed show
that the correctness of the predictions made by ROR consistently
outperforms that of the other approaches. Interestingly, as the data
set size increases, our approach (ROR) makes more predictions,
which leads to an improvement in the quality of the tradeoff, re-
flected by the F-score.

• Generally speaking, as the size of R increases, there is a corre-
sponding increase in all the metrics for the ROR model. Neverthe-
less, our tests demonstrate that once we reach a certain percent-
age threshold for the size of R (that seems to be around 0.6% to
0.7%, meaning 200-250 comparisons for |F| = 8), the results
begin to exhibit minimal variations. For this reason, we opted
to present the results in an aggregated manner, for |R| ranging
from 250 to 600 (equivalent to 0.7% to 1.8% of the total num-
ber of comparisons). As Table 3 shows, our approach significantly
outperforms the other models in terms of the F-score. Although
our ROR approach, being robust, generates fewer predictions than
SVC or Gaussian Process models, it achieves a prediction rate of
75% with less than 2% of comparisons in the dataset. Notably,
it is considerably more accurate than the baseline methods. These
values demonstrate that for problems similar to those of our exper-
iment, ROR offers a superior tradeoff between doing predictions
and being correct.

Figure 1. F-score obtained with ROR (blue), GP (orange), SVM (green),
with |F| = 8, as a function of the size of the training set R. The shaded area
represents 95%-confidence intervals.

6 Conclusion

In this work, we have proposed a hybrid approach to preference
learning, combining a GP method to learn the decision model rep-
resenting the preferences of the decision maker and a robust ordinal
regression approach to infer preferences using the learnt model. This
combination provides two benefits. First, instead of using an a priori

(a) Prediction correctness

(b) Prediction rate

Figure 2. Evolution of the compromise quantity/quality of predictions with
ROR (blue), GP (orange), SVM (green), for |F| = 8, as a function of the size
of the training set R. The shaded area represents 95%-confidence intervals.

chosen decision model, we learn the specific form of decision model
fitting the preferences expressed by the decision maker. Second, we
profit from the reliability of the robust ordinal regression methodol-
ogy when inferring preferences. The results of our numerical tests
have shown the effectiveness and robustness of this hybrid approach.

Several directions are conceivable for future work. A first direction
would be to consider how to ask efficiently new preferential informa-
tion to the decision maker to improve our preference learning abili-
ties, i.e., turning our approach into an active learning one. A second
direction is related to the reliability of the preferential information
provided by the decision maker. Indeed, the robust ordinal regression
part of the method does not allow for errors from the decision-maker.
An interesting challenge would be to adapt the robust ordinal regres-
sion phase in order to soften some constraints to allow for errors.
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