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Abstract. Symbolic learning is the subfield of machine learning
concerned with learning predictive models with knowledge repre-
sented in logical form, such as decision tree and decision list mod-
els. Ensemble learning methods, such as random forests, are usu-
ally deployed to improve the performance of decision trees; unfortu-
nately, interpreting tree ensembles is challenging. In order to deal
with unstructured (e.g., temporal or spatial) data, moreover, deci-
sion trees and random forests have been recently generalized to the
use of modal logics, which are harder to interpret than their propo-
sitional counterpart. Recently, a methodology for extracting simple
rules from propositional random forests, based on a sequence of op-
timization steps, was proposed. In this work, we generalize this ap-
proach along two directions: from propositional to modal logic and
from a sequence of optimization steps to a single multi-objective op-
timization problem. Even if confined to the temporal domain, our ex-
perimental results, based on open-source implementations and public
data, show that our method is robust and able to extract small, accu-
rate, and informative decision lists even for complex classification
problems.

1 Introduction

Machine learning (ML) focuses on designing algorithms that build
predictive models from large amounts of data, and its applicability
is widespread in the era of big data. Symbolic learning, a subfield
of ML, is concerned with developing symbolic models that represent
propositional logic theories from structured data. The investigation
of symbolic learning dates back to the early days of artificial intel-
ligence (AI). One of the key advantages of symbolic models is their
ability to support reasoning, a cornerstone of traditional AI. This al-
lows humans to interpret and explain their decision-making process,
enabling them to address ethical concerns, such as gender and racial
biases.

In recent years, however, ML has evolved towards sophisticated
black-box models, such as deep neural networks, that significantly
challenge human understanding. In fields such as defense, law, and
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medicine, where the decisions made by AI models have a direct im-
pact on human lives, interpretability is as crucial as accuracy [26].
As a result, eXplainable AI (XAI) has emerged as a field of study
focused on developing data-driven models that can reveal and clarify
their logic to end-users, including domain experts, developers, man-
agers, and regulatory entities and agencies.

Symbolic learning natively addresses several XAI-related issues,
making it a compelling area of research. Numerous literature sur-
veys on XAI and Interpretable ML (IML) have been conducted,
offering researchers valuable taxonomies to guide their work (e.g.,
see [9, 21, 27]). However, despite these efforts, a clear distinction
between interpretability and explainability has yet to be established,
prompting us to use both terms interchangeably.

At the scope level, models can either be globally interpretable to
end-users who can fully comprehend their logic or they can provide
local explanations for individual decisions. At the stage level, ante-
hoc approaches consider interpretability from the model’s inception,
while post-hoc methods mimic and explain black-box models; the
latter can be either model-specific or model-agnostic, depending on
whether they explain specific black-box models or a range of mod-
els. At the input level, a crucial factor in developing XAI techniques
is understanding the input data type of models (e.g., tabular, time se-
ries, and images). Finally, at the output level, various formats, such
as logical rules, textual summaries, and graphical visualizations, are
essential to cater to the needs, in terms of model explainability, of
different audiences.

Symbolic learning represents data and relationships using sym-
bolic structures. Decision trees are a classic example of symbolic
learning, where the tree branches typically represent formulas of
propositional logic. Despite the effectiveness of decision trees, they
suffer from two significant issues. First, their ability to generalize to
new data is limited, as they tend to overfit to the training data. Sec-
ond, they cannot natively learn from unstructured data, such as time
series, images, and graphs, due to the limited expressive power of
propositional logic. To address the first issue, ensembles of indepen-
dent decision trees, such as random forests [5], are commonly used
to improve the generalization ability of single trees; unfortunately,
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such ensembles become equivalent to black-box models, as differ-
ent trees may label an instance in different ways, sometimes making
their interpretation very difficult. To overcome the limited expres-
sive power of standard decision trees, it has been recently proposed
to replace propositional logic with more expressive, powerful, and
task-specific modal logic (e.g., temporal) in decision trees [18].

Modal logic, which extends propositional logic, can be adopted
by decision trees as the underlying logical language, in order to cap-
ture complex relationships between objects and their properties, ul-
timately enabling models to learn from unstructured data with no
feature-representation embedding steps (i.e., representing unstruc-
tured data as structured). Modal decision trees have been success-
fully used in complex tasks such as time series knowledge extraction,
image understanding, and knowledge graph reasoning [13, 32, 36].
In the same spirit of canonical ones, branches of modal decision
trees represent modal logic formulas. When modal random forests
are used to enhance the performances of single trees, they result in
black-box models whose interpretation is even more challenging than
in the case of their propositional counterparts because of the added
complexity of modal formulas over propositional ones.

The development of XAI methods for interpreting and explaining
random forests is paramount, and several solutions have been pro-
posed in the past. Intrinsic interpretable methods include, among oth-
ers, impurity-based feature importance [5] and tree-based feature im-
portance [44] algorithms, as well as interaction strength and higher-
order feature interaction techniques [24]. Post-hoc model-agnostic
explainable techniques for local explanations include Local Inter-
pretable Model-agnostic Explanations (LIME) [40], Individual Con-
ditional Expectation (ICE) plots [25], and methods for counterfactual
explanation [45]. As for those for global explanations, it is worth
mentioning Partial Dependence Plots (PDP) [23], Accumulated Lo-
cal Effects (ALE) plots [2], and global surrogate models [15]; SHap-
ley Additive exPlanations (SHAP) [31], on the other hand, provides
unified local and global explanations. Post-hoc model-specific ex-
plainable approaches include rule extraction methods from single
trees [38], RuleFit, frequent pattern mining, bayesian rule extrac-
tion, and Simplified Tree Ensemble Learner (STEL) [19]. Finally,
the numerous contributions to visualization techniques for explain-
ing random forests include decision surfaces and decision bound-
aries, t−distributed Stochastic Neighbor Embedding (t-SNE), and
Uniform Manifold Approximation and Projection (UMAP). Among
this plethora of techniques and proposals, STEL [19] seems partic-
ularly interesting for us, being a recent, open-source, clear approach
for extracting rules from random forests that has been successfully
applied numerous times in the past few years (e.g., see, among oth-
ers, [4, 37, 42]).

In this paper, we address the problem of extracting (modal) de-
cision lists from (modal) random forests. To this end, we propose
to generalize STEL [19] along two directions: from propositional to
modal logic and from a cascade of multiple optimization problems to
a single multi-objective optimization one. The resulting algorithm,
ModalSTEL, fully generalizes the original one, and produces sim-
ple (modal) decision lists from (modal) random forests optimizing
performance and interpretability. To solve the resulting optimization
problem, we propose to use evolutionary computation; in our imple-
mentation, we choose NSGA-II [17], a well-known multi-objective
evolutionary algorithm that has been successfully applied in a vari-
ety of situations. Our open-source implementation is written in the
Julia programming language as part of a long-term, comprehensive

project for symbolic learning for unstructured data.1

Our implementation is tested using a group of public datasets in
the temporal domain. In particular, we consider the problem of diag-
nosing COVID-19 from labeled cough examples; the temporal com-
ponent of such data emerges by interpreting cough sounds as time
series, and a symbolic solution to this problem is particularly impor-
tant due to the medical nature of the problem (e.g, see [32]). Previous
symbolic approaches to this problem had already shown the notable
performances of modal decision trees and forests; such performance,
however, came at the cost of complex models. The aim of our exper-
iments is to show that such models can be simplified with minimal
loss in performances to facilitate inspection, ultimately fostering the
communication between humans and machines.

2 Preliminaries

Modal logic. Let P be a (possibly infinite, but countable) set of
proposition letters (or, simply, propositions). The well-formed for-
mulas of (propositional) modal logic (ML) are generated by the fol-
lowing grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | �ϕ,

where p ∈ P . The remaining propositional abbreviations are derived
as usual.

The semantics of ML is given in terms of Kripke models. A Kripke
model K = (W,R, v) consists of a non-empty (possible infinite, but
countable) set of (possible) worlds W , an accessibility relation over
worldsR ⊆ W ×W , and a valuation function v :W → 2P , which
associates each world w with the set of propositions v(w) ⊆ P that
are true on it. The truth relation K, w � ϕ, for a (Kripke) model K, a
world w (in that model) and a formula ϕ of ML (to be interpreted on
that model), is defined by induction on the complexity of the formula:

K, w � p iff p ∈ v(w), for all p ∈ P;
K, w � ¬ψ iff K, w �� ψ;
K, w � ψ1 ∧ ψ2 iff K, w � ψ1 and K, w � ψ2;
K, w � �ψ iff there exists w′ s.t. wRw′ and K, w′ � ψ.

Blending ML and ML offers a unique opportunity to advance AI
by drawing on the strengths of both fields. By integrating ML’s ro-
bust formalism for representing knowledge, beliefs, and uncertainty,
ML models can gain a more profound understanding of data. By
integrating ML in both decision trees and random forests, one ob-
tains modal decision trees (known as ModalCART) and modal ran-
dom forests (ModalRF) able to learn more expressive theories from
unstructured data. The theoretical properties of ModalCART have
been studied in [18]. Such an integration is particularly useful when
ML is replaced by tailored temporal/spatial, but still modal, logic, as
in [13, 32, 36], for specific learning tasks. The theoretical aspects of
such integration, however, are independent from the particular modal
logic used for learning; as a matter of fact, modal decision trees can
be designed in the same way for any unary modal logic.

In many ML tasks, the modal versions of decision trees and forests
show promising results, such as breath and cough recording COVID-
19 diagnosis [32] and multivariate time series gas turbine predic-
tive maintenance [3]; specifically, such applications exploit the in-
tegration of Halpern and Shoham’s Modal Logic of Allen’s Relations
(HS) [28] to learn interval-based patterns from temporal data.

1 https://github.com/aclai-lab/Sole.jl
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(Modal) Decision trees, random forests, and decision lists. Deci-
sion trees and forests are popular classification models, associated
with their learning algorithms [5, 6, 39]. Decision trees, in particular,
are standalone models with a tree-like structure, and make decisions
based on specific features. On the other hand, random forests av-
erage the results of multiple trees, each constructed from randomly
selected subsets of input data and features; this approach reduces the
variance, making them more robust and less prone to overfitting than
single trees. Decision trees are easy to interpret and visualize, while
random forests are more complex, and can handle high-dimensional
datasets with many features.

A unifying way to view both standard and modal decision trees is
by through the lens of pure decision trees. For our purpose, let L be
a logic, Φ(L) the set of formulas of logic L, and Y the label space
for a given classification task. Let T = (V,E) be a full directed
binary tree with nodes in V, denoted by ν, ν′, . . . , ν1, ν2, . . ., and
edges in E ⊆ V × V. We denote by root(T ) the root of T and by
V� ⊆ V the set of its leaf nodes (or, simply, leaves), denoted by
�, �′, . . . , �1, �2, . . .. Each non-leaf node ν of T has a left child �(ν)
and a right child

�
(ν), and each non-root node ν has a parent � (ν).

A path πT = ν1 � νh in T , with h ≥ 1, is a finite sequence of h
nodes such that νi = � (νi+1), for each i = 1, . . . , h− 1. Finally, we
denote by πT

� the unique path root(T ) � �, for some leaf � ∈ V�,
which is also called branch. We omit the superscript notation, ·T ,
when T is clear from the context.

A pure decision tree is a structure defined as:

T = (V,E, l, e),

where (V,E) is a full directed binary tree, l : V� → Y is a leaf-
labeling function that assigns to each leaf node in V� a label from
the label space Y, e : E → Φ(L) is an edge-labeling function that
assigns to each edge in E a formula from the formulas Φ(L) such
that e(ν, ν′) ≡ ¬e(ν, ν′′), for all (ν, ν′), (ν, ν′′) ∈ E. Moreover, for
a path πT = ν1 � νh, the path-formula ϕT

π is defined inductively
as:

ϕT
π =

{ 	 if h = 1;
e(ν1, ν2) ∧ ϕT

ν2�νh if h > 1.

Pure decision trees are a convenient representation for proposi-
tional [6, 39], oblique [33], and modal [18] decision trees. Different
types of trees are linked to different techniques and learning algo-
rithms. For example, in the propositional, single-attribute case, struc-
tured (numerical) data are interpreted via propositions of the type:

P = {A �� a | A ∈ A and a ∈ R},

where A = {A1, . . . , An} is a set of numerical attributes and
��∈ {<,≤,≥, >}. For an attribute A, we denote dom(A) ⊂ R

the domain of A (i.e., the set of all values that A exhibits within the
input dataset). Oblique trees, instead, can capture functional patterns
between several attributes with a single proposition; for example, lin-
ear patterns can be captured by propositions of the type:

P = {[A1, . . . , An] ·w �� a | a ∈ R},

where w is a (column) vector of n real-valued attribute weights. Typ-
ically, in the propositional case, the formulas Φ(L) assigned to the
edges of the tree simply consist of propositions. In the case of modal
decision trees, where (numerical) unstructured data can be seen in
terms of Kripke models over a set of worlds, attributes can be the
result of scalar feature extractions performed on a specific world.
For instance, for a multivatiate time series dataset with variables

root(T )

�1 �→ y1 ν′

ν′′ �4 �→ y4

�2 �→ y2 �3 �→ y3

ϕ1
¬
ϕ
1

ϕ2
¬
ϕ
2

ϕ3
¬
ϕ
3

Figure 1: Example of a pure decision tree.

V = {V1, . . . , Vm}, worlds are time intervals, and an attribute A
can evaluate, for example, the average or maximum value of a vari-
able within the interval; then, propositions of the same type as in
the previous case can be used within temporal formulas that describe
complex temporal patterns, built over the set of attributes:

A = {f(V ) | V ∈ V, f ∈ F},

in turn, based on a setF of feature extraction functions, which can be
as simple as the average or the maximum, or as complex as (scalar)
feature extraction via neural networks. Moreover, in modal decision
trees each single condition ϕ is itself a complex formula, and, in the
most general case, different conditions at different edges on the same
path may be independent from each other.

In a pure decision tree, a path-formula is simply the conjunction of
the formulas along the edges of the path. So, for example, consider
the tree in Figure 1, and the leaf �2 on it. Each edge is labeled with
a formula of a logic L; hence, ¬ϕ1 is the condition that instances
have to meet to reach ν′, ¬ϕ1 ∧ ϕ2 is the condition for reaching ν′′,
and ¬ϕ1 ∧ ϕ2 ∧ ϕ3 is the condition for reaching �2. Thus, in the
case of propositional decision trees, path-formulas are conjunctive
normal (CNF) form propositional formulas, and in the case of modal
decision trees they are conjunctions of modal formulas, which have a
non-trivial structure designed to guarantee that modal decision trees
are correct and complete [18].

Now, decision forests can be formalized given the foundations of
decision trees. A pure decision forest is a structure defined as:

F = (T1, T2, . . . , TN , aggr),

where each Ti is a pure decision tree, for all 1 ≤ i ≤ N , and
aggr : YN → Y is an aggregation function of the set of individ-
ual tree predictions. In the following, we use the terms decision trees
and decision forests (or, more simply, forests) to indicate their pure
versions. Random forests [5] are the typical implementation of de-
cision forests. To make a prediction using random forests, the input
passes through all the N decision trees, and the aggregation function
is applied to the resulting set of predictions; for example, in regres-
sion tasks, the final prediction of the forest can be the mean (or the
median) value of the N predictions. At the propositional level, ran-
dom forests have been used in a wide variety of situations; at the
modal one, they have been used, for example, in [32].

Another noteworthy symbolc ML model for supervised tasks is
the decision list [10, 41]. While decision trees have a hierarchi-
cal, branching structure, decision lists are linear, ordered sequences
of if-then rules. A decision list is an ordered list of r + 1 rules
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R1, R2, . . . , Rr, Rdef defined as:

Γ =

⎛
⎜⎜⎜⎜⎜⎝

ψ1 ⇒ y1
ψ2 ⇒ y2

...
ψr ⇒ yr
	 ⇒ y∗

⎞
⎟⎟⎟⎟⎟⎠
,

where ψi is the antecedent (or condition) and yi ∈ Y is the conse-
quent (or outcome) of a rule ψi ⇒ yi, for all 1 ≤ i ≤ r, while
	 ⇒ y∗ is the default rule. Decision lists so defined are already in
their pure version, and there is no structural difference between the
propositional and modal case.

Despite their structural differences, deriving decision lists from de-
cision trees can be accomplished efficiently: each path from the root
to a leaf node in a decision tree corresponds to a rule antecedent in
a decision list, with the associated output label as the consequent.
Owing to the recursive semantics of decision trees, the resultant lists
exhibit non-overlapping rules with antecedents that are conjunctions
of formulas, but no real need ordering and a default rule. More in
general, however, rules in decision lists may be overlapping and may
not cover the whole instance space, leading to the need of a default
rule and of a linear order on the rules. Then, the decision list is in-
terpreted as a sequence of if-then blocks: the rules are tested in order
on a given instance and, in case no other rule is applicable, the de-
fault rule is invoked and the default consequent y∗ is returned. As it
is already clear, a rule antecedent can be, in general, a conjunction
of complex formulas, and the algorithm that extracts a decision list
from a decision tree in the propositional case readily applies to pure
decision trees, and therefore to modal ones as well.

Multi-objective optimization problems and evolutionary algo-

rithms. Let 	x ∈ R
n be a vector of decision variables, and o, u, s ∈

N. As in [14, 16], a multi-objective optimization problem (MOOP) is
a problem defined as follows:

min / max 	f(	x) (o objective functions)
s.t. 	g(	x) ≤ 0 (u inequality constraints)

and 	h(	x) = 0 (s equality constraints),

where 	f(	x) ∈ R
o, 	g(	x) ∈ R

u, and 	h(	x) ∈ R
s. A MOOP is con-

strained if u > 0 or s > 0; otherwise, it is unconstrained. A MOOP
can be continuous, in which we look for real values, or combina-
torial, in which we look for objects from a countably (in)finite set,
typically integers, permutations, or graphs. For a solution to be in-
teresting, there must be a dominance relation between solutions. A
point 	x dominates 	x′ if and only if f(	x) ≤ f(	x′) for all f ∈ 	f

and f(	x) < f(	x′) for some f ∈ 	f . A solution is non dominated (or
Pareto optimal) if and only if there is no other solution that dominates
it, and the set of non dominated solutions is called Pareto front.

Solving MOOPs can be approached in several ways, such as scalar,
interactive, fuzzy, and metaheuristic-based methods [14], which in-
clude evolutionary strategies. In evolutionary strategies for MOOPs,
the solving procedure begins by generating an initial population of
candidate solutions, either through random generation or guided by
background knowledge. Each solution is then evaluated by calculat-
ing its objective functions and constraints. Next, the population is
modified iteratively using genetic operators: selection/reproduction,
crossover, and mutation. The fittest solutions are chosen for the next
generation, while the unfit ones are discarded. The remaining solu-
tions undergo a crossover operator, producing novel solutions that

•
• •

• •

T1

�1 �2

�3

•
• •

• •

T2

�1

�2 �3

. . .

•
• •

• • • •

TN

�1 �2 �3 �4

⎛
⎜⎜⎜⎝

ψT1
�1

⇒ l(�1)

ψT1
�2

⇒ l(�2)

ψT1
�3

⇒ l(�3)

� ⇒ y∗

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

ψT2
�1

⇒ l(�1)

ψT2
�2

⇒ l(�2)

ψT2
�3

⇒ l(�3)

� ⇒ y∗

⎞
⎟⎟⎟⎠ . . .

⎛
⎜⎜⎜⎜⎜⎝

ψ
TN
�1

⇒ l(�1)

ψ
TN
�2

⇒ l(�2)

ψ
TN
�3

⇒ l(�3)

ψ
TN
�4

⇒ l(�4)

� ⇒ y∗

⎞
⎟⎟⎟⎟⎟⎠

MOOP solved via evolutionary computation
with genetic operators

⎛
⎜⎜⎜⎝

ψ1 ⇒ y1
ψ2 ⇒ y2

...
� ⇒ y∗

⎞
⎟⎟⎟⎠

Extract a decision list from each
tree in the forest

Each decision list is an element
of the initial population

Extract the final
decision list

Figure 2: The proposed framework.

are further mutated to maintain population diversity. Finally, the new
population is evaluated, and the process is repeated until the termina-
tion criterion is satisfied. Evolutionary algorithms have been applied
to solve MOOPs in several cases (e.g., see [16]); in our case, we
leverage on their integration with genetic programming [30] due to
the nature of the problem.

Among the many evolutionary algorithms for solving MOOPs,
NSGA-II [17] uses a fast non-dominated sorting algorithm, sharing,
elitism, and crowded comparison. Elitism implies that the best solu-
tions of the previous iteration are kept unchanged in the current one,
which significantly increases the convergence speed of the algorithm.
Additionally, its use of a fast non-dominated sorting algorithm con-
tributes to a significant reduction of its computational complexity.

3 Random Forests to Decision Lists as a MOOP

Problem definition. Extracting a decision list from a trained random
forest model can be formalized by solving the following MOOP:

min Error(Γ)
min Complexity(Γ)

s.t. |Γ| ≥ |Y|
|Γ| ≤ K,

where Error and Complexity are measures of the statistical error
and the complexity of a decision list Γ, and K ≥ |Y| is the maxi-
mum number of rules in Γ (including the default rule). Observe that a
model must have at least a rule for each label; solutions to this MOOP
are decision list objects with high performance and low complexity.
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Approach. Our approach, based on a multi-objective evolutionary
algorithm, is graphically represented in Figure 2. In particular, given
a forest F of N trees, the initial population of candidate solutions is
computed as the set of N decision lists derived from the trees in the
forest. Then, a multi-objective evolutionary algorithm is applied on
the initial population, having chosen a specific measure of error and a
specific measure of complexity as objective functions. Finally, from
the last evolved population by the algorithm, single decision lists are
extracted and analyzed.

In a classification scenario, the statistical performance of a deci-
sion list can be measured via global metrics such as the overall accu-
racy, average accuracy, average precision, F1-score, or the error (ε).
As for complexity measures for decision lists, we identify structural
ones such as the number of rules (ρ) and the total length of the an-
tecedents (σ), defined as the total number of syntax tokens within the
formulas; specifically, they only depend on the structure of the deci-
sion list. Furthermore, inspired by [34], we also consider the average
delay (δ), computed as the average index of the fired rule within the
decision list, or, in a similar way, the number of rules that are tested
before the input is classified given a set of inputs to be classified by
the decision list. While performance and complexity will be objects
of optimization, the delay will only be used to evaluate the results.

Genetic operators. Similarly to [19], the underlying idea to extract
rules, and therefore a decision list, from a random forest is to ex-
plore the search space in the vicinity of the rules extracted from the
forest directly. This translates into genetic crossover/mutation oper-
ators designed to perform minimal modifications to the individuals
(i.e., decision lists) in the current population. Considering that one of
the objectives is to lower the complexity (in terms of interpretability)
of the solutions, such operators propose decision lists with the same
or fewer rules, having the rules’ antecedents with the same or fewer
conjuncts, which, in turn, are equally long or smaller.

The proposed genetic operators can be elegantly ordered by their
level of abstraction (see Figure 3). From the most abstract one,
crossover, which affects pairs of decision lists in the population, to
mutation at the decision list level, which affects a single decision list,
at the rule level, which affects a single rule of a single decision list,
down to the conjunct level, which affects a single conjunct, and to
the leaf level, which affects a single propositional letter of a single
conjunct.

Our crossover considers two individuals Γ1,Γ2 such that at least
one of them has at least one non-default rule (if it exists) and two ran-
dom indexes 1 ≤ i ≤ r1 and 1 ≤ j ≤ r2 (r1, r2 being, respectively,
Γ1’s and Γ2’s number of non-default rules). Then, it returns two new
individuals Γ′

1,Γ
′
2, as follows:

Γ1 =

⎛
⎝ . . .

ψ1
i ⇒ y1i

. . .

⎞
⎠ Γ2 =

⎛
⎝ . . .

ψ2
j ⇒ y2j

. . .

⎞
⎠

⇓

Γ′
1 =

⎛
⎝ . . .

ψ2
j ⇒ y2j

. . .

⎞
⎠ Γ′

2 =

⎛
⎝ . . .

ψ1
i ⇒ y1i

. . .

⎞
⎠ .

At the decision list level there are three mutations. The first one,
rule block position mutation, considers a decision list Γ with at least
two rules (if it exists) and chooses two indexes 1 ≤ i ≤ j ≤ r. Then,
it returns Γ′ obtained by moving all rules from the i-th to the j-th to
a different position, as in the following example:

Threshold mutation
Leaf level

Subtree raising mutation

Conjunct level

Conjunct elimination mutation
Rule level

Rule block position mutation
Rule block elimination mutation

Default rule mutation

Decision list level

Crossover
Population level

Figure 3: Hierarchical representation of the proposed genetic opera-
tors.

Γ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ1 ⇒ y1
. . .

ψi−1 ⇒ yi−1

ψi ⇒ yi
. . .

ψj ⇒ yj
ψj+1 ⇒ yj+1

. . .
ψr ⇒ yr
	 ⇒ y∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⇒Γ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψi ⇒ yi
. . .

ψj ⇒ yj
ψ1 ⇒ y1

. . .
ψi−1 ⇒ yi−1

ψj+1 ⇒ yj+1

. . .
ψr ⇒ yr
	 ⇒ y∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The second operator, rule block elimination mutation, considers
a decision list Γ with at least one non-default rule (if it exists) and
chooses two indexes 1 ≤ i ≤ j ≤ r. Then, it returns Γ′ obtained by
removing all rules from the i-th to the j-th, as follows:

Γ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ1 ⇒ y1
. . .

ψi−1 ⇒ yi−1

ψi ⇒ yi
. . .

ψj ⇒ yj
ψj+1 ⇒ yj+1

. . .
ψr ⇒ yr
	 ⇒ y∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⇒Γ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ1 ⇒ y1
. . .

ψi−1 ⇒ yi−1

ψj+1 ⇒ yj+1

. . .
ψr ⇒ yr
	 ⇒ y∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The third operator, default rule mutation, considers a decision list
Γ and returns Γ′ obtained by substituting the default rule’s conse-
quent with a different, randomly chosen one.

At the rule level, we propose the conjunct elimination mutation
which, given a a decision list Γ, it considers one of the non-default
rules with an antecedent consisting of more than one conjunct, and
returns a new individual Γ′, removing a randomly selected conjunct
of the chosen (non-default) rule.

As for mutation at the conjunct level, recall that every single con-
junct in a rule’s antecedent may be, in general, a complex formula.
Our mutation operator at this level, subtree raising mutation, consid-
ers a decision list Γ with at least one non-default rule (if it exists)
and an index 1 ≤ i ≤ r of a non-default rule, chooses an index
1 ≤ j ≤ k (k being the number of conjuncts in the antecedent in the
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chosen rule) of a rule Rj with a non-propositional antecedent (if it
exists), and two nodes ζ, ζ′ in the syntax tree that represents Ri such
that ζ′ is a descendant of ζ. Then, it returns the decision list Γ′ ob-
tained by substitutingRi withR′

i, whose j-th conjunct ϕj , in turn, is
obtained by transplanting the subtree rooted in ζ′ over the one rooted
in ζ, as follows:

ϕj : ζ1

ζ2 ζ

ζ′ ζ3

ζ4

⇒

ϕ′
j : ζ1

ζ2 ζ′

ζ4

Γ =

⎛
⎝ . . .

Ri : ϕ1 ∧ . . . ∧ ϕj ∧ . . . ∧ ϕk ⇒ yi
. . .

⎞
⎠

⇓

Γ′ =

⎛
⎝ . . .

R′
i : ϕ1 ∧ . . . ∧ ϕ′

j ∧ . . . ∧ ϕk ⇒ yi
. . .

⎞
⎠ .

In the above example, ζ, ζ′, . . . are syntax tokens of logic formulas;
in the modal case, for instance, ζ could be a conjunction and ζ′ could
be a modal operator (e.g., �). A formula taken from an antecedent
of a rule of an individual that belongs to the initial population is not
arbitrary; its shape depends on how the modal decision tree learn-
ing algorithm effectively learns modal formulas. Since the mutation
operator modifies its syntax tree, it must work for an arbitrary for-
mula. Observe that, as expected, subtree rising too changes a rule,
and therefore an individual, in the general direction of searching for
simpler ones; shorter antecedents are, in fact, more general ones (be-
ing less restrictive).

Finally, we designed a single leaf level operator, which operates
on the threshold occurring in propositional letters. Recall that, in
the most general case, a propositional letter of the logical language
(either propositional or modal) in which rules are written are of
the type A �� a, with ��∈ {<,≤,≥, >} and a ∈ dom(A). Let
std(dom(A)) be the standard deviation of dom(A). Our threshold
mutation takes as input an individual Γ with at least one non-default
rule (if it exists) and an index 1 ≤ i ≤ r of a non-default rule Ri,
chooses an index 1 ≤ j ≤ k (k being the number of conjuncts in the
antecedent in the chosen rule) of Ri, and a propositional letter p of
the type A �� a in the conjunct ϕj of Ri. Then, it returns the indi-
vidual Γ′ obtained by substituting Ri with R′

i, whose j-th conjunct
ϕj is substituted by ϕ′

j , in turn, obtained by replacing p with p′ of
the type A �� a′, where a′ = ±0.1 · std(dom(A)) + a, as follows:

p : A �� a ⇒ p′ : A �� a′

Γ =

⎛
⎝ . . .

Ri : ϕ1 ∧ . . . ∧ ϕj ∧ . . . ∧ ϕk ⇒ yi
. . .

⎞
⎠

⇓

Γ′ =

⎛
⎝ . . .

R′
i : ϕ1 ∧ . . . ∧ ϕ′

j ∧ . . . ∧ ϕk ⇒ yi
. . .

⎞
⎠ .

4 Experiments and Results

To assess the performances of our approach in an experimental set-
ting, we consider two tasks in the temporal domain. In particular,
we consider two versions of the problem of diagnosing COVID-19
from audio samples of coughs, which can be posed as a binary, multi-
variate time series classification problem. COVID-19 is a respiratory
disease caused by the SARS-CoV2 virus. The disease was classified
in 2019, and caused a pandemic that lasted between 2020 and 2023.

The current scientific literature on COVID-19 is immense, and it
ranges everywhere from medicine to economy, sociology, psychol-
ogy, among many other fields; AI is no exception. Perhaps one of the
most appealing lines of research, in this regard, deals with the possi-
bility of deriving computational models for the diagnosis of COVID-
19 from respiratory sounds of human subjects, an idea largely ex-
plored for diagnosing other respiratory diseases, such as bronchitis
or pneumonia. Diagnosis is usually enabled via coughs, breaths and
oral speech audio samples, which can be easily recorded with smart-
phone hardware.

Data and models. There are several public datasets that can be used
to train a model to classify a cough sample as positive or negative
to COVID-19. Among them, we consider the one originally crowd-
sourced by researchers at the University of Cambridge [7], which
includes 9986 labeled audio samples recorded by 6613 volunteers.
While most of the cough recordings contained several coughs, a
semi-automated segmentation of the audio samples of coughs was
performed, deriving a pool of single-cough audio samples. From this
pool, three binary classification tasks were designed, namely, to dis-
tinguish between: (T1) declared positive subjects, and negative ones
that have a clean medical history, have never smoked, and have no
symptoms; (T2) declared positive subjects with cough as a symp-
tom, and negative ones that have a clean medical history, have never
smoked, and have cough as a symptom; (T3) declared positive sub-
jects with cough as symptom, and negative ones that have asthma,
have never smoked, and have cough as a symptom. Moreover, in
the original dataset, T2 and T3 are coupled with their augmented
version T2+ and T3+, obtained with standard data augmentation
techniques.

The existing work concerning predictive models trained on this
particular dataset includes several strategies. In particular, the tem-
poral versions of modal decision trees and random forests have been
proposed as a suitable method in [32]. The temporal component of
this data emerges by considering sound as a collection of temporal
variables, each representing the power at a specific frequency; then,
each variable Vi refers to the i-th of a set of frequencies. As in the
original paper, we considered 30 frequencies V1, . . . , V30 distributed
following the Mel scale between 0 and 8000Hz.

Experimental setting. We tested the ability of our methodology of
extracting temporal decision lists from temporal random forest, that
is, we used the modal version of random forests instantiated on HS,
following [32]. In this setting, the formula on each edge of a pure
decision tree is an interval temporal formula, with unary operators
that allow one to capture an interval in any of the possible Allen’s
relations [1], plus a global operator in its universal ([G]) and existen-
tial (〈G〉) version. Briefly, [G]ϕ predicates ϕ on each interval (of the
Kripke model), while 〈G〉ϕ predicates ϕ on some interval.

For each task, the experiments were conducted in two steps.
First, we trained 10 random forests using ModalRF, implemented in
ModalDecisionTrees.jl [35], each with 100 trees and asso-
ciated with a specific pair training/test; as feature extraction func-
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Table 1: Cross-validation results on the two tasks.

Dataset
RF Avg DT DLε DLσ DLδ

ε ρ ε ρ σ ε ρ σ δ ε ρ σ δ ε ρ σ δ

T
2+

avg 5.0 392.9 15.1 3.9 45.8 7.7 2.1 10.4 0.6 8.6 2.0 8.3 0.6 9.1 2.3 10.8 0.6
std 5.0 22.9 3.0 0.2 5.7 4.8 0.3 6.8 0.1 5.8 0.0 2.1 0.1 4.8 0.5 4.8 0.1

T
3+

avg 8.8 366.6 19.7 3.7 36.9 10.0 2.1 14.0 0.5 15.6 1.7 8.3 0.4 18.1 1.8 10.4 0.3
std 6.0 13.7 3.6 0.1 3.2 6.7 0.3 7.9 0.2 13.6 0.7 3.3 0.3 18.3 0.6 5.2 0.2

tions, we used minimum and maximum in an interval. The train-
ing/test splits are performed so that the two sets are strongly dis-
jointed; this protocol prevents data leakage, guaranteeing a more ac-
curate performance estimation. Second, we run ModalSTEL on each
resulting forest. In particular, ModalSTEL operates a hyperparame-
ter search, thanks to Hyperopt.jl [8], on the first forest, with an
internal two-split cross-validation on the training set only, and then
used the obtained parametrization on all 10 forests. The evolutionary
part was realized by instantiating NSGA-II to this task, implemented
in Evolutionary.jl [46].

In regard to parameters and objective functions, we proceeded as
follows. All tasks are binary, that is, |Y| = 2. As a measure of statis-
tical error for an individual, we used the training classification error
(computed as 1 minus the classification accuracy), while as a mea-
sure of its complexity, we used the absolute value of the difference
between the number of rules and the number of classes; this steers
the learning procedure to produce decision lists with exactly one rule
per class. Summarizing, we instantiated our MOOP as follows:

min 1− accuracy(Γ)
min |nrules(Γ)− 2|

s.t. nrules(Γ) ≥ 1.

Finally, the hyperparameter search was single-objective, and based
on the error metric only. During the search, we explored crossover
rates ranging in {0.75, 0.8, 0.85, 0.9, 0.95}, as well as mutation rates
ranging in {0.05, 0.1, 0.15, 0.2}. In particular, a single mutation op-
erator was designed, which randomly applies one of the seven muta-
tions explained in the previous section.

Results and discussion. Table 1 gives an overview of the results for
each task; we limited the study to T2+ and T3+ only. For each task,
we displayed, first, the average across the 10 forests (RF) of the per-
formance and the structural characteristics of the initial forests, in
terms of error (ε) and number of rules (ρ), that is, leaves in the entire
forest. The second group of columns (Avg DT) gives us the average
performance and structural characteristics of all initial decision trees
across the 10 forests (in this case, for each forest we computed the
average across the 100 initial decision trees), and we show, respec-
tively, error, number of rules excluding the default rule, and number
of syntax tokens (σ). The remaining grouped columns (DLε, DLσ ,
and DLδ) show the same results, plus the average delay (δ), for three
decision lists taken from the last population, respectively, the one
with the least error, with the least number of tokens, and with the
least average delay.

There are several considerations that can be made upon an initial
observation of Table 1. Let us compare, first, the (average behavior
of the) original random forests (RF) against the (average behavior of
the) decision lists with minimum error (DLε). In both cases the aver-
age error that is obtained by stepping from random forests to decision
lists (in the case of decision lists with minimum error) increases by
less than 2.7 percentage points. Such a loss, however, corresponds to
a simplification in terms of number of rules of between 150 and 200

times. Moreover, comparing the average initial decision trees (Avg
DT) with, again, the decision lists with minimum error in the final
population, the error increased by a factor of ∼2 in correspondence
with a simplification in terms of number of rules by about the same
factor. Furthermore, we observe that the final decision lists with the
least number of symbols (DLσ) present a degradation in terms of
error (1 point in the first case, 5 points in the second one) with an
improvement in terms of number of rules of between 0.4 and 0.1,
without considering the default rule. Finally, the final decision lists
with the least delay (DLσ) does not present a sensible improvement
in terms of number of rules, and yet the error degrades.

Finally, consider the task T3+. On average, the original random
forests for this task required combining 366.6 rules to attain a test
error of 8.8%. As shown in [32], task T3+ on the same dataset
was considered in at least other 6 occasions in the recent literature,
and approached in several different ways (in most cases, with non-
symbolic techniques); the errors of all such approaches ranged be-
tween 7% and 30%. This implies that temporal random forests are
among the best approaches for this particular task, and, possibly, the
absolute best one in the symbolic context. However, ModalSTEL was
able to reduce the number of rules needed to one. As a matter of fact,
the following decision list, extracted from the last population for this
task, has a 100% accuracy on its corresponding test set:

⎛
⎜⎜⎝

(
[G](min(V6) < 6.16) ∧
[G](min(V13) < 2396.00) ∧
〈G〉(min(V8) ≥ 0.99)

) ⇒ No
	 ⇒ Y es

⎞
⎟⎟⎠ .

5 Conclusion

Random forests provide superior predictive models compared to in-
dividual decision trees, albeit with limited interpretability. Build-
ing upon recent advancements, we have developed ModalSTEL,
a methodology that can explain trained (modal) random forests
through (modal) decision lists. Our contribution is two-fold. First,
we lifted the existing STEL approach from traditional decision trees
to modal ones. Modal decision trees harness the higher expressiv-
ity power of tailored modal logics (e.g., temporal and spatial) to
learn from unstructured data (e.g., time series and images), which is
not readily possible with conventional trees. Second, we formulated
ModalSTEL for multi-objective optimization rather than an ad-hoc
series of single-objective optimization steps. Based on open-source
code and public time series data, our experiments showed auspicious
results.

In modal logic (and alike), model checking is a notable problem
that has been studied for decades in the case of deductive reason-
ing [11]. Learning, seen as an inductive process, is no exception
to model checking (e.g., verifying the truth of formulas to split in-
stances and classifying inputs with modal decision trees are appli-
cations of model checking). Thus, efficient model checking is di-
rectly proportional to scaling modal symbolic learning algorithms
and models. As such, our future purposes are to exploit significant re-
sults on symmetry-based model checking algorithms [12, 22, 29, 43]
and bisimulation procedures [20], effectively addressing the scala-
bility issue. Finally, in terms of MOOPs, we plan to identify an ad-
equate realization for the objective functions, while conducting ab-
lation studies on specific genetic operators, investigating their influ-
ence on the overall convergence.
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