
Scaling-Up LAO* in FOND Planning: An Ablation Study
Ramon Fraga Pereira

University of Manchester, UK
ramon.fragapereira@manchester.ac.uk

Abstract.

The use of multi-queue heuristic search and tie-breaking strategies
has shown to be very effective for satisficing planning in the Classical
Planning setting. However, to the best of our knowledge, the use of
such techniques has never been studied and employed in heuristic
search algorithms for Fully Observable Non-Deterministic (FOND)
Planning. In this paper, we adapt existing satisficing techniques for
scaling-up an AND/OR heuristic search algorithm for FOND Planning.
Namely, we employ multi-queue heuristic search, dead-end detection,
and tie-breaking strategies in LAO* for improving the extraction of
strong-cyclic policies. We assess the efficiency of our techniques in
LAO* through an extensive ablation study over two different FOND

Planning benchmarks. Empirical results show that our techniques
improve the performance of LAO* in terms of coverage, expanded
nodes, and planning time compared to a well-known planner based
on vanilla LAO*. Indeed, the best configuration of our techniques is
competitive with the current state-of-the-art in FOND Planning.

1 Introduction

Fully Observable Non-Deterministic (FOND) planning is a very im-
portant class of planning domain models that aims to handle the
uncertainty of the execution of plans [16]. In FOND planning, states
are fully observable and actions may have non-deterministic effects
(i.e., a set of possible successor states). FOND planning is relevant for
solving other related planning problems, such as stochastic planning
(stochastic shortest path problems (SSP), MDP, etc) [5], planning for
temporally extended goals [40, 14, 15, 13, 18, 11], and generalised
planning [29, 10, 6], qualitative numeric planning [8]. As formally
characterized by Cimatti et al. [16], there are three distinct types of
FOND planning tasks and solutions: weak planning, in which solutions
(i.e., simple plans) have a chance to achieve the goal state; strong
planning, in which solution policies guarantee to achieve the goal
state in a finite number of steps by never visiting the same state twice;
and strong cyclic planning, in which solution policies achieve the goal
state and every reachable state can reach the goal using this policy.
One of the first algorithms to solve FOND planning problems was

developed by Cimatti et al. [16], a model-checking planner based
on Binary Decision Diagrams (BDDs) called MBP. Kissmann and
Edelkamp [30] also developed a FOND planner based on BDDs, but
more efficient than MBP. Other FOND planning algorithms in the
literature rely on Classical planners, such as NDP [33], FIP [20],
and PRP [39]. The latter (PRP) is one of the most efficient FOND

planners in the literature. Heuristic search-based algorithms for FOND

planning employ the use of AND/OR graphs that represent the seman-
tics of non-deterministic transition systems [35, 24] to solve FOND

planning problems (AO* for strong planning, and LAO* for strong

cyclic planning), such as MYND [36] and GRENDEL [42]. Geffner and
Geffner [22] developed FONDSAT, an iterative SAT-based FOND plan-
ner that is capable to extract very compact (strong and strong cyclic)
solutions for FOND planning. Most recently, Pereira et al. [41] have
developed iterative depth-first search algorithms akin to IDA* [32]
that have shown to be very effective for solving FOND planning tasks.

Multi-queue heuristic search (along with alternation methods) and
tie-breaking strategies have shown to be very effective for satisficing
planning in the Classical Planning setting [45, 44]. However, to
the best of our knowledge, the use of such techniques has never
been studied and employed in heuristic search algorithms for FOND

Planning. In this paper, we adapt existing satisficing techniques for
scaling-up an AND/OR heuristic search algorithm for FOND Planning,
i.e., we employ such techniques in an LAO* variant [24] for FOND

planning introduced by Mattmüller in [37]. Namely, we employ multi-
queue heuristic search with alternation queues, dead-end detection and
avoidance, and (simple) tie-breaking strategies [2, 1, 17] in LAO* for
improving the extraction of strong-cyclic policies in FOND planning.

We assess the efficiency of our techniques in LAO* through an ex-
tensive ablation study over two different FOND Planning benchmarks:
a benchmark set from the 6th International Planning Competition
(IPC) [12] and [39]; and a benchmark set that contains a set of more
interesting and complex FOND planning tasks, proposed and used by
Geffner and Geffner in [22]. Our empirical results show that the tech-
niques we developed and adapted from other planning settings can
improve the performance of LAO* in terms of coverage, expanded
nodes, and planning time compared to a well-known planner based
on vanilla LAO* (MYND [36]). Indeed, the best configuration of our
techniques yields a FOND planner that is competitive with the current
state-of-the-art planner in FOND planning.

2 Background and Related Work

2.1 FOND Planning

We define Fully Observable Non-Deterministic (FOND) planning tasks
by adopting the SAS+ formalism for non-deterministic planning
[36, 39]. Formally, a FOND planning task is a tupleΠ = ⟨V, s0, s∗,A⟩,
where V is a set of state variables, and each variable v ∈ V has a
finite domain Dv . A partial state is a function s on a subset Vs of
V , such that s[v] ∈ Dv if v ∈ Vs, and s[v] =⊥ otherwise. If Vs = V ,
then s is a complete state (or simply “state”). s0 is a complete state
representing the initial state, whereas s∗ is a partial state representing
the goal condition. A complete state s is a goal state if and only
if s ⊧ s∗. A is a finite set of non-deterministic actions, in which
every action a ∈ A consists of a = ⟨PRE, EFF⟩, where PRE(a) is the
preconditions of a, and EFF(a) is a set of non-deterministic effects of

ECAI 2023
K. Gal et al. (Eds.)

© 2023 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).

Please contact the corresponding author for any appendices or supplementary material mentioned in the paper.

doi:10.3233/FAIA230340

748

a. PRE(a) is a partial state condition under which a may be executed,
and EFF(a) is the possible outcomes of a. A non-deterministic action
a ∈ A is applicable in a state s iff s ⊧ PRE(a). The application of
a non-deterministic effect eff a ∈ EFF(a) to a state s is a resulting
state s′ = δ(s, eff a) (δ is a transition function), and the application
of EFF(a) to a state s is a set of successor states SUCC(s, EFF(a)) =
{δ(s, eff a) ∣ eff a ∈ EFF(a)}.

A solution to a FOND planning taskΠ is called policy [21]. A policy
is usually denoted as π, and we formally define a policy π as a partial
function π ∶ S ↦ A∪{⊥}, where π maps states S of a FOND planning
task Π into applicable actions that eventually achieve the goal state
s∗ from the initial state s0. Cimatti el al. [16] define three types of
solutions to FOND planning, as follows. A weak solution is a policy π
that is a simple sequence (path) of actions that achieves a goal state
from the initial state s0 under at least one selection of action outcomes,
namely, such solution will have some chance of achieving a goal state.
A strong solution is a policy π that is guaranteed to achieve a goal
state from the initial state s0 regardless of the non-determinism of the
environment. This type of solution guarantees to achieve a goal state
in a finite number of steps while never visiting the same state twice. A
strong-cyclic solution is a policy π that guarantees to achieve a goal
state from the initial state s0 only under the assumption of fairness.
The fairness assumption defines that all action outcomes in a given
state will occur infinitely often [16] and may revisit states, so it is not
guaranteed to achieve a goal state in a fixed number of steps.

2.2 Semantics of AND/OR Graphs in FOND Planning

AND/OR graphs can represent the semantics of non-deterministic
transition systems [35, 24]. As defined by [36], the semantics of a
FOND planning task Π can be specified as AND/OR graphs over
the set of states S and the non-deterministic actions A, where an
AND/OR graph G = ⟨N,C⟩ comprises a set of nodes N , and a set of
connectors C, such that a connector c is a pair ⟨n,M⟩ that connects a
parent node n ∈ N to a non-empty set of childrenM ⊆ N . We denote
a connector c = ⟨n,M⟩ as a non-deterministic “node transition” (or
simply “transition”), using the notation c = n �→ M . G contains a
unique initial node n0 ∈ N and a set of goal nodes N∗ ∈ N . Nodes
in an AND/OR graph G can have associated costs with respect to
their estimated minimum distance to any goal node and the cost of
the best path so far from n0. We denote these two costs, respectively,
as estimated cost h(n) (computed by a heuristic function h), and
accumulated cost g(n), where n is a node n ∈ N [21].
We define closedness, properness, and acyclicity of an AND/OR

graph as follows [37]: G is closed, if for all non-goal nodes n ∈ N∖N∗,
there is exactly one outgoing connector c = ⟨n,M⟩ ∈ C; G is proper,
if for all non-goal nodes n ∈ N ∖N∗, there is a path in G from n to a
goal node n∗ ∈ N∗; and G is acyclic, if it contains no path from n to
n with positive length for any n ∈ N . An AND/OR graph induced by
Π is a tuple GΠ = ⟨N,C⟩, whereN is the set of states S , and C is the
set of actions applications. A transition c = n �→ M = ⟨n,M⟩ ∈ C
is analogous to ⟨s, SUCC(s, EFF(a))⟩, such that a is an applicable
action in s that non-deterministically leads to a set of successor states
SUCC(s, EFF(a)) of s. A sub-graph G′ = ⟨N ′,C ′⟩ of G (denoted
G′ ⊆ G) is an AND/OR graph with N ′ ⊆ N , initial node n′0 equals
to the initial node n0 of G, and a set of goal nodes N ′∗ = N∗ ∩N ′. A
sub-graph G′Π of the AND/OR graph GΠ induced by a FOND planning
task Π can be seen as a solution (i.e., a policy π) to Π, and G′Π is
a strong-cyclic solution if it is closed and proper. A strong-cyclic
solution is a strong solution if it is acyclic, whereas a sub-graph is a
weak solution if it contains a path from n0 to a goal node n∗ ∈ N∗.

2.3 Heuristics for FOND Planning

Mattmüller [37] shows that delete-relaxation heuristics can be effec-
tively used in FOND planning by “simplifying” and “relaxing” the
non-determinism of the actions in a FOND planning task. Such sim-
plification and relaxation are known as determinisation, and it has
been used by several FOND planners in the literature, such as PRP [39]
and FIP [20]. Formally, a determinisation of a FOND planning task Π
yields a deterministic FOND planning task ΠDET = ⟨V, s0, s∗,A

DET⟩,
where ADET is a simple modification of A such that every action in
ADET is deterministic. Namely, ADET is formally created by an all-
outcomes determinisation that creates a new (deterministic) action for
every outcome in EFF of all non-deterministic actions in A.

By combining this determinisation process of a FOND planning task
with delete-relaxation (ignoring negative effects of all actions inADET)
it is possible to use any off-the-shelf delete-relaxation heuristic [9, 27]
from the literature for computing approximate goal distances in FOND

planning. Other types of heuristics for FOND planning have been
proposed in the literature, such as pattern-database heuristics [36]
and heuristics based on symmetry-reduction [46]. We evaluate our
techniques in LAO* using determinised delete-relaxation heuristics [9,
27] for FOND planning, and the pattern-database heuristic of [36].

2.4 FOND Planners

To the best of our knowledge, MBP (Model-Based Planner) is one
of the first FOND planners in the literature, developed by Cimatti et
al. [16]. MBP solves FOND planning tasks via model-checking, and it
is built upon Binary Decision Diagrams (BDDs). GAMER [30], the
winner of the FOND track at IPC [12], is also based on BDDs, but
GAMER has shown to be much more efficient than MBP. NDP [33]
makes use of off-the-shelf Classical planners to solve FOND planning
tasks. MYND [36] is a FOND planner that performs heuristic-search on
AND/OR graphs to extract either strong (using AO∗) or strong-cyclic
solutions (using LAO∗) from FOND planning tasks. FIP [20] works
similarly to NDP, though it is more efficient by avoiding exploring
already explored/solved states. PRP [39] is one of the most efficient
FOND planners in the literature, and it works as a “re-planner” and it
is built upon improvements over the state relevance techniques (avoid-
ing dead-ends states, etc) proposed by FIP. GRENDEL [42] is a FOND

planner that combines regression with a symbolic fixed-point compu-
tation for extracting strong-cyclic solutions. Geffner and Geffner [22]
developed FONDSAT, an iterative SAT-based FOND planner that is
capable to extract very compact (strong and strong-cyclic) solutions
for FOND planning tasks. FONDSAT is the only FOND planner that is
apt to solve dual FOND planning tasks, namely, FOND planning tasks
in which some non-deterministic actions are assumed to be fair (e.g.,
probabilistic) and others unfair (e.g., adversarial). Pereira et al. [41]
developed a set of iterative depth-first search algorithms in a planner
called PALADINUS, and they have shown that such algorithms are very
effective for solving more complex FOND planning tasks, resulting
in one of the current state-of-the-art algorithms for FOND planning.
Recently, Messa and Pereira [38] introduced novel heuristics along
with a Best-First Search algorithm for FOND planning called AND*.

3 LAO* in FOND Planning

LAO* is an AND/OR graph heuristic search algorithm originally
developed by Hansen and Zilberstein in [23, 24] for extracting cyclic
solution policies in MDP problems. LAO* generalises AO* [35] to
extract cyclic solution policies (i.e., policies with loops) in MDP

R. Fraga Pereira / Scaling-Up LAO* in FOND Planning: An Ablation Study 749

problems without exploring the entire state-space. Mattmüller [37]
has adapted AO* and LAO* for extracting both strong and strong-
cycling policies in FOND planning, and this is the focus of our paper.
Algorithm 1 outlines a pseudocode based on the LAO* algorithm

developed by Mattmüller in [37]. In order to clearly show how our
techniques improve the performance of LAO*, we describe LAO*
for FOND planning in two different stages: Expansion Stage and Cost
Revision and Labelling Stage.

Given an AND/OR graph GΠ induced by a FOND planning task
Π, LAO* starts the searching process from the initial node n0, and
gradually, in each step, the algorithm extracts a partial solution G′Π
by tracing the most promising connectors and unexpanded non-goal
nodes in G′Π (Line 4, using the function TRACEMARKEDCONNEC-
TORSUNODES1), and after that, it returns a set of candidates non-goal
nodes to be expanded, denoted as Z, and then it proceeds to expand
one or more of the unexpanded non-goal nodes in Z (Lines 7–12)
using the function APPLICABLETRANSITIONS to compute the ap-
plicable transitions Tn for every n ∈ Z. The applicable transitions
computed by APPLICABLETRANSITIONS represent new nodes and
connectors that are added as part of the AND/OR graph that the
algorithm builds during the searching process from a node n. The
algorithm evaluates nodes using an estimated evaluation cost function
f (Line 12) that relies on a heuristic function h. We refer to this part
in Algorithm 1 as Expansion Stage (Lines 4–12).
After tracing down connectors and the nodes to be expanded (Ex-

pansion Stage), the LAO* algorithm outlined in Algorithm 1 starts the
labelling process (Line 13—SOLVELABELLING) in G′Π and performs
a cost revision (Line 14) on the heuristic estimates of the nodes in Z
by marking the best outgoing connectors on the nodes in Z based on
the information from the last expansion in G′Π via dynamic program-
ming, using either Policy Iteration [28, 4] or Value Iteration [4]. In
essence, the SOLVELABELLING function marks nodes and prunes the
state-space. Connectors with solved nodes do not need to be traced
during the searching process, and a node is marked as solved if it is
a goal node or if there is an applicable transition that may achieve a
solved node. The use of a dynamic programming algorithm allows
LAO* to update and propagate node estimates in order to find solu-
tions with loops (strong-cyclic policies), as formally introduced by
Hansen and Zilberstein in [23, 24]. Here, we make use of Value Itera-
tion (Line 14) as a dynamic programming algorithm for performing
cost revision. We refer to this part in Algorithm 1 as Cost Revision
and Labelling Stage (Lines 13–14).

We can see that the LAO* algorithm outlined in Algorithm 1 termi-
nates either when the initial node n0 is solved during the searching
process, returning a strong-cyclic policy π (Line 16), or if there are
no unexpanded non-goal nodes in G′Π, and the initial node n0 is
still marked as unsolved, the algorithm then returns NO SOLUTION

FOUND (Line 18).

4 Scaling-Up LAO* in FOND Planning

We now adapt techniques from other planning settings (satisficing
planning, etc) for scaling-up LAO* in FOND planning. Namely, we em-
ploy multi-queue heuristic search, tie-breaking strategies, and dead-
end detection as part of the Expansion Stage in LAO*, and develop a
new function for mapping connectors to node estimates to be used in
the Cost Revision and Labelling Stage.

1 T represents a function that traces down the most promising connectors in
G′Π from n0, and is used in Algorithm 1 in Lines 4, 14, and 16.

Algorithm 1: LAO*(GΠ)
1 G′Π ∶= ⟨N

′,C′⟩,N ′ ∶= {n0},C′ ∶= {}
2 f(n0) = h(n0) and mark n0 as solved if n0 ∈ N∗ or h(n0) = 0
3 while n0 unsolved do

/* Expansion Stage */

4 Z ∶= TRACEMARKEDCONNECTORSUNODES(GΠ,T(G′Π))
5 if Z = ∅ then Z ∶= {n ∈ N ′ ∣ n ∉ N∗ and n is unexpanded}
6 if Z = ∅ then break

7 for n ∈ Z do

8 Tn ∶= APPLICABLETRANSITIONS(n)
9 for (c = n�→M) ∈ Tn do

10 add M to N ′ and c to C′

11 for m ∈M do

12 f(m) ∶= {0, if m ∈ N∗

h(m), otherwise

/* Cost Revision and Labelling Stage */

13 SOLVELABELLING(G′Π)
14 DYNAMICPROGRAMMING(Z,GΠ,T(G′Π))
15 if n0 solved then

16 return T(G′Π)
17 else

18 return NO SOLUTION FOUND

4.1 Multi-Queue Heuristic Search and Alternation

Multi-queue heuristic search has been widely used in planning to
improve the performance of automated planners [26, 44, 45]. The
central idea of using multi-queue heuristic search is that separate
priority queues can use different heuristics to exploit their strengths
in different parts of the state-space during the searching process. We
maintain separate priority queues for a set of used heuristics, and states
(nodes) are always evaluated with respect to all used heuristics, with
their successor states (nodes) being added to all priority queues and
ordered in the priority queues according to their respective heuristic.
During the searching process, when selecting which state (node) will
be expanded, the algorithm chooses and removes the “best” state
(node) of the current queue, and it also removes the chosen state
(node) of the other priority queues. The algorithm alternates between
the different priority queues at every step during searching process
according to some criteria, and we refer this alternation between the
different priority queues as alternation.
We employ multi-queue heuristic search and alternation as part

of the Expansion Stage in LAO* (Algorithm 1). Specifically, we use
multiple priority queues to sort the non-goal nodes to be expanded Z
returned by TRACEMARKEDCONNECTORSUNODES (Line 4). Dur-
ing the tracing process to trace the most promising connectors in
G′Π from n0, we order the set of candidates non-goal nodes to be
expanded according to the some criteria. The criteria we use here in
this paper are the following: minimum f value, FIFO (first-in-first-out,
oldest nodes first), and LIFO (last-in-first-out, most recent inserted
nodes first). As for the minimum f value criterion, we order the set of
candidate non-goal nodes to be expanded according to their minimum
f value, much like other heuristic search algorithms in the literature,
e.g., A* [25]. With respect to FIFO and LIFO, we order the nodes
first-in-first-out—the oldest nodes first, and last-in-first-out—most re-
cent inserted nodes first, respectively. We denote such priority queues
as [f], [FIFO], and [LIFO]. We formally denote the use of multiple
priority queues as ⟨[]0, []1, []2, ..., []n⟩. Example 1 exemplifies how
we formalise multiple sets of priority queues for LAO* search.

Example 1. Let us consider that we have the following multiple set of
priority queues: ⟨[f = hX], [f = hY], [FIFO], [LIFO]⟩, where the
first priority queue employs the minimum f using a heuristic hX , the
second next priority queue employs the minimum f using a heuristic
hY , and so on for the next queues [FIFO] and [LIFO], respectively.

R. Fraga Pereira / Scaling-Up LAO* in FOND Planning: An Ablation Study750

Our LAO* implementation employs an alternation technique that
alternates between the priority queues at every step during searching
process, and it alternates between the priority queues as circular queue.
Essentially, it alternates between the priority queues by selecting
nodes from the first priority queue, and at next step it selects nodes
from the second queue, and so on until the LAO* terminates.

4.2 Tie-Breaking

In Planning, tie-breaking refers to the process of selecting the “most
promising” state (node) among possible nodes that have the same
level of desirability according to an algorithm’s evaluation func-
tion [2, 1, 17]. When multiple states (nodes) have the same evaluation
function value, a tie-breaking strategy is then used to determine which
state (node) should be chosen and selected to be expanded. The choice
of an appropriate tie-breaking strategy can have a significant impact
on the performance and effectiveness of a planning algorithm. There-
fore, selecting an appropriate tie-breaking strategy is an important
consideration in designing an effective automated planner [45].
In this paper, we employ simple (but effective) tie-breaking strate-

gies in LAO*. In essence, we define two types of tie-breaking strate-
gies: (1) we use a secondary heuristic to break ties when the main
heuristic is not able to provide an estimate to select solely one node;
and (2) we define a default tie-breaking strategy that is used when
no secondary heuristic is defined as a tie-breaker, and this default
strategy breaks ties using FIFO, so it gives preferences to the oldest
nodes in the AND/OR graph.

We formally denote the use of tie-breaking strategies by following
the work of Asai and Fukunaga [2], as follows. LAO* without any
explicitly tie-breaking strategy with the evaluation function f (and hX

as the main heuristic) is denoted as ⟨[f = hX]⟩, whereas f with hX

as the main heuristic and hY as secondary heuristic for tie-breaking
is denoted as ⟨[f = hX , hY]⟩. We note ⟨[f = hX]⟩ means that there
is no explicitly tie-breaking strategy defined, so it uses the default
tie-breaker FIFO for breaking ties2. In Section 5, we empirically
show that the use a secondary heuristic for tie-breaking can improve
significantly the results of LAO* in several different FOND domain
models. In Example 2, we provide an example on how we break ties
when non-goal nodes to be expanded have the same f value.

Example 2. Figure 1a illustrates a partial AND/OR graph with 5
nodes (n0, n1, n2, n3, and n4) and 2 connectors (a and b). Every
node has estimated values using a primary heuristic h and a sec-
ondary heuristic h′. Consider that the non-goal nodes to be expanded
and added to the priority queue are: n1 and n2. We can see that they
have the same estimated value using h, which is h = 5. For breaking
ties, we use their estimated values for the secondary heuristic h′,
which is h′(n1) = 4 and h′(n2) = 3. In this case, the node n2 is the
top-priority node in the priority queue, preceding n1, that comes next.

4.3 Dead-End Detection and Pruning

Dead-ends in Planning are defined as states from which the goal state
is not possible to be achieved [21, 34]. Different types of planning
settings efficiently employ dead-end detection and avoidance, such as
Classical Planning [34], SSP Planning [31], and FOND Planning [39].
In FOND Planning, Muise, McIlraith, and Beck in [39] have employed
dead-end detection and avoidance to develop PRP.

2 We use FIFO as a default tie-breaker because it has yielded better results not
only for our planner but also for MYND [36]

a b

(a)

a b c

(b)

Figure 1: LAO* AND/OR sub-graph examples.

In this paper, we develop a simple but effective dead-end detection
that prunes actions and nodes that lead to dead-end nodes. We discard
applicable transitions n �→ M ∈ C from a node n if at least one of
the child nodes n′ ∈ M have h(n′) = ∞, i.e., we discard transitions
that lead to known dead-end nodes. We use this dead-end detection to
prune actions and nodes in LAO*.
More specifically, we use this dead-end detection and pruning

in APPLICABLETRANSITIONS (Line 8 in Algorithm 1) so LAO*
avoids evaluation nodes and uses connectors that lead to dead-end
nodes. We denote the use of this dead-end detection and pruning when
computing transitions as APPLICABLETRANSITIONSD∞ , or simply
D∞. Example 3 exemplifies our dead-end detection works for pruning
states and actions that lead to dead-ends.

Example 3. Consider the partial AND/OR graph in Fig-
ure 1a. For computing the applicable transitions of n0,
APPLICABLETRANSITIONSD∞(n0) would return Tn0 , which would
not consider the connector b and its child nodes n3 and n4 as part
of Tn0 because n4 is a dead-end node. Thus, our function discards
the entire connector and its child nodes, returning in this case the
transition with the connector a and its children n1 and n2.

4.4 Updating Functions for Cost Revision

Dynamic programming for MDP problems aims to find the evalu-
ation function f that satisfies the Bellman formulation [3] by im-
proving through updates the evaluation function f via dynamic pro-
gramming updates in the state-space. Two dynamic programming
algorithms can be used for solving MDP problems: Policy Iteration
and Value Iteration. The seminal LAO* developed by Hansen and Zil-
berstein [24] uses dynamic programming for SSP problems In FOND

planning [36, 37], LAO* uses dynamic programming to propagate
heuristic estimates for a set of particular nodes (Z in Algorithm 1) and
mark the best connectors for such nodes, as we stated in Section 3.
Mattmüller et al. [36] define two updating functions (Equa-

tions 1 and 2) to update the evaluation function f over the non-goal
nodes Z during the dynamic programming step (Line 14 in Algo-
rithm 1), as follows:

FAVG(n) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if n ∈ N∗

1 + min
⟨n,M⟩∈C

(1

∣M ∣ ∑
m∈M

h(m)) otherwise (1)

FMAX(n) =
⎧⎪⎪⎨⎪⎪⎩
0 if n ∈ N∗

1 + min
⟨n,M⟩∈C

(max
m∈M

h(m)) otherwise (2)

Equation 1 represents the (minimum) average expected value over
the child nodes along the connectors of n, whereas Equation 2 repre-
sents the (minimum) maximum value (“pessimistic”) over the child
nodes along the connectors of n. Therefore, for every n ∈ Z the
evaluation function f(n) can be updated using either FAVG or FMAX,
namely, f(n) ∶= FAVG(n) or f(n) ∶= FMAX(n).

As an alternative to the functions presented above, we define a new
updating function that is “considerably pessimistic” by selecting the

R. Fraga Pereira / Scaling-Up LAO* in FOND Planning: An Ablation Study 751

maximum value between the heuristic value of n and the average
expected value over the child nodes along the connectors of n. This
pessimistic rationale of our new updating function has also been used
before in [7] for MDPs and in [41] for FOND planning, inspiring the
development and employment of our new updating function. Our new
updating function is formalised in Equation 3.

FPESS(n) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if n ∈ N∗

1 + min
⟨n,M⟩∈C

(max(h(n), 1

∣M ∣ ∑
m∈M

h(m))) otherwise (3)

The DYNAMICPROGRAMMING function (Line 14 in Algorithm 1)
performs a cost revision for every n ∈ Z using either Policy Iteration
or Value Iteration, selecting an outgoing connector of n as the best
connector that minimises f(n). This is a very important step for LAO*
to extract strong-cyclic policies in FOND planning. In the ablation
study in Section 5, we show that the appropriate use of the updating
function can improve the results of LAO* in FOND planning not only
in terms of planning time but also in terms of coverage and expanded
nodes. Example 4 describes an example on how the updating functions
in Equations 1,2, and 3 work to update the evaluation function f .

Example 4. Figure 1b depicts an AND/OR graph with 7 nodes
(n0, n1, n2, n3, n4, n5, and n6) and 3 connectors (a, b, and c). When
using the updating function FAVG for n0, we have the following up-
dated f value: FAVG(n0) = 4.3, which is the average value over the
child nodes of a, the minimum average over all connectors from n0.
The updated f value for n0 when using FMAX is: FMAX(n0) = 6, which
is the maximum value over the child nodes of all possible connectors,
in this case, the h value of the child node (n4) of b. As for using FPESS

for n0, the updated f value is: FPESS(n0) = 7, and in this case, f
is not updated because the h(n0) is greater than the average of the
child nodes of the connectors of n0.

5 Experiments and Evaluation

We now present an extensive set of experiments and an ablation study
for evaluating the efficiency of our techniques in LAO* for solving
FOND planning tasks. We implemented the techniques we present in
Section 4 by modifying the LAO* implementation of MYND [36],
and as a result, we have a new FOND planner that we name as JADIS3.
Apart from the ablation study, which shows how our techniques affect
the efficiency of LAO*, we also compare our best planner configu-
ration with state-of-the-art FOND planners in the literature, such as
PRP [39], MYND [36], FONDSAT [22], and PALADINUS [41].

5.1 Benchmarks and Setup

We empirically evaluate JADIS using two distinct FOND planning
benchmark sets. One of the benchmark sets, denoted as IPC-FOND,
contains 379 planning tasks over 12 FOND planning domains from
the IPC [12] and [39], such as ACROBATICS, BEAM-WALK, BLOCKS-
WORLD, FAULTS, FIRST-RESP, TRIANGLE-TIREWORLD. The other
benchmark set was proposed and used in [22], denoted as NEW-FOND,
which includes FOND planning domains that are more challenging
and complex than IPC-FOND. NEW-FOND contains 211 planning
tasks over 5 FOND planning domains, such as introduced (DOORS,
ISLANDS, MINER, TW-SPIKY, and TW-TRUCK). We note that 25 out of
590 planning tasks have no solution, namely, 25 tasks of FIRST-RESP
(a domain part of the IPC-FOND benchmarks).

We have run all experiments using a single-core of a 24-core In-
tel(R) Xeon(R) CPU E5-2620 v3 @ 2.0GHz with 32GB of RAM,

3 JADIS source code: https://github.com/ramonpereira/jadis

with a memory usage limit of 4GB, and set a 5-minute (300 seconds)
time-out per planning task. We use the following metrics: number of
solved tasks – Coverage (C), planning time – Time (T) in seconds,
average policy size (∣π∣). In the supplementary material, we provide a
more detailed evaluation of how our techniques affect the performance
of LAO*, such as detailed results for each planning task in the bench-
marks (the number of expanded nodes, etc), and the performance of
the other FOND planners when using different heuristics.
As heuristic functions, we use three different heuristics from the

FOND planning literature: we use two determinised delete-relaxation
heuristics [9, 27] for FOND planning [37], the additive heuristic hADD

and the fast-forward heuristic h FF; and the pattern-database heuristic
developed by Mattmüller et al. in [36], denoted as h PDBS.

5.2 Ablation Study

We now present the ablation study to evaluate the impact4 of our
techniques (presented in Section 4) in LAO* for FOND planning.
The idea of this ablation study is to “play” with our techniques and
different heuristics in LAO* by adding/removing them in order to
access their impact on the LAO* performance in FOND planning. We
have tried all combinations of our techniques, but we report here only
the best results as they provide a clear enough picture of the overall
performance, and leave such an extensive evaluation for future work.
Single-Queue Search Comparison. The first part of our ablation
study is analysing the use of single-queue search with the three up-
dating functions FAVG, FMAX, and FPESS, with and without dead-end
detection and pruning D∞. Table 1 shows the results for an ablation
study for single-queue search, and there are two important things that
we can see from these results: (1) our dead-end detection/pruning
techniqueD∞increases the coverage by solving more tasks, see the
results at second-half in Table 1; and (2) it is also possible to see
that the use of FPESS improves the results when using and not using
D∞. We can also see a gradual increase in terms of coverage when
using the heuristics, in which h PDBS has the better results (especially
for solving tasks in the NEW-FOND benchmarks, which is the “most”
complex and difficult FOND planning benchmark set), then h FF, and
then hADD, and we will see this “pattern” over the ablation study.

Table 1: Single-queue results. Coverage results are reported as: (IPC-
FOND solved tasks + NEW-FOND solved tasks) = Total solved tasks.

Coverage Time
⟨FAVG⟩
⟨[f = hADD]⟩ (230 + 30) = 260 9.17
⟨[f = h FF]⟩ (225 + 31) = 256 14.00
⟨[f = h PDBS]⟩ (193 + 101) = 294 16.85

⟨FMAX⟩
⟨[f = hADD]⟩ (218 + 30) = 248 7.56
⟨[f = h FF]⟩ (239 + 31) = 270 12.94
⟨[f = h PDBS]⟩ (190 + 101) = 291 16.12

⟨FPESS⟩
⟨[f = hADD]⟩ (236 + 32) = 268 7.31
⟨[f = h FF]⟩ (260 + 34) = 294 6.32
⟨[f = h PDBS]⟩ (205 + 100) = 305 19.74

⟨FAVG ,D
∞⟩

⟨[f = hADD]⟩ (223 + 53) = 276 7.97
⟨[f = h FF]⟩ (221 + 55) = 276 12.04
⟨[f = h PDBS]⟩ (185 + 133) = 318 16.15

⟨FMAX ,D
∞⟩

⟨[f = hADD]⟩ (214 + 54) = 268 11.80
⟨[f = h FF]⟩ (236 + 57) = 293 14.27
⟨[f = h PDBS]⟩ (184 + 133) = 317 19.68

⟨FPESS ,D
∞⟩

⟨[f = hADD]⟩ (234 + 52) = 286 10.79
⟨[f = h FF]⟩ (257 + 50) = 307 10.62
⟨[f = h PDBS]⟩ (195 + 133) = 328 18.82

4 The best results are highlighted in bold in Tables 1, 2, 3, and 4.

R. Fraga Pereira / Scaling-Up LAO* in FOND Planning: An Ablation Study752

Multi-Queue Search Comparison: f and FIFO/LIFO. The second
part of our ablation study is employing multi-queue search in LAO*.
Since D∞has shown to improve the results in terms of coverage (see
Table 1), from now on, all the reported results for LAO* use D∞.
Table 2 shows the results using multi-queue search with alternation
between f and FIFO/LIFO. Note that combining f and LIFO yields
better results than using a single-queue search. However, we can
see that the alternation between f and FIFO has better results in
overall, it has a significant improvement in terms of coverage when
employing multi-queue search compared to single-queue search, with
approximately 12% of improvement.

Table 2: Multi-queue results with f and FIFO/LIFO, and D∞. Cov-
erage results are reported as: (IPC-FOND solved tasks + NEW-FOND

solved tasks) = Total solved tasks.

Coverage Time
⟨FAVG ,D

∞⟩

⟨[f = hADD], [FIFO]⟩ (251 + 59) = 310 15.93
⟨[f = hFF], [FIFO]⟩ (245 + 60) = 305 15.76
⟨[f = hPDBS], [FIFO]⟩ (207 + 136) = 343 23.93

⟨FMAX,D
∞⟩

⟨[f = hADD], [FIFO]⟩ (246 + 59) = 305 15.40
⟨[f = hFF], [FIFO]⟩ (267 + 60) = 327 16.08
⟨[f = hPDBS], [FIFO]⟩ (203 + 136) = 339 25.95

⟨FPESS ,D
∞⟩

⟨[f = hADD], [FIFO]⟩ (267 + 56) = 323 14.37
⟨[f = hFF], [FIFO]⟩ (283 + 56) = 339 20.34
⟨[f = hPDBS], [FIFO]⟩ (231 + 137) = 368 29.44

⟨FAVG ,D
∞⟩

⟨[f = hADD], [LIFO]⟩ (249 + 57) = 306 8.85
⟨[f = hFF], [LIFO]⟩ (229 + 60) = 289 18.53
⟨[f = hPDBS], [LIFO]⟩ (188 + 134) = 322 22.97

⟨FMAX,D
∞⟩

⟨[f = hADD], [LIFO]⟩ (234 + 57) = 291 9.38
⟨[f = hFF], [LIFO]⟩ (237 + 59) = 296 14.17
⟨[f = hPDBS], [LIFO]⟩ (183 + 134) = 317 19.28

⟨FPESS ,D
∞⟩

⟨[f = hADD], [LIFO]⟩ (265 + 32) = 297 13.24
⟨[f = hFF], [LIFO]⟩ (255 + 33) = 288 5.38
⟨[f = hPDBS], [LIFO]⟩ (197 + 90) = 287 22.18

Table 3: Multi-queue results with f and FIFO/LIFO – D∞, with a
secondary heuristic for tie-breaking. Coverage is reported as: (IPC-
FOND solved tasks + NEW-FOND solved tasks) = Total solved tasks.

Coverage Time
⟨FAVG ,D

∞⟩

⟨[f = hADD, hFF], [FIFO]⟩ (252 + 56) = 308 26.07
⟨[f = hFF, hADD], [FIFO]⟩ (245 + 57) = 302 18.90
⟨[f = hPDBS, hADD], [FIFO]⟩ (208 + 136) = 344 27.27
⟨[f = hPDBS, hFF], [FIFO]⟩ (208 + 136) = 344 24.20

⟨FMAX,D
∞⟩

⟨[f = hADD, hFF], [FIFO]⟩ (250 + 55) = 305 27.76
⟨[f = hFF, hADD], [FIFO]⟩ (270 + 55) = 325 16.36
⟨[f = hPDBS, hADD], [FIFO]⟩ (204 + 136) = 340 21.55
⟨[f = hPDBS, hFF], [FIFO]⟩ (203 + 136) = 339 21.76

⟨FPESS ,D
∞⟩

⟨[f = hADD, hFF], [FIFO]⟩ (264 + 51) = 315 21.28
⟨[f = hFF, hADD], [FIFO]⟩ (282 + 51) = 333 24.77
⟨[f = hPDBS, hADD], [FIFO]⟩ (218 + 136) = 354 29.89
⟨[f = hPDBS, hFF], [FIFO]⟩ (250 + 137) = 387 31.97

⟨FAVG ,D
∞⟩

⟨[f = hADD, hFF], [LIFO]⟩ (247 + 58) = 305 9.37
⟨[f = hFF, hADD], [LIFO]⟩ (219 + 61) = 280 17.49
⟨[f = hPDBS, hADD], [LIFO]⟩ (176 + 134) = 310 19.10
⟨[f = hPDBS, hFF], [LIFO]⟩ (179 + 133) = 312 15.63

⟨FMAX,D
∞⟩

⟨[f = hADD, hFF], [LIFO]⟩ (231 + 57) = 288 11.27
⟨[f = hFF, hADD], [LIFO]⟩ (237 + 62) = 299 13.28
⟨[f = hPDBS, hADD], [LIFO]⟩ (186 + 135) = 321 14.00
⟨[f = hPDBS, hFF], [LIFO]⟩ (181 + 134) = 315 16.58

⟨FPESS ,D
∞⟩

⟨[f = hADD, hFF], [LIFO]⟩ (262 + 57) = 319 21.42
⟨[f = hFF, hADD], [LIFO]⟩ (251 + 56) = 307 10.61
⟨[f = hPDBS, hADD], [LIFO]⟩ (209 + 133) = 342 15.66

⟨[f = hPDBS, hFF], [LIFO]⟩ (199 + 133) = 332 16.83

Multi-Queue Search Comparison: f with Tie-breaking and

FIFO/LIFO. We could see in Table 2 that the use of multi-queue
search can improve LAO*. We now show the results of LAO* by

Table 4: Multi-queue results with two queues using f , D∞, and no
tie-breaking. Coverage is reported as: (IPC-FOND solved tasks + NEW-
FOND solved tasks) = Total solved tasks.

Coverage Time
⟨FMAX,D

∞⟩

⟨[f = hADD], [f = hPDBS]⟩ (180 + 53) = 233 17.14
⟨[f = hADD], [f = hFF]⟩ (224 + 51) = 275 10.64
⟨[f = hFF], [f = hPDBS]⟩ (203 + 55) = 258 21.42
⟨[f = hFF], [f = hADD]⟩ (233 + 54) = 287 9.28
⟨[f = hPDBS], [f = hADD]⟩ (180 + 133) = 313 21.62
⟨[f = hPDBS], [f = hFF]⟩ (181 + 133) = 314 23.44

⟨FPESS ,D
∞⟩

⟨[f = hADD], [f = hPDBS]⟩ (195 + 50) = 245 35.11
⟨[f = hADD], [f = hFF]⟩ (231 + 52) = 283 11.09
⟨[f = hFF], [f = hPDBS]⟩ (217 + 51) = 268 26.09
⟨[f = hFF], [f = hADD]⟩ (258 + 51) = 309 14.96
⟨[f = hPDBS], [f = hADD]⟩ (206 + 134) = 340 19.31
⟨[f = hPDBS], [f = hFF]⟩ (208 + 134) = 342 20.45

combining multi-queue search with tie-breaking. Table 3 shows the
results of using for multi-queue search with alternation between f
(with a second heuristic for breaking ties) and FIFO/LIFO. Here, we
can see again a significant improvement in the LAO* performance,
the use of a second heuristic for breaking ties has provided a great
improvement in terms of coverage, especially by combining h PDBS

with hADD or h FF as secondary heuristic. Multi-queue search with
tie-breaking has approximately 6% of improvement compared to the
previous multi-queue search results.
Multi-Queue Search Comparison: Dual-queue with f . The last
part of our ablation study shows results for multi-queue search by
using dual-queue (alternation) with f and no tie-breaking. The idea of
this study is to see how the alternation between two different heuristics
can affect the results of LAO*. Table 4 shows the results of using
dual-queue (alternation) with f for the updating functions FMAX and
FPESS, which are the functions that overall yield better results (in terms
of coverage). Here, and as we have shown, we can see that FPESS using
h PDBS with hADD or h FF is the configuration that yields better results in
terms of coverage balance for solving tasks in both benchmark sets
(IPC-FOND and NEW-FOND). However, dual-queue with f has not
shown to be better than multi-queue search f with tie-breaking and
FIFO/LIFO (results of Table 3).

5.3 Comparison with other FOND Planners

We conclude our empirical study by comparing our best planner con-
figuration (⟨FPESS,D∞⟩: ⟨[h PDBS,h FF],[FIFO]⟩) for JADIS with other
FOND planners from the literature. Here, access the efficiency of our
techniques in JADIS LAO* with the best configuration of the other
FOND planners, such as PALADINUS (IDFS+P (MAX,hADD)), MYND
(hADD)5, PRP (h FF), and FONDSAT.

Figure 2 shows a comparison with respect to the expanded nodes
of our best LAO* configuration against the best LAO* configuration
of MYND. We can see that our best configuration has expanded fewer
nodes (in overall) compared to MYND, especially for the NEW-FOND

benchmarks, and it empirically shows that our techniques can improve
the performance of LAO* in terms of node expansion.
Table 5 shows the results over all 17 domains (for both bench-

marks) of best LAO* configuration against the other FOND plan-
ners. This comparison takes into account the intersection of T and
∣π∣ among the solved task. We can see that JADIS (⟨FPESS,D∞⟩:
⟨[h PDBS,h FF],[FIFO]⟩) is competitive with the state-of-art planners
(PALADINUS and PRP) in FOND planning, outperforming MYND

5 LAO* implementation of MYND uses single-queue search with no dead-
detection and FIFO as a tie-breaker.

R. Fraga Pereira / Scaling-Up LAO* in FOND Planning: An Ablation Study 753

Table 5: Comparison with other FOND planners. C is coverage, T is time (in seconds), and average policy size ∣π∣.

JADIS ⟨FPESS ,D
∞⟩ PALADINUS PRP MYND FONDSAT

⟨[hPDBS,hFF],[FIFO]⟩ IDFS+P (MAX,hADD) (hFF) (hADD)
C T ∣π∣ C T ∣π∣ C T ∣π∣ C T ∣π∣ C T ∣π∣

DOORS (#15) 13 1.63 1159.14 13 0.91 1159.14 12 0.19 17.0 10 31.19 1159.14 11 40.27 17.0
ISLANDS (#60) 60 0.93 6.23 60 0.1 6.23 27 0.07 7.23 13 20.11 6.62 47 4.08 7.23

MINER (#51) 51 - - 51 - - 9 - - 0 - - 32 - -
TW-SPIKY (#11) 1 0.84 25.0 10 0.13 25.0 1 19.55 23.0 1 0.33 25.0 4 97.07 23.0
TW-TRUCK (#74) 12 21.3 13.73 44 2.97 21.27 16 20.34 19.36 12 12.94 13.82 67 4.51 12.18
Summary (#211) 137 4.94 301.03 178 0.82 302.91 65 8.03 16.65 36 16.14 301.14 161 29.19 14.85

ACROBATICS (#8) 3 0.82 8.33 8 0.05 8.33 8 9.43 9.33 8 0.02 8.33 3 3.51 9.33
BEAM-WALK (#11) 3 0.81 11.0 11 0.02 11.0 11 0.86 12.0 10 0.02 11.0 2 1.94 12.0

BW-ORIG (#30) 16 1.01 12.6 27 0.1 12.2 30 0.06 11.7 15 0.1 11.6 10 15.12 11.1
BW-2 (#15) 7 1.66 22.8 15 0.12 13.2 15 0.08 14.4 6 0.23 17.6 5 25.17 12.2

BW-NEW (#40) 11 0.82 9.5 21 0.08 8.33 40 0.05 7.83 9 0.08 8.5 6 15.18 7.5
CHAIN (#10) 10 - - 10 - - 10 - - 10 - - 0 - -

EARTH-OBS (#40) 34 - - 25 - - 40 - - 21 - - 0 - -
ELEVATORS (#15) 12 1.37 17.29 8 0.07 19.43 15 0.05 17.71 10 1.11 18.57 7 20.3 15.86

FAULTS (#55) 48 19.04 82.9 55 0.14 120.66 55 0.06 11.48 53 0.95 67.55 29 38.43 11.48
FIRST-RESP (#100) 66 6.34 11.0 46 32.79 105.39 75 0.64 10.0 54 4.96 10.64 44 22.34 9.39

TRI-TW (#40) 35 0.57 25.0 8 0.08 22.0 32 0.1 23.0 40 0.04 34.0 3 52.42 16.0
ZENO (#15) 5 53.73 28.0 8 1.01 27.0 15 0.13 23.67 5 0.44 22.67 3 139.31 16.33

Summary (#379) 250 7.18 57.1 242 2.87 86.88 346 0.96 35.28 241 0.66 52.62 112 33.37 30.3

Total (#590) 387 6.52 358.13 420 2.27 389.8 411 3.04 51.93 277 4.53 353.76 273 31.98 45.15

10-1

101

102

103

104

105

106

10-1 101 102 103 104 105 106

Ja
di

s
([h

PD
BS

,h
FF

],
[F

IF
O

])

myND (hADD)

Figure 2: Expanded nodes comparison between JADIS (⟨FPESS,D∞⟩ and
⟨[h PDBS,h FF],[FIFO]⟩) and MYND (hADD). Orange diamonds are results
for the NEW-FOND benchmark set, and brown asterisks are results
for the IPC-FOND benchmark set.

and FONDSAT in total coverage. It is also possible to see that JADIS

outperforms PALADINUS in the IPC-FOND planning benchmark set.
In terms of planning time per task, our best LAO* configuration is

not as fast as MYND, PRP and PALADINUS, see Figures 3c, 3d, and
3e, but it is quite faster than FONDSAT (see Figure 3f). We note that
our best LAO* configuration may perform “slower” than the other
planners due to the fact that it uses two heuristic functions (h PDBS and
h FF) during the planning process. For a more fair comparison with
MYND (hADD), we show a planning time comparison with our best
results using hADD as the heuristic estimator, see Figures 3a and 3b.
The planning time results per task empirically show that JADIS is
slightly faster (much faster for NEW-FOND benchmark set) than
MYND using the same heuristic function.
Figure 4 depicts the number of solved tasks throughout the range of

planning run-time for our best configuration against PALADINUS, PRP,
MYND, and FONDSAT. JADIS is the second best at the end of the plot
for IPC-FOND (Figure 4a) As for the comparison over NEW-FOND

(Figure 4b), we can see that JADIS is overall the second/third best in
terms of solved tasks throughout the range of run-time.

6 Conclusions

In this paper, we have employed and adapted well-known techniques
from other planning settings for scaling-up LAO* in FOND planning.
We have empirically shown in an extensive ablation study that our
techniques significantly improves the performance of the vanilla LAO*
by scaling it up in terms of planning time, coverage, and expanded

10-2

10-1

100

101

102

10-2 10-1 100 101 102

Ja
di

s
D

ea
d-

En
d

([h
AD

D
])

myND (hADD)
Unsolved

Unsolved

(a)

10-2

10-1

100

101

102

10-2 10-1 100 101 102

Ja
di

s
([h

AD
D

],[
FI

FO
])

myND (hADD)
Unsolved

Unsolved

(b)

10-2

10-1

100

101

102

10-2 10-1 100 101 102

Ja
di

s
([h

PD
BS

,h
FF

],
[F

IF
O

])

myND (hADD)
Unsolved

Unsolved

(c)

10-2

10-1

100

101

102

10-2 10-1 100 101 102

Ja
di

s
([h

PD
BS

,h
FF

],
[F

IF
O

])

PRP (hFF)
Unsolved

Unsolved

(d)

10-2

10-1

100

101

102

10-2 10-1 100 101 102

Ja
di

s
([h

PD
BS

,h
FF

],
[F

IF
O

])

Paladinus (IDFS+P (MAX),hADD)
Unsolved

Unsolved

(e)

10-2

10-1

100

101

102

10-2 10-1 100 101 102

Ja
di

s
([h

PD
BS

,h
FF

],
[F

IF
O

])

FONDSAT
Unsolved

Unsolved

(f)

Figure 3: Planning time (in seconds) comparison per FOND planning
task. Pink diamonds are results for the NEW-FOND benchmark set,
and purple asterisks are results for the IPC-FOND benchmark set.

0
50
100
150
200
250
300
350

So
lv
ed
Ta
sk
s(
Co
ve
ra
ge
)

Time (in seconds)
Jadis ([hPDBS],[FIFO])

Paladinus IDFS+P (MAX, hADD)
PRP (hFF)

myND (hADD
FONDSAT

hFF,

10 10 10 100 1 2 3

(a) IPC-FOND benchmarks.

0
20
40
60
80
100
120
140
160
180

10 10 10 10So
lv
ed
Ta
sk
s(
Co
ve
ra
ge
)

Time (in seconds)
Jadis ([hPDBS],[FIFO])

Paladinus IDFS+P (MAX, hADD)
PRP (hFF)

myND (hADD)
FONDSAT

hFF,

0 1 2 3

(b) NEW-FOND benchmarks.

Figure 4: Solved tasks throughout the range of planning time.

nodes. The resulting JADIS planner has shown to be competitive with
the existing state-of-the-art FOND planners.

As future work, we aim to investigate other techniques for improv-
ing LAO* for FOND planning, so we intend to look into other updating
functions, use and adapt modern FOND planning heuristics [38], de-
sign explicitly tie-breaking strategies for LAO*, and employ other
satisficing planning techniques in LAO*, such as preferred operators
detection and selection [43], deferred evaluation [43], Pareto [45],
look-ahead strategies for delete-relaxation heuristics [19], and etc.

R. Fraga Pereira / Scaling-Up LAO* in FOND Planning: An Ablation Study754

References

[1] Masataro Asai and Alex Fukunaga, ‘Tie-breaking strategies for cost-
optimal best first search’, Journal of Artificial Intelligence Research, 58,
67–121, (2017).

[2] Masataro Asai and Alex S. Fukunaga, ‘Tiebreaking strategies for a*
search: How to explore the final frontier’, in AAAI, (2016).

[3] Richard Bellman, Dynamic Programming, Dover Publications, 1957.
[4] Dimitri Bertsekas, Dynamic Programming and Optimal Control, Athena

Scientific, Belmont, MA, 1995.
[5] Dimitri P. Bertsekas and John N. Tsitsiklis, ‘An analysis of stochastic

shortest path problems’, Mathematics of Operations Research, 16(3),
(1991).

[6] Blai Bonet, Giuseppe De Giacomo, Hector Geffner, Fabio Patrizi, and
Sasha Rubin, ‘High-level programming via generalized planning and
LTL synthesis’, in KR, (2020).

[7] Blai Bonet and Hector Geffner, ‘An algorithm better than ao*?’, in AAAI,
(2005).

[8] Blai Bonet and Hector Geffner, ‘Qualitative numeric planning: Reduc-
tions and complexity’, Journal of Artificial Intelligence Research, 69,
923–961, (2020).

[9] Blai Bonet and Héctor Geffner, ‘Planning as heuristic search’, Artificial
Intelligence, 129, 5–33, (2001).

[10] Blai Bonet, Giuseppe De Giacomo, Hector Geffner, and Sasha Rubin,
‘Generalized planning: Non-deterministic abstractions and trajectory
constraints’, in IJCAI, (2017).

[11] R. Brafman and G. De Giacomo, ‘Planning for LTLf/LDLf goals in
non-markovian fully observable nondeterministic domains’, in IJCAI,
(2019).

[12] Daniel Bryce and Olivier Buffet, ‘6th International Planning Compe-
tition: Uncertainty Part’, International Planning Competition (IPC),
(2008).

[13] A. Camacho, J. Baier, C. Muise, and S. McIlraith, ‘Finite LTL synthesis
as planning’, in ICAPS, (2018).

[14] A. Camacho, E. Triantafillou, C. Muise, J. Baier, and S. McIlraith, ‘Non-
deterministic planning with temporally extended goals: LTL over finite
and infinite traces’, in AAAI, (2017).

[15] Alberto Camacho and Sheila A. McIlraith, ‘Strong fully observable
non-deterministic planning with LTL and ltlf goals’, in IJCAI, (2019).

[16] Alessandro Cimatti, Marco Pistore, Marco Roveri, and Paolo Traverso,
‘Weak, Strong, and Strong Cyclic Planning via Symbolic Model Check-
ing’, Artificial Intelligence, 147(1-2), (2003).

[17] Augusto B. Corrêa, André Grahl Pereira, and Marcus Ritt, ‘Analyzing
tie-breaking strategies for the a* algorithm’, in IJCAI, (2018).

[18] Giuseppe De Giacomo and Sasha Rubin, ‘Automata-theoretic founda-
tions of fond planning for ltlf and ldlf goals’, in IJCAI, (2018).

[19] Maximilian Fickert, ‘A novel lookahead strategy for delete relaxation
heuristics in greedy best-first search’, in ICAPS, (2020).

[20] Jicheng Fu, Vincent Ng, Farokh B. Bastani, and I-Ling Yen, ‘Simple
and fast strong cyclic planning for fully-observable nondeterministic
planning problems’, in IJCAI, (2011).

[21] Hector Geffner and Blai Bonet, A Concise Introduction to Models and
Methods for Automated Planning, Morgan & Claypool Publishers, 2013.

[22] Tomas Geffner and Hector Geffner, ‘Compact policies for fully observ-
able non-deterministic planning as SAT’, in ICAPS, (2018).

[23] Eric A. Hansen and Shlomo Zilberstein, ‘Heuristic search in cyclic
AND/OR graphs’, in AAAI, (1998).

[24] Eric A. Hansen and Shlomo Zilberstein, ‘Lao*: A heuristic search algo-
rithm that finds solutions with loops’, Artificial Intelligence, 129(1-2),
35–62, (2001).

[25] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael, ‘A formal basis for
the heuristic determination of minimum cost paths’, IEEE Transactions
on Systems Science and Cybernetics, (1968).

[26] Malte Helmert, ‘The fast downward planning system’, Journal of Artifi-
cial Intelligence Research, 26, 191–246, (2006).

[27] Jörg Hoffmann and Bernhard Nebel, ‘The FF planning system: Fast plan
generation through heuristic search’, Journal of Artificial Intelligence
Research, 14, 253–302, (2001).

[28] Ronald A. Howard, Dynamic Programming and Markov Processes, MIT
Press, Cambridge, MA, 1960.

[29] Yuxiao Hu and Giuseppe De Giacomo, ‘Generalized planning: Synthe-
sizing plans that work for multiple environments’, in IJCAI, (2011).

[30] Peter Kissmann and Stefan Edelkamp, ‘Solving fully-observable non-

deterministic planning problems via translation into a general game’, in
KI Advances in AI, volume 5803, pp. 1–8, (2009).

[31] Andrey Kolobov, Mausam, Daniel S. Weld, and Hector Geffner, ‘Heuris-
tic search for generalized stochastic shortest path mdps’, in ICAPS,
(2011).

[32] Richard E. Korf, ‘Depth-first iterative-deepening: An optimal admissible
tree search’, Artificial Intelligence, 27(1), 97–109, (1985).

[33] Ugur Kuter, Dana S. Nau, Elnatan Reisner, and Robert P. Goldman,
‘Using classical planners to solve nondeterministic planning problems’,
in ICAPS, (2008).

[34] Nir Lipovetzky, Christian J. Muise, and Hector Geffner, ‘Traps, invari-
ants, and dead-ends’, in ICAPS, (2016).

[35] Alberto Martelli and Ugo Montanari, ‘Additive AND/OR graphs’, in
IJCAI, (1973).

[36] Robert Mattmüller, Manuela Ortlieb, Malte Helmert, and Pascal Bercher,
‘Pattern database heuristics for fully observable nondeterministic plan-
ning’, in ICAPS, (2010).

[37] Robert Mattmüller, Informed Progression Search for Fully Observ-
able Nondeterministic Planning, Ph.D. dissertation, Albert-Ludwigs-
Universität Freiburg, 2013.

[38] Frederico Messa and André Grahl Pereira, ‘A Best-First Search Algo-
rithm for FOND Planning and Heuristic Functions to Optimize Decom-
pressed Solution Size’, in ICAPS, (2023).

[39] Christian Muise, Sheila A McIlraith, and J Christopher Beck, ‘Improved
non-deterministic planning by exploiting state relevance’, in ICAPS,
(2012).

[40] Fabio Patrizi, Nir Lipovetzky, and Hector Geffner, ‘Fair LTL synthesis
for non-deterministic systems using strong cyclic planners’, in IJCAI,
(2013).

[41] Ramon Fraga Pereira, André Grahl Pereira, Frederico Messa, and
Giuseppe De Giacomo, ‘Iterative Depth-First Search for FOND Plan-
ning’, in ICAPS, (2022).

[42] Miquel Ramírez and Sebastian Sardiña, ‘Directed fixed-point regression-
based planning for non-deterministic domains’, in ICAPS, (2014).

[43] Silvia Richter and Malte Helmert, ‘Preferred operators and deferred
evaluation in satisficing planning’, in ICAPS, (2009).

[44] Silvia Richter and Matthias Westphal, ‘The LAMA planner: Guiding
cost-based anytime planning with landmarks’, Journal of Artificial Intel-
ligence Research, 39, 127–177, (2010).

[45] Gabriele Röger and Malte Helmert, ‘The more, the merrier: Combining
heuristic estimators for satisficing planning’, in ICAPS, (2010).

[46] DominikWinterer, MartinWehrle, andMichael Katz, ‘Structural symme-
tries for fully observable nondeterministic planning’, in IJCAI, (2016).

R. Fraga Pereira / Scaling-Up LAO* in FOND Planning: An Ablation Study 755

