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Abstract. Multi-task learning (MTL) improves generalization by
sharing information among related tasks. Structured sparsity-inducing
regularization has been widely used in MTL to learn interpretable
and compact models, especially in high-dimensional settings. These
methods have achieved much success in practice, however, there are
still some key limitations, such as limited generalization ability due to
specific sparse constraints on parameters, usually restricted in matrix
form that ignores high-order feature interactions among tasks, and
formulated in various forms with different optimization algorithms.
Inspired by Generalized Lasso, we propose the Generalized Group
Lasso (GenGL) to overcome these limitations. In GenGL, a linear
operator is introduced to make it adaptable to diverse sparsity settings,
and helps it to handle hierarchical sparsity and multi-component
decomposition in general tensor form, leading to enhanced flexibility
and expressivity. Based on GenGL, we propose a novel framework for
Structured Sparse MTL (SSMTL), that unifies a number of existing
MTL methods, and implement its two new variants in shallow and
deep architectures, respectively. An efficient optimization algorithm
is developed to solve the unified problem, and its effectiveness is
validated by synthetic and real-world experiments.

1 Introduction

Multi-task learning (MTL) aims to improve generalization by learning
multiple tasks jointly, so that useful knowledge can be transferred
among tasks. Nowadays, how to save task correlations in a compact
and interpretable model by promoting structured sparsity becomes the
key challenge of MTL, especially for the real-world applications with
various task specificities and high dimensionality. To tackle this issue,
a variety of MTL methods with different sparsity-inducing regulariza-
tions are proposed under different scenarios and have achieved great
success so far [41].

Existing structured sparse MTL works can be roughly divided into
three categories: linear MTL, multilinear MTL and deep MTL. As the
most widely used MTL method, linear MTL aims to transfer useful
task correlations between linear models based on the individual ef-
fects of features. For instance, feature learning approaches [10, 13]
seek to learn a sparse feature representation shared by tasks; task clus-
tering approaches [12, 23] learn task group structures by promoting
structured sparsity on the weight matrix; decomposition approaches
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[19, 11] decompose the weight into multiple components to model hi-
erarchical sparse structures. The additive nature of linear MTL makes
it fail to handle the case where the task response is correlated with
interactions between features. Such high-order feature interactions are
common in practice. For example, Parkinson’s disease is a result of
complicated interactions between environmental factors and genetic
factors [17]. In contrast, multilinear MTL learns high-order feature
interactions shared by related tasks [16, 13] and represents model
weights by a tensor structure. Different from the aforementioned shal-
low MTL methods, deep MTL uses neural networks to model the
complex nonlinear structure of real data. A number of methods with
sparsity-inducing regularizations [25, 26, 39] are proposed to capture
complex nonlinear relations among tasks in a compact way. For cur-
rent structured sparse MTL methods, there are three main problems:
1) Each model works under a specific assumption on the structured
sparsity of parameters, that limits its generalization ability to tackle
various real applications. 2) Existing sparsity-inducing regularizations
usually restrict to the matrix form, and thus ignore high-order feature
interactions among tasks that are typically represented in a tensor
structure. 3) Different models are formulated in different forms, and
thus have to use different algorithms to solve the problems.

In order to deal with the above three problems, inspired by General-
ized Lasso (GenLA) [29], we propose the Generalized Group Lasso
(GenGL). Specifically, for Problem 1, a linear operator is introduced
for GenGL to flexibly define group structures of model parameters,
and sparsity is promoted at the inter-group level. It makes GenGL
adaptable to diverse sparsity settings, and helps it to handle hierar-
chical sparsity and multi-component decomposition. For Problem 2,
GenGL is further extended to cope with the tensor form, in order to
capture high-order relations for both multilinear MTL and deep MTL.
Fro Problem 3, a novel MTL method, namely Structured Sparse MTL

(SSMTL), is proposed based on GenGL, which unifies a number of
current MTL methods with structured sparsity in a general frame-
work. We implement two novel variants of SSMTL, and develop
an efficient algorithm to optimize the unified problem. Experiments
on both synthetic and real-world datasets show the superior perfor-
mance of SSMTL, compared with state-of-the-art MTL methods. The
contributions can be summarized as follows:

• We propose a novel regularization, namely GenGL, that simultane-
ously handles hierarchical sparsity and multi-component decompo-
sition in general tensor form.

• Based on GenGL, we propose a general framework, namely
SSMTL, that unifies several MTL methods, and solve the opti-
mization problem by an efficient algorithm.
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• We implement two novel variants of SSMTL in shallow and deep
architectures, respectively, and evaluate their effectiveness by ex-
periments on both synthetic and real-world datasets.

2 Related Works

The existing MTL methods can be generally categorized into linear
MTL, multilinear MTL and deep MTL. In linear MTL, one way is
to learn a more powerful feature representation based on the origi-
nal feature space. [22] is a naive feature selection method to enforce
row-sparsity, while [10] selects features and captures outliers together.
As low-rank approaches, KMSV [5] uses a new tight approximations
for rank constraints, and MTPL [31] regularizes low-rank matrix fac-
torization via sparse network lasso. Another way is to learn groups
among tasks [4]. CCMTL [12] uses a convex clustering algorithm
based on the kNN graph. GBDSP [36] learns a generalized block-
diagonal structure for the weight matrix. [23] uses sparse network
lasso to extract latent task clusters for compositional data. Besides, de-
composition approaches such as, rMTFL[10] and MeTaG [11], learn
a hierarchical structure to explore task relations. Different from linear
MTL, multilinear MTL methods [16, 13, 40] are recently proposed
to learn high-order feature interactions based on a consensus latent
representation represented in a tensor structure.

In deep MTL, there are two ways to share knowledge across tasks.
Hard-sharing approaches [7, 26] use a single network, which forces
all tasks to own the same hidden space and allows for modeling
task-specificity only in the top layer. To remove redundant param-
eters across tasks, [25] combines l1-norm and l2,1-norm, while [8]
combines Group Lasso and Adaptive Group Lasso; [39] introduces
a novel topic-task-element penalty to promote topic-level sparsity;
[26] learns a sparse sharing structure by extracting sub-nets from the
base network. On the other hand, soft-sharing approaches [18] use a
separate network for each task and task relationship is captured by
jointly regularizing the weights of these networks, which is usually
represented as a tensor by concatenating layer-wise weight matrices
from multiple tasks. [35] applies the tensor trace norm to learn cross-
task subspace structure, and [40] generalizes the tensor trace norm to
capture all the low-rank structures stored in the weight tensor.

Different from the widely used lasso [27], Generalized Lasso
(GenLA) [29] imposes the l1-norm on a linear transformation of
the weight vector to obtain a more general sparse structure. A number
of well-studied problems can be regarded as special cases of GenLA
by using different linear transformations, such as the lasso [27], fused
lasso [28], trend filtering [14] and the graph fused lasso [3]. Based
on GenLA, [20] proposes an approach for penalized tensor decom-
position. [2] extends the GenLA by substituting the l1-norm by the
l2,1-norm, which can capture more flexible sparse structure at group
level, and unifies the group lasso [37] and the group fused lasso[1]. In
addition, some algorithms are proposed to solve the GenLA problem.
[29] focuses on solving the dual of GenLA, [9] uses the QR decom-
position, while [21] presents a one-layer projection neural network to
find the global optimal solutions of GenLA.

Previous structured sparse MTL methods are specifically designed
in different scenarios with various formulations, and have to rely
on different optimization algorithms, which probably limits their
effectiveness and efficiency in real applications. In this paper, SSMTL
is proposed based on GenGL, which enables to induce various sparse
structures for weights stored in both matrix and tensor forms, leading
to improved generalization in various applications.

3 Preliminary

3.1 Notations

For an arbitrary vector y ∈ R
p, the ith entry is represented by yi, and

its l1-norm and l2-norm are denoted by ‖y‖1 and ‖y‖2, respectively.
Similarly, for a matrix Y ∈ R

n×p, yij , yi: and y:j denote the (i, j)th
entry, the ith row and the jth column, respectively. Let the index set
of n elements be [n] = {1, 2, ..., n}. We denote the Frobenius norm
by ‖Y‖F = (

∑n
i=1

∑p
j=1 y

2
ij)

1
2 and the l2,1-norm by ‖Y‖2,1 =∑p

i=1 ‖yi:‖2. Let Ip denotes the identity matrix in size of p× p, ⊗
is the kronecker product, and ◦ denotes the outer product.

The notations for tensor in this paper are adopted by [15]. For a
tensor A ∈ R

p1×p2×...×pN , its tensor order is N . The (i, j, k)th
element of a third-order tensor A is denoted by aijk. The col-
umn, row and tube fibers are denoted by a:jk, ai:k and aij:, re-
spectively. The horizontal, lateral, and frontal slices are denoted
by Ai::, A:i: and A::k, respectively. For the mode-k matricization
A(k) ∈ R

pk×
∏

j �=k pj of A ∈ R
p1×p2×...×pN , the mode-k fibers

are selected to form its columns. The vectorization operation is de-
fined as vec(A) = vec(A(1)) ∈ R

∏
j pj . The inner product of two

same-sized tensors A and B ∈ R
p1×p2×...×pN is denoted by:

〈A,B〉 =
p1∑

i1=1

p2∑
i2=1

...

pN∑
iN=1

ai1...iN bi1...iN .

The k-mode product of a tensor A ∈ R
p1×p2×...×pN with a matrix

B ∈ R
m×pk , denoted by A ×k B, is the tensor of size p1 × ... ×

pk−1 ×m× pk+1 × ...× pN , whose element is

(A×k B)i1...ik−1ijik+1...iN =

pk∑
ik=1

ai1...iN bijik .

3.2 General MTL Formulations

Given m tasks, the training data is denoted by T = {Xt,yt}mt=1,
where Xt ∈ R

nt×p is associated with nt samples and yt ∈ R
nt is

the response of the tth task. For linear MTL, let W ∈ R
p×m be the

weight matrix, and the response yt,i of the ith sample xt,i in the tth
task is obtained by yt,i = 〈xt,i,w:t〉, where w:t is the tth column
of W ∈ R

p×m. For multilinear MTL, let W ∈ R
p1×p2×...×pN

(pN = m) be the weight tensor. Take N = 3 [16, 13] for instance,
yt,i = 〈xt,i ◦ xt,j ,W::t〉, where W::t

1 is the tth slice of W ∈
R

p1×p2×m. Hence, let w = vec(W) or vec(W), the goal of MTL
is formulated as:

min
w

L(w|T ) + Ω(w), (1)

where L(w|T ) is a loss function and Ω(w) is a regularization term.

3.3 Generalized Lasso

As an extension of Lasso [27], Generalized Lasso (GenLA) [29] uses
the l1-norm to induce structured sparsity on a linear transformation
of the weight vector w. The regularization of GenLA is

Ω(w) = γ‖Dw‖1, (2)

1 In W ∈ Rp×p×m, an arbitrary entry wjkt (∀i, j ∈ [p],∀t ∈ [m]) saves
the second-order feature interaction between the jth feature xt,ij and the kth
feature xt,ik of the ith sample xt,i in the tth task. Higher-order interactions
can be modeled in a similar way.

L. Fei et al. / Structured Sparse Multi-Task Learning with Generalized Group Lasso 693



Table 1: A summary of detailed settings of GenGL for selected MTL methods. For decomposition methods, suppose there are h components and
the ith dimension of the lth component is associated with an operator πl,i. For clarity, when h ∈ N+, we show Ω(wl) instead.

Architecture Method Ω(w) π h

Shallow

Group Lasso (GL)
γ‖W‖2,1 π1 ∈ PF , π2 ∈ PC h = 1

[37]
MeTaG γ

φl

∑
j<k ‖wl,:j − wl,:k‖2 πl,1 ∈ PC , πl,2 ∈ PF2 h ∈ N+

[11]

γ1

φl

∑
j<k ‖wl,:j −wl,:k‖2 + γ2

φ−l ‖Wl‖2,1
π

(1)
l,1 ∈ PC , π(1)

l,2 ∈ PF2

h ∈ N+

SSMTLm π
(2)
l,1 ∈ PF , π(2)

l,2 ∈ PC

(The proposed model)
+ γ1

φ−l

∑
i

∑
j<k |wl,ij − wl,ik|2 + γ2

φl ‖wl‖1
π

(3)
l,1 ∈ PF , π(3)

l,2 ∈ PF2

π
(4)
l,1 ∈ PF , π(4)

l,2 ∈ PF

Deep

Sparse GL (SGL) γ1

φl

∑m
k

∑p2
j ‖wl,:jk‖2 + γ2

φl

∑
i,j,k |wl,ijk|

π
(1)
l,1 ∈ PC , π(1)

l,2 ∈ PF , π(1)
l,3 ∈ PF

h ∈ N+
[25] π

(2)
l,1 ∈ PF , π(2)

l,2 ∈ PF , π(2)
l,3 ∈ PF

GL + Adaptive GL (GLAGL) γ

φl

∑m
k

∑p2
j ‖wl,:jk‖2 +

∑m
k

∑p2
j

γj

φl ‖wl,:jk‖2
π

(1)
l,1 ∈ PC , π(1)

l,2 ∈ PF , π(1)
l,3 ∈ PF

h ∈ N+
[8] π

(2)
l,1 ∈ PF , π(2)

l,2 ∈ PC , π(2)
l,3 ∈ PF

γ1

φl

∑
j<k ‖Wl,::j −Wl,::k‖F + γ2

φ−l

∑m
k

∑p2
j ‖wl,:jk‖2

π
(1)
l,1 ∈ PC , π(1)

l,2 ∈ PC , π(1)
l,3 ∈ PF2

h ∈ N+

SSMTLt π
(2)
l,1 ∈ PC , π(2)

l,2 ∈ PF , π(2)
l,3 ∈ PF

(The proposed model)
+ γ1

φ−l

∑p2
i

∑
j<k ‖wl,:ij −wl,:ik‖2 + γ2

φl

∑
i,j,k |wl,ijk|

π
(3)
l,1 ∈ PC , π(3)

l,2 ∈ PF , π(3)
l,3 ∈ PF2

π
(4)
l,1 ∈ PF , π(4)

l,2 ∈ PF , π(4)
l,3 ∈ PF

where D is a generalized penalty matrix that transforms w by its
specific setting and γ > 0 is a hyperparameter. When D = I, GenLA
becomes Lasso. In contrast to GenLA, [2] substitutes the l1-norm in
(2) by the l2,1-norm to learn structured sparsity at group level:

Ω(W) = γ‖DW‖2,1. (3)

When D = I, it becomes the Group Lasso (GL) [37]; when D is
designed to penalize group differences, it becomes the Group Fused
Lasso (GFL) [1].

Existing GenLA-related methods are restricted in indecomposable
vector or matrix forms and fail to find hierarchical sparsity. In this pa-
per, we generalize both GenLA [29] and [2], and propose Generalized
Group Lasso (GenGL) to promote hierarchical structured sparsity for
decomposable weight tensors.

4 Methodology

In this section, we first discuss how to define the GenGL by introduc-
ing a linear operator, then represent it in both matrix and tensor forms,
and finally propose SSMTL and implement two novel formulations.

4.1 Formulating Sparse Structures for GenGL

To flexibly define a group sparse structure, we introduce two extreme
equivalence relations as two partitions P over [pi]:

P =

{
PC = {[pi]} (coarsest),
PF = {{j}|j ∈ [pi]} (finest).

(4)

In addition, we consider one more partition over [pi]× [pi]:

PF2 = PF × PF = {{j, k}|j, k ∈ [pi]} (finest in pair). (5)

The projections to each member of those partitions are realized as sets
of linear operators2:

πi ∈

⎧⎨
⎩

{Ipi} (for PC),
{ej |j = 1, 2, ..., pi} (for PF ),
{ej − ek|j, k = 1, 2, ..., pi} (for PF2).

, (6)

2 Note that more flexibility can be achieved by other choices of π. For instance,
linear trend filtering [14] is implemented by π ∈ PF3 = PF ×PF ×PF .

where ej is a unit vector in size of pi with the jth entry being 1.
Note that there is a single projection in PC , pi projections in PF ,
and p2i projections in PF2 . For simplicity, we identify the set of
linear operators with the partitions by denoting π ∈ P . Specifically,
πi = ej leads to a selection operation by penalizing ‖W ×i ej‖F =
‖W :...j...:‖F , that promotes group sparsity along the ith dimension
of W . Similarly, πi = ej − ek leads to a clustering operation by
penalizing ‖W ×i (ej − ek)‖F = ‖W :...j...: − W :...k...:‖F , that
makes groups along the ith dimension of W as similar as possible.
Table 1 summarizes selected MTL methods, and more details are
provided in the supplement.

Based on the settings of linear operators π, different types of op-
erations can be conducted on W or W to encourage various pat-
terns of structured sparsity. We obtain task-level or feature-level op-
erations once πi /∈ PC is applied for tasks (i = N ) or features
(1 � i � N − 1). Besides, operations can be distinguished by the
dimensionality of groups. Take the matrix for example, πi /∈ PC on
single dimension leads to a vector-wise operation, while πi /∈ PC

on both dimensions gives rise to a element-wise operation. Similar
definitions for net-wise, neuron-wise and weight-wise can be simply
derived for the layer-wise weight tensors in soft-sharing networks.
Take SGL [25] in Table 1 for instance, a neuron-wise selection and
a weight-wise selection are applied simultaneously at feature-level
to select both task-common features and task-specific features. We
summarize different kinds of operations in the supplement.

4.2 Representing GenGL in Matrix Form

Based on the definition of linear operators in Sec. 4.1, we propose
the GenGL regularization to capture structured sparsity in matrix-
based models. For the index set [p] of features and the index set [m]
of tasks, according to the linear operators π with combinations of
(P1,P2) ∈ {PC ,PF ,PF2}2, the regularization term of W in (1) is
reformulated as:

Ω(W) =γ
∑

π1∈P1

∑
π2∈P2

‖πT
1 Wπ2‖2

=γ
∑

π1,π2

‖(πT
2 ⊗ πT

1 )w‖2

=γ
∑

π1,π2

‖Dπ1,π2w‖2, (7)
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(a) Wl in SSMTLm (b) Wl in SSMTLt

Figure 1: Illustration of our specific implementations of SSMTL in shallow architecture (SSMTLm in (a)) and deep architecture (SSMTLt

in (b)). For each component Wl (W l), four types of operations (defined in Sec.4.1 and Table A2 in the supplement) with different πis are
performed to achieve hierarchical sparsity. An upward (downward) arrow means the penalty strength of this operation increases (decreases)
component by component. White indicates zero values and grey otherwise.

.

where w = vec(W), and D is a column concatenation of Dπ1,π2 ,
∀π1 ∈ P1,π2 ∈ P2. The second equation in (7) holds due to
vec(AXB) = (BT ⊗A)vec(X).

For model decomposition, we decompose W into h components,
either by summation W =

∑h
l=1 Wl for decomposition approaches

[42, 11], or by product W =
∏h

l=1 Wl for multi-level lasso [19, 32]
and deep models3. Then we introduce a series of operators {πl,i}hl=1,
and each is associated with a specific component, that helps to obtain:

Ω(W) =
h∑

l=1

γl
∑

πl,1∈Pl,1

∑
πl,2∈Pl,2

‖(πT
l,2 ⊗ πT

l,1)wl‖2

=
h∑

l=1

γl
∑

πl,1,πl,2

‖Dπl,1,πl,2wl‖2

=
h∑

l=1

γl‖Dlwl‖ggl, (8)

where wl = vec(Wl), Dl is a column concatenation of Dπl,1,πl,2s,
‖ · ‖ggl is a self-defined norm, and γl ∈ R

+ controls the component-
wise strength of the penalty. In experiments, we set γl = γ

φl to make
γl adaptable to different components. For example, when φ > 1,
stronger sparsity is imposed on the bottom (small l) components than
the top (large l) ones. Thanks to the variety of Dl, GenGL enables
to promote hierarchical structured sparsity with multi-component
decomposition.

4.3 Extending GenGL into Tensor Form

Here we extend GenGL into tensor form, to detect sparse patterns
of feature interactions in multilinear MTL models [24, 16, 13]
and adapt it to soft-sharing networks [40] and CNN [33]. Given
W ∈ R

p1×p2×...×pN (pN = m), which is decomposed by W =∑h
l=1 W l. For the index sets [pi](1 � i � N−1) of features and the

3 Deep models with linear activations. Once non-linear ones are used, product
decomposition is nonlinearly mapped layer by layer.

index set [pN ] of tasks, according to the linear operators π with com-
binations of (Pl,i, ...,Pl,N ) ∈ {PC ,PF ,PF2}N , GenGL in tensor
form is formulated as below:

Ω(w) =

h∑
l=1

γl
∑

πl,1∈Pl,1

...
∑

πl,N∈Pl,N

‖(πT
l,N ⊗ ...⊗ πT

l,1)wl‖2

=
h∑

l=1

γl
∑

πl,1,...,πl,N

‖Dπl,1,...,πl,Nwl‖2

=
h∑

l=1

γl‖Dlwl‖ggl, (9)

where wl = vec(W l) Dl is a column concatenation of
Dπl,1,...,πl,N s, ∀πl,i ∈ Pl,i, i ∈ [N ], l ∈ [h].

The proposed GenGL unifies several sparsity-inducing regular-
izations for linear, multilinear and deep models, and it can capture
structured sparsity at element-wise, vector-wise, etc, or any combi-
nations of them by properly designing Dls, achieving hierarchical
sparsity of high-order interactions stored in multiple components.

4.4 Implementing MTL with GenGL

Based on GenGL in (9), we propose a general formulation for Struc-
tured Sparse MTL (SSMTL) 4:

min
w

L(w|T ) +
h∑

l=1

γl‖Dlwl‖ggl. (10)

As shown in Table 1, a number of existing structured sparse MTL
methods can be unified in (10). To evaluate its effectiveness, we
implement two new models of SSMTL: SSMTLm in shallow linear
architecture and SSMTLt in deep nonlinear architecture (soft-sharing
networks). For SSMTLm, the weight matrix is decomposed in the
sum of h components. For SSMTLt, it is decomposed non-linearly in

4 The code and the supplement are provided at: https://github.com/Selina-
FEI/ECAI2023_SSMTL.
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the product of h layers, and the layer-wise weights are organized as a
third-order tensor. For each component (layer), we perform four types
of operations to implement task-level clustering and feature-level
selection on hierarchical groups. Specific settings of π and the learned
structured sparse patterns are shown in Fig. 1. For example, SSMTLt

in Fig. 1(b) promotes feature sparsity in both neuron-wise and weight-
wise, and as l increases, W l is likely to be more (less) neuron-wise
(weight-wise) sparse. Besides, SSMTLt makes a trade-off between
hard-sharing and soft-sharing by adaptively adjusting the strength
of task-level clustering. As l increases, task commonality gradually
decreases because the strength of task-level net-wise (neuron-wise)
clustering decreases (increases).

Notice that SSMTLm and SSMTLt are two special implemen-
tations, the proposed SSMTL framework can be implemented
for multilinear MTL, multi-view MTL and other deep architec-
tures, such as convolutional network[33], recurrent network[38] and
transformers[30]. Besides, GenGL can be extended to a more flex-
ible form instead of penalizing l2-norm of an arbitrary group. For
example, non-convex lp-norm (0 < p < 1) can be used to provide a
tighter approximation to the ideal l0-norm than the l2-norm and lead
to stronger sparsity.

5 Optimization

The optimization problem in (10) involves the models with weight
decomposition by either product or summation. For the model with
product decomposition, like SSMTLt, gradient backpropagation is
applied to optimize it. For the model with summation decomposition,
like SSMTLm, an iteratively cascade algorithm [43] is utilized. Thus,
we focus on developing the algorithm to solve (10) with h = 1, and
this problem is reformulated by:

min
w

L(w|T ) + γ
∑

π1,...,πN

‖Dπ1,...πNw‖2. (11)

Since the regularization term Ω(w) is non-smooth and convex, and
common loss function L(w|T ) is Lipschitz continuous and smooth,
we employ the smoothing proximal gradient (SPG) method [6] to
solve (11). According to the definition of dual norm, Ω(w) can be
formulated as:

Ω(w) = max
β∈B

γβTDw, (12)

where β is a column concatenation of βπ1,...,πN s, and βπ1,...,πN is
a vector of auxiliary variables corresponding to Dπ1,...,πNw with
the constraint B = {β|‖βπ1,...,πN ‖2 � 1,πi ∈ Pi, i ∈ [N ]}. Then
we construct a smooth approximation to Ω(w):

fμ(w) = max
β∈B

(γβTDw − μq(β)), (13)

where μ is a positive smoothness parameter and q(β) = 1
2
‖β‖22 is

a smoothing function. Instead of solving (11) directly, we focus on
solving the following problem:

min
w

F (w) = L(w|T ) + fμ(w). (14)

The gradient ∇wF (w) of F (w) can be calculated as below, and
detailed derivations are provided in the supplement.

∇wF (w) = ∇wL(w|T ) + γDTβ∗, (15)

where β∗ is got by a projection operator S(·). The update rule in each
iteration is w ← w−η∇wF (w), where η is the learning rate limited
by the Lipschitz constant. Note that the per-iteration complexity is
linear w.r.t. h, m,

∑
t nt and

∑
i |Gi|. The pseudocode and the code

are given in the supplement.

(a) Ground Truth (b) Standard Method (c) SSMTLm

Figure 2: Visualization for the weight matrices recovered by standard
methods (GL, MeTaG and rMTFL) and SSMTLm on the synthetic
dataset. The top row, middle row and bottom row show the results of
GL, MeTaG and rMTFL settings, respectively.

6 Experiment

6.1 Synthetic Experiments

6.1.1 Data Generation

To verify the ability of GenGL to adapt to various structured sparse
settings, we generate three synthetic datasets. To generate the first
dataset in the GL [37] scenario (row-wise sparsity), we generate
the ground truth weight matrix W∗ ∈ R

p×m with p = 80 and
m = 10, and randomly select 10 non-zero rows of W∗ to represent
the relevant features, whose entries are sampled from the normal
distribution N (0, 3). To generate the second dataset in the MeTaG
[11] scenario (hierarchical sparsity of differences of column pairs),
the weight matrix is decomposed by W∗ = W∗

1+W∗
2 with p = 100

and m = 32. Here W∗
1 assumes that all tasks are in the same group,

and thus we randomly select 10 non-zero rows with value 3, and
W∗

2 assumes that tasks 17-24 are in a group while tasks 25-32 are in
another group. We randomly choose 20 non-zero rows for two column
groups of W∗

2 , and assign an identical value of 1. To generate the third
dataset in the rMTFL [10] scenario (row-wise sparsity + column-wise
sparsity), the weight matrix is decomposed by W∗ = W∗

1 + W∗
2

with p = 200 and m = 30. For W∗
1 , we assign the entries of 20 non-

zero rows from N (0, 3) to indicate the relevant features; for W∗
2 , we

select the last 10 columns as non-zero columns to represent the task
outliers, and their entries are sampled from N (0, 1). In these three
scenarios, we generate 50 samples for each task. The prediction rule of
the t-th task is made by yt = Xtw:t + εt, where each entry of Xt is
sampled from N (0, 1) and the noise εt is sampled from N (0, 0.01).
Fig. 2(a) shows the designed sparse patterns of the scenarios.

6.1.2 Evaluation of Structured Sparsity Recovery

Figs. 2(b) and (c) show the restored weight matrices on the syn-
thetic datasets by standard methods (GL, MeTaG and rMTFL) and
SSMTLm, respectively. According to Fig. 2, SSMTLm successfully
restores the structures of those weight matrices in all scenarios.
GenGL helps to learn sparse patterns consistent with the hypothesis,
that makes SSMTLm adapt to the assumptions in different scenarios
and flexibly deal with complex sparsity as well as multi-component
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Table 2: Results (mean with std) for shallow MTL on four real-world datasets. The best results are highlighted in boldface.

Shallow MTL

Datasets Metric Lasso GL rMTFL MeTaG GBDSP KMSV SSMTLm

RF1
nMSE ↓ 0.3260(0.0454) 0.3214(0.0465) 0.3205(0.0467) 0.3132(0.0486) 0.3291(0.0393) 0.3248(0.0496) 0.3115(0.0493)

MAE ↓ 0.3800(0.0114) 0.3786(0.0110) 0.3779(0.0106) 0.3684(0.0127) 0.3765(0.0105) 0.3803(0.0108) 0.3681(0.0127)

EV ↑ 0.6734(0.0454) 0.6785(0.0465) 0.6791(0.0465) 0.6878(0.0492) 0.6709(0.0393) 0.6725(0.0496) 0.6885(0.0493)

SARCOS
nMSE ↓ 0.1294(0.0108) 0.1291(0.0110) 0.1291(0.0110) 0.1285(0.0113) 0.1302(0.0127) 0.1291(0.0112) 0.1284(0.0113)

MAE ↓ 0.2538(0.0070) 0.2527(0.0063) 0.2527(0.0064) 0.2521(0.0066) 0.2541(0.0083) 0.2526(0.0061) 0.2519(0.0066)

EV ↑ 0.8676(0.0126) 0.8709(0.0110) 0.8709(0.0110) 0.8712(0.0116) 0.8699(0.0127) 0.8710(0.0112) 0.8715(0.0113)

Parkinsons
nMSE ↓ 0.9203(0.0309) 0.9012(0.0102) 0.9014(0.0127) 0.8964(0.0096) 0.8962(0.0092) 0.9285(0.0071) 0.8958(0.0081)

MAE ↓ 0.7871(0.0158) 0.7832(0.0083) 0.7811(0.0092) 0.7799(0.0135) 0.7797(0.0083) 0.7846(0.0098) 0.7795(0.0103)

EV ↑ 0.0587(0.0189 0.0647(0.0073) 0.0655(0.0093) 0.0934(0.0063) 0.1012(0.0043) 0.0757(0.0032) 0.0981(0.0052)

Isolet
nMSE ↓ 0.4644(0.0153) 0.4642(0.0154) 0.4639(0.0159) 0.4528(0.0139) 0.4550(0.0183) 0.4590(0.0205) 0.4507(0.0147)

MAE ↓ 0.5450(0.0105) 0.5446(0.0111) 0.5447(0.0109) 0.5346(0.0088) 0.5408(0.0084) 0.5363(0.0132) 0.5347(0.0103)
EV ↑ 0.5357(0.0154) 0.5358(0.0155) 0.5357(0.0154) 0.5472(0.0140) 0.5504(0.0182) 0.5410(0.0205) 0.5493(0.0146)

Table 3: The statistics of used real-world datasets.

Shallow MTL Deep MTL

Datasets RF1 SARCOS Parkinsons Isolet MNIST COVER SSD
# of features 64 21 16 671 784 54 48

# of tasks 8 7 42 5 10 7 11
# of samples 9125 48933 5875 7797 70000 581012 58505

Category Regression Classification

decomposition. In contrast, standard methods are limited to handle
specific settings, due to their restricted sparse constraints.

6.2 Real-World Experiments

6.2.1 Datasets

We use four regression datasets to conduct experiments for shallow
MTL: RF15, Isolet6, Parkinsons7, and SARCOS8. In experiments for
deep MTL, three classification datasets are used: SSD7, MNIST7 and
COVER7. The datasets are divided into training set, validation set and
testing set in a ratio of 6:2:2. This procedure is repeated ten times,
and the mean results and standard deviation are reported. The details
of the used real-world datasets are provided in Table 3.

6.2.2 Comparison Methods and Configuration

In experiments for shallow MTL, we compare SSMTLm with Lasso
[27], GL [37], rMTFL [10], MeTaG [11], GBDSP [36] and KMSV
[5]. The numbers k and K of latent bases in KMSV and GBDSP are
selected from {1, 3, 5, 7, 9}. The factor φ in SSMTLm is selected
from {2, 5, 10, 50} and the number h of components is fixed by 2.
Other hyperparameters are selected from {10−3, 10−2, ..., 103}. We
terminate the algorithm once the relative change of the objective value
is below 10−4, and set the maximum number of iterations as 2000.
We adopt normalized Mean Squared Error (nMSE), Mean Absolute
Error (MAE) and Explained Variance (EV) as metrics.

In experiments for deep MTL, we adopt the same soft-sharing net-
work with independent sub-nets (MLPs) for multiple tasks, where the
number h of layers is set as 4. We compare SSMTLt with Deep Lasso,
SGL [25], GL+AGL [8], DMTRL [35] and STG [34]. The factor φ
in SSMTLt is selected from {2, 5} and other hyperparameters are se-
lected from {10−7, 10−6, ..., 1}. The maximum number of iterations
is set as 200. For evaluation metrics, we adopt Accuracy and Area
Under the Curve (AUC). Detailed information of comparing methods,
network settings and metrics are given in the supplement.
5 https://mulan.sourceforge.net/datasets-mtr.html.
6 http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html.
7 https://archive.ics.uci.edu/ml/datasets.php.
8 http://www.gaussianprocess.org/gpml/data.

6.2.3 Evaluation of Comparing Methods

Table 2 shows the performance results of shallow MTL methods on
four regression real-world datasets. From Table 2, SSMTLm outper-
forms the other comparing methods in most cases. We summarize two
possible reasons to explain its performance advantage: 1) SSMTLm

decomposes the weight into h components, which enables to capture
latent multi-level structures that regularized in different strengths by
adaptively adjusting γl. 2) SSMTLm extracts feature-level and task-
level information as well as vector-wise and element-wise information
simultaneously, leading to the improved ability to detect complex
sparse structures. As a cutting-edge grouped MTL method, MeTaG
works the second best in total cases, and achieve the best performance
on the Isolet dataset, probably because tasks in the dataset are similar
with each other, and its task grouping assumption is well satisfied.
Results of statistical test between SSMTLm and two competitive
methods, MeTaG and GBDSP, are reported in the supplement.

Table 4 shows the performance results of deep MTL methods on
three classification real-world datasets. From Table 4, we can see that
SSMTLt achieves the performance advantage in accuracy and AUC
on the MNIST and COVER datasets, but fails to outperform STG on
the SSD dataset. However, SSMTLt is able to explore hierarchical
and high-order information among tasks and features, that helps to
model multi-level task relevance and feature sparsity across different
layers, and we clarify this in Sec. 6.2.4. In addition, the performance
superiority of SSMTLt also shows that even though four types of
operations are applied simultaneously, over-regularization can be
avoided once hyperparameters are properly set.

6.2.4 Ablation Study

To demonstrate effectiveness of different types of operations of
GenGL used in SSMTLm, we implement four degenerated variants
of SSMTLm by only considering feature-level, task-level, vector-wise
and element-wise operations, respectively. Fig. 3(a) and 3(b) show the
results in nMSE on two datasets. We also provide the results in MAE
and EV in the supplement. The results on other datasets are omitted as
similar results are observed. We can see that SSMTLm outperforms
the four variants on both datasets, while the task-level method out-
performs the other three variants. It verifies the importance of using
appropriate operations in GenGL on improving generalization, and
SSMTLm is flexible enough to extract complex information stored
in real-world datasets. In addition, we conduct an experiment on the
same datasets by varying h ∈ 1, 2, 3 and report the results in Fig.
3(c). We can see that the model performs the best when h = 2. The
results in Fig. 3 demonstrate the importance of promoting hierarchical
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Table 4: Results (mean with std) for deep MTL on three real-world datasets. The best results are highlighted in boldface.

Deep MTL

Datasets Metric Deep Lasso SGL GL+AGL DMTRL STG SSMTLt

MNIST
Accuracy ↑ 0.9646(0.0048) 0.9648(0.0043) 0.9621(0.0025) 0.9639(0.0046) 0.9589(0.0020) 0.9670(0.0041)

AUC ↑ 0.9928(0.0013) 0.9904(0.0018) 0.9926(0.0010) 0.9926(0.0018) 0.9910(0.0022) 0.9951(0.0032)

COVER
Accuracy ↑ 0.8867(0.0073) 0.8888(0.0049) 0.8884(0.0065) 0.8849(0.0060) 0.8766(0.0045) 0.8904(0.0050)

AUC ↑ 0.9557(0.0027) 0.9542(0.0119) 0.9530(0.0031) 0.9550(0.0040) 0.9433(0.0082) 0.9566(0.0021)

SSD
Accuracy ↑ 0.9278(0.0059) 0.9255(0.0033) 0.9268(0.0031) 0.9311(0.0022) 0.9534(0.0018) 0.9450(0.0020)

AUC ↑ 0.9717(0.0012) 0.9700(0.0032) 0.9725(0.0028) 0.9745(0.0024) 0.9824(0.0017) 0.9802(0.0015)

(a) Task/featrue-level (b) Vector/element-wise (c) Decomposition

Figure 3: Effect of different operations and model decomposition of
SSMTLm on the Isolet and RF1 datasets.

(a) Neuron sparsity (b) Weight sparsity

Figure 4: Sparsity of the three hidden layers of SSMTLt and its vari-
ants on the COVER dataset. For each successive layer-pair, neuron
(weight) sparsity is the percentage of removed neurons (weights).

sparsity in model decomposition for SSMTLm.
To investigate the structural characteristics of weights in differ-

ent layers of SSMTLt, we compare SSMTLt with its two variants
that only consider feature-level and task-level operations in GenGL,
respectively. In the experiments, we set γ1 = 10−6, γ2 = 10−5

and φ = 2. Figs. 4 and 5 show the results on the sparsity and task
correlations9 of hidden layers, respectively. For SSMTLt and the
feature-level method, as shown in Fig. 4, neuron sparsity roughly in-
creases while weight sparsity decreases, layer by layer. For SSMTLt

and the task-level method, as shown in Fig. 5, net-wise task correlation
increases while neuron-wise task correlation decreases, layer by layer,
implying that task correlations are progressively modeled from a strict
net-wise to a flexible neuron-wise. Unlike SSMTLt, neither task-level
method nor feature-level method can model both neuron/weight-wise
sparsity and net/neuron-wise task correlation correctly. Therefore,
SSMTLt can improve its generalization by maintaining a balance
between feature sparsity and task correlations.

6.2.5 Hyperparameter Sensitivity Analysis

The sensitivity on γ1, γ2 and φ of SSMTLt (in Table 1) is inves-
tigated on the COVER dataset. In SSMTLt, γ1 and γ2 control the
regularization strengths of task-level and feature-level operations,
respectively, both of which are selected from {10−9, 10−8, ..., 1},
and φ adjusts the regularization strengths across layers by γl =

γ

φl ,

9 Pearson correlation coefficient is calculated by ρX,Y =
cov(X,Y)
σXσY

.

(a) SSMTLt: net-wise (b) SSMTLt: neuron-wise

(c) Task-level: net-wise (d) Task-level: neuron-wise

(e) Feature-level: net-wise (f) Feature-level: neuron-wise

Figure 5: Task correlations of the three hidden layers of SSMTLt

and its variants on the COVER dataset. Each subfigure shows the
correlation matrices of layers 1, 2 and 3 from left to right. For each
layer, net-wise and neuron-wise correlations are calculated by the
whole weights and the weights of a selected neuron, respectively. The
warmer the color, the higher the value.

(a) φ = 2 (b) γ2 = 10−6 (c) γ1 = 10−6

Figure 6: Hyperparameter Sensitivity Analysis on γ1, γ2 and φ of
SSMTLt on the COVER dataset. The values of γ1 and γ2 are shown
in the logarithmic scale.

which is selected from {2, 3, ..., 10}. Fig. 6 shows the result in nMSE.
Specifically, Figs. 4(a), 4(b) and 4(c) are shown by fixing φ = 2,
γ2 = 10−6 and γ1 = 10−6, respectively. The result shows that: 1) it
is recommended to set γ1 � 10−4 and γ2 � 10−5 on the COVER
dataset; 2) φ is not as sensitive as other parameters. The hyperparam-
eter sensitivity analysis of SSMTLm is provided in the supplement.

7 Conclusion

In this paper, we propose a novel SSMTL method based on GenGL.
GenGL helps to induce complex hierarchical structured sparsity in
multiple components of model parameters, and capture high-order
information among features and tasks, leading to enhanced robustness
and expressivity. Thanks to the flexibility of GenGL, SSMTL unifies
a wide range of structured sparse MTL methods, and its problem is
solved by an efficient algorithm. Experiments on both synthetic and
real-world datasets demonstrate the effectiveness of SSMTL.
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