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Abstract. A set of voters’ preferences on a set of candidates is 2-
Euclidean if candidates and voters can be mapped to the plane so that
the preferences of each voter decrease with the Euclidean distance
between her position and the positions of candidates. Based on ge-
ometric properties, we propose a recognition algorithm, that returns
either “yes” (together with a planar positioning of candidates and
voters) if the preferences are 2-Euclidean, or “no” if it is able to find
a concise certificate that they are not, or “unknown” if a time limit is
reached. Our algorithm outperforms a quadratically constrained pro-
gramming solver achieving the same task, both in running times and
the percentage of instances it is able to recognize. In the numerical
tests conducted on the PrefLib library of preferences, 91.5% (resp.
4.5%) of the available sets of complete strict orders are proven not
to be (resp. to be) 2-Euclidean, and the status of only 4.5% of them
could not be decided. Furthermore, for instances involving 5 (resp.
6, 7) candidates, we were able to find planar representations that are
compatible with 87.4% (resp. 58.1%, 60.1%) of voters’ preferences.

1 Introduction

This paper deals with the recognition of Euclidean preferences on the
plane, a domain restriction studied in computational social choice but
also in many other fields, such as economics, psychology or political
science. The idea of d-Euclidean preferences is to view candidates
and voters as points in R

d. The nearer a voter is to a candidate, the
more this candidate is preferred by the voter. The distance is usually
measured by the Euclidean l2 norm, but the l1 and l∞ norms have
also been considered [16, 29, 10, 20]. Given a specific domain restric-
tion and a set of preferences (also called preference profile hereafter),
a recognition algorithm aims at deciding whether the preferences be-
long or not to the domain restriction, and if possible also provide a
concise certificate of membership or non-membership. Recognition
algorithms have been proposed for various domain restrictions in so-
cial choice, among which single-peaked preferences on an axis [2] or
on a tree [33] or on a circle [30], single-crossing preferences [15], in-
termediate preferences on median graphs [12], etc. For more details
on preference restrictions in computational social choice, the reader
can for instance refer to the recent survey by Elkind et al. [18].

In spite of many works aiming at understanding the structure of
d-Euclidean preferences (see Section 2), the recognition problem ap-
pears to be very challenging for d≥2, and remains widely open from
an algorithmic perspective:
∗ Corresponding Author. Email: olivier.spanjaard@lip6.fr.

• From a theoretical viewpoint, Peters [29] showed that the recogni-
tion problem (under �2) is NP-hard for any fixed dimension d≥2,
and that some Euclidean preference profiles require exponentially
many bits in order to specify any Euclidean embedding. He also
proved the conjecture of Chen and Grottke [9] that, for any d≥2,
the set of d-Euclidean preference profiles does not admit a good
characterisation by forbidden substructures unless ∃R⊆coNP.

• From a practical viewpoint, Peters [29] pointed out that using an
ETR-solver to recognize Euclidean profiles for d∈{2, 3} is inef-
ficient in practice, and to the best of our knowledge, no efficient
algorithm is known even for small-size instances.

We propose here a new approach to recognize Euclidean prefer-
ences on the plane (d = 2). The principle of the algorithm is simple:
we fix the candidates’ positions randomly in the plane, we determine
the set of votes that are compatible with these positions, and then we
check if the input profile is included in this set of votes. If yes, the
input is 2-Euclidean. We repeat this test a certain number of times
(changing the random positions) to detect 2-Euclidean profiles. We
complement this with a test aiming at detecting when an input pro-
file is not 2-Euclidean. If the preferences are neither detected as 2-
Euclidean nor as not 2-Euclidean after a given time limit, then the
algorithm returns that their status is unknown. Put another way, the
algorithm we propose belongs to the class of incomplete methods,
i.e., there is no guarantee that it will eventually conclude [24]. Nev-
ertheless, in the numerical tests carried out (see Section 5), the status
of only 4.5% of real-world preference data could not be determined.

Although the naive implementation of this idea is not very effi-
cient, we propose several theoretical and algorithmic improvements
that make it way more operational. We made some experiments both
on real-world and synthetic datasets involving up to 8 candidates and
found that 91.5% of them are not 2-Euclidean. To go further and
counterbalance this informative but rather negative result, we also in-
vestigated the percentage of preferences that can be explained by a 2-
Euclidean representation. Interestingly enough, the results we obtain
are of the same order of magnitude as the empirical findings of Sui et
al. [32] regarding multi-dimensional single-peakedness, who showed
that in real-world election datasets, one can find 2-dimensional axes
on which 47–65% voters are single-peaked. Besides, empirical stud-
ies conducted with the implemented algorithm allow us to provide
some new insights on some questions about Euclidean preferences
on the plane, such as the number of inclusion-wise maximal profiles
for a given number of candidates.
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The paper is organized as follows. The related work is presented in
Section 2. Then, Section 3 is devoted to some preliminaries, before
the description of the algorithm itself in Section 4. Finally, experi-
mental results are provided and discussed in Section 5. Supplemen-
tary material is available on Zenodo (10.5281/zenodo.8157233)

2 Related work

The topic of Euclidean preferences has been studied both in eco-
nomics and in computational social choice.

The domain of Euclidean preferences on the line (i.e., d=1), also
known as 1-Euclidean preferences, were introduced by C. Coombs
under the name of “unfolding model” [14, 13]. Several polynomial-
time recognition algorithms for 1-Euclidean preferences have been
proposed, first in 1994 [15], and then in 2010 [25] and 2014 [17]. All
of these algorithms use the observation that any 1-Euclidean pref-
erence profile is necessarily single-peaked [4] and single-crossing
[31]: while Doignon and Falmagne [15] combine both conditions,
Knoblauch [25] starts by finding a single-peaked axis and Elkind
and Faliszewski [17] establishes a single-crossing order. In all cases,
linear programming is used to find the positions of voters and candi-
dates on the real line. It was shown by Chen et al. [11] that the domain
cannot be characterized by finitely many forbidden minors, contrary
to, for example, the single-peaked domain [1]. Chen and Grottke [9]
characterized the sub-domain of “small” 1-Euclidean profiles: in par-
ticular, they showed that any profile over at most 5 candidates is 1-
Euclidean if and only if it is both single-peaked and single-crossing.

The domain of Euclidean preferences was also studied for d≥ 2,
starting from the works of Bennett and Hays [3, 21] (with the l2
norm). In addition to setting the geometrical framework, some struc-
tural questions were discussed - among others, the maximal size
(number of distinct votes) of a Euclidean profile is given, as a func-
tion of the number m of candidates and the dimension d. Further-
more, given a preference profile, the authors studied the minimal di-
mension d such that the profile is d-Euclidean. They give some tech-
niques to obtain bounds on d. Some decades later, Bogomolnaia and
Laslier [5] showed that d ≥ min{m, n − 1} is necessary to ensure
that any profile of n votes on m candidates is d-Euclidean (i.e., Eu-
clidean in dimension d). They also showed that any profile of at most
2 voters or 3 candidates is 2-Euclidean. These results were deepened
by Bulteau and Chen [7]: they proved that any profile of 3 voters on
at most 7 candidates is 2-Euclidean. Finally, Kamiya et al. [23], and
later Escoffier et al. [20], gave a characterization of 2-Euclidean pro-
files on 4 candidates. Note that there are also some works focusing
on metric preferences using l1 and l∞ norms [9, 20], providing in
particular results on the size of Euclidean profiles under these norms,
geometrical properties of representations under these norms, and dif-
ferences between �1, �2 and �∞ Euclidean profiles.

We would like to stress that the recognition problem considered in
the above works and in the present paper differs from the non-metric
multidimensional unfolding problem (see e.g., [27]), where the aim
is to determine a positioning of voters and candidates in the plane
that minimizes a measure of error w.r.t. the input preference profile
(optimizing goodness of fit [26]). The main problem encountered in
multidimensional unfolding is that of degenerate solutions, that is,
placing all the candidates in the same position yields a very small
violation of the constraints, or placing all the candidates on a circle
and all the voters clustered around the circle center. Although multi-
ple works have proposed alternative methods to overcome this prob-
lem (see e.g., [6, 8]), they are often not able to distinguish between
Euclidean and non-Euclidean profiles, as emphasized by Peters [29].

3 Notations and preliminaries

We consider a set V ={v1, v2, . . . , vn} of n voters who express their
preferences over a set C = {c1, c2, . . . , cm} of m candidates. The
preference of each voter v is a strict total order >v over C : we
say that voter v prefers candidate ci to candidate cj if ci >v cj .
For conciseness, we will often write the preference ci >v cj >v

. . . >v ck as (ci, cj , . . . , ck). We call a preference profile the set
of all voters’ preferences P = {>v1 , >v2 , . . . , >vn}. We denote by
‖ · ‖ : R2 → R the classical 2-Euclidean norm defined by ‖x‖ �→√

x2
1 + x2

2 for x=(x1, x2).

Definition 1. (2-Euclidean preferences) A preference profile P of a
set V of n voters over a set C of m candidates is 2-Euclidean if there
exists a mapping f : V ∪ C → R

2 such that for each v ∈ V and
each couple of candidates ci, cj ∈ C:

ci >v cj ⇔ ‖f(v)− f(ci)‖ < ‖f(v)− f(cj)‖.
If there is no ambiguity, we will just say Euclidean profile instead of
2-Euclidean profile. Note that in the sequel we will assume, w.l.o.g.,
that no couple of voters have the same preference (if so, we can sim-
ply remove one of them).

The mapping f is called a Euclidean representation of P . Obvi-
ously, such a mapping is not necessarily unique. Let us interpret the
definition in a slightly different way : imagine that the positions f(c)
are fixed for each candidate c ∈ C. Our goal is now to extend f
on C ∪ V (i.e., define the positions of the voters v ∈ V ) in such a
way that f fulfills the condition in Definition 1. For each voter v, we
define the set Df

v of possible positions f(v):

Df
v ={p∈R

2:∀ci, cj ∈ C, ci>v cj ⇒‖p−f(ci)‖<‖p−f(cj)‖}.
Then, mapping f is a Euclidean representation of P if and only if
Df

v = ∅ for each v ∈ V . We note that, following this idea, to build
a Euclidean representation of P we only need to define the posi-
tions of the candidates in such a way that each Df

v is non-empty.
The set of points equidistant to ci and cj , called bisector, is denoted
by Bf (ci, cj), or simply B(ci, cj) if no confusion is possible. The
notations are illustrated in Figure 1.
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Figure 1: A Euclidean representation of the profile consisting of the
6 possible preferences on 3 candidates c1, c2, c3. The grey area cor-
responds to Df

v for c1 >v c3 >v c2.

Definition 1 can be now reformulated as follows : The preference
profile P is 2-Euclidean if there exists a mapping f : C → R

2 such
that the set Df

v induced by f is non-empty for each v ∈ V .
Following this idea, for a given position of candidates let us define

the set of all ranking (votes) that are compatible with these positions.

Definition 2. Let C be a set of candidates, and f : C → R
2 be a

mapping. We define the profile Pf associated to f as the set of all
rankings v such that Df

v is non-empty.
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We have the following property, used in our algorithm.

Property 1. A profile P is 2-Euclidean if and only if there exists a
mapping f : C → R

2 such that P ⊆ Pf .

Furthermore, we will use the notation [P ] to refer to any profile
obtained by a permutation of the names of the candidates in P . By
extension, we will write P ⊆ [Pf ] (resp. P = [Pf ]) to state that P
is included in (resp. is equal to) a profile obtained by renaming the
candidates of Pf . For instance,{

c2 � c3 � c1,
c1 � c3 � c2

}
=

[{
c1 � c2 � c3,
c3 � c2 � c1

}]
because the profile on the left hand side is obtained from the pro-
file on the right hand side by renaming c1 (resp. c2, c3) in c2 (resp.
c3, c1). Property 1 remains clearly true if we replace P ⊆ Pf by
P ⊆ [Pf ].

Finally, let us define the notion of maximal Euclidean profile (we
recall that the votes are pairwise distinct):

Definition 3. A Euclidean profile P is maximal is for any preference
>v′ /∈P , the profile P ′ = P ∪ {>v′} is not Euclidean.

Let us call a representation function f degenerate if either three
points f(ci), f(cj) and f(ck) are aligned, or at least 4 bisectors in-
tersect in the same point. By slightly moving the positions of can-
didates, it is easy to see that for any Euclidean profile there exists
a non-degenerate representation of it. Note that if the representation
function f is non-degenerate, then the profile Pf is maximal.1

4 Recognition of 2-Euclidean preferences

Assume that we have a profile P in input, and we want to decide
whether it is 2-Euclidean or not. We propose here an algorithm based
on the following principles. First, as some necessary conditions for a
profile to be Euclidean have been identified in the literature, the algo-
rithm checks if these conditions are fulfilled. If it is not the case, the
profile is not Euclidean and NO is returned. Otherwise, the algorithm
tries to “guess” the positions f(c1), f(c2), . . . , f(cm) of candidates.
It then builds the (maximal) Euclidean profile Pf associated to the
representation f , and finally checks if P ⊆ [Pf ]. If this is the case,
the profile is Euclidean and YES is returned. Otherwise, we reiterate
this process of guessing positions of candidates. Finally, if none of
the tests succeeded, then the status is undefined and UNKNOWN is
returned. The pseudocode is given in Algorithm 1.

Algorithm 1 is_euclid(P)

Input : a preference profile P
Output: NO if P is not Euclidean, YES if P is Euclidean, UN-
KNOWN if not decided
if there is a NO-certificate for P return NO
while timeout not reached do

Generate a random Euclidean representation f of candidates
Build the profile Pf associated to f
if P ⊆ [Pf ] return YES

end while

return UNKNOWN

We now detail how each step of this algorithm is performed, ex-
plaining the main ideas used to make it as efficient as possible.
1 Indeed, it can be shown that then |Pf |=ub(m), where ub(m)=m(3m−
10)(m−1)(m+1)/24+m(m−1)+1 is the maximal number of pairwise
distinct votes in a 2-Euclidean preference profile on m candidates (this can
be easily derived from a result by Bennett and Hayes [3], see e.g. [20]).

4.1 NO-Certificates

As explained above, the first step of the algorithm is to detect profiles
that are not Euclidean. To do so, we use in our algorithm two neces-
sary conditions (also called NO-certificates in which follows, as they
guarantee that the profile is not Euclidean) known in the literature,
based on the size of the profile and on some forbidden substructures.
We will discuss possible improvements of this step of the algorithm
in the conclusion.

• Cardinality condition: Using the maximum number ub(m) of
pairwise distinct votes in a Euclidean profile on m candidates
(see footnote in Section 3), the algorithm simply outputs NO if
n > ub(m). Note that this is actually tested for any restriction
of the profile to a subset of candidates. More formally, given a
profile P over a set C of m candidates, and given S ⊆ C, we
denote by P|S the restriction of P to S where, for each v ∈ V ,
we define the preference >v|S of voter v as follows: ∀ci, cj ∈
S, ci >v|S cj iff ci >v cj . In other words, P|S is a copy of P
in which we have kept only the candidates of S (and removed the
possible duplicate preferences). Any subset S of candidates such
that |P|S |>ub(|S|) is a NO-certificate for P .

• Condition on subprofiles on 4 candidates: Kamiya et al. [23]
showed that for 4 candidates, there are only 3 maximal Euclidean
profiles P1, P2, P3 (up to a permutation of candidates). Conse-
quently, a profile P on 4 candidates is Euclidean if and only if
there exists i∈{1, 2, 3} for which P ⊆ [Pi] . We use this charac-
terization to derive a NO-certificate, as follows. We say that P ′ is
a k-restriction of P if there exists S ⊆ C of cardinal k such that
P ′ = P|S . We will note by Pk the set of all k-restrictions of a
given profile P : Pk = {P|S : S ⊆ C, |S| = k}.
Obviously, if P is Euclidean, for each k, any k-restriction of P
is also Euclidean. We use the characterization of Euclidean pro-
files on 4 candidates to identify non-Euclidean profiles P on m
candidates: we generate all

(
m
4

)
elements of P4 and check if they

are subprofiles of [P1], [P2] or [P3], one of the 3 maximal Eu-
clidean profiles on 4 candidates. Any 4-restriction of P that is not
Euclidean is a NO-certificate for P .

4.2 The random generation of the representation f

The most straightforward idea consists in picking up the positions
f(c1), f(c2), . . . , , f(cm) according to a uniform distribution in the
square [0,M ] × [0,M ] (for some constant M ). However, this turns
out to be inefficient in practice because it does not take into account
the input profile P , which yields a low chance that the positions are
correctly guessed. This led us to adapt the random generation pro-
cess by observing that, if a candidate ci is ranked last by at least one
voter v, then for any Euclidean representation f , point f(ci) must
be a vertex of the convex hull of the set {f(c1), f(c2), . . . , f(cm)}.
This is shown in Lemma 1 (proof in Supplementary Material A.1).
We therefore generate positions of candidates by imposing that the
number of vertices of the convex hull of the set of positions of candi-
dates is at least the number of candidates ranked last by at least one
voter in P .

Lemma 1. Let C = {c1, . . . , cm} be a set of candidates and
f : C → R

2 an injective mapping of the candidates in the plane.
Given c∈C and {i0, i1, . . . , ik} ⊆ {1, . . . ,m} such that f(ci0) is
a convex combination of f(ci1), f(ci2), . . . , f(cik ). For each pos-
sible position f(v) of a voter v in the plane (i.e., inducing a strict
order >v), there exists iv ∈ {i1, i2, . . . , ik} such that ci0 >v civ . In
particular, ci0 is never ranked last in the profile Pf associated to f .
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Hence, to generate a random Euclidean representation, we take
into account the number of vertices that the convex hull of the set
of points {f(c1), f(c2), . . . , f(cm)} should have. We call this num-
ber the size of the convex hull in the following. More precisely, we
proceed as follows:

1. We go through the input profile P and we determine the set CL⊆
C of the candidates ranked last at least once in P .

2. We pick randomly, according to a given probability distribution π,
an integer k ∈ {L, . . . ,m}, where L= |CL|. In fact, as there are
L candidates ranked last at least once in P , the convex hull of any
representation of P must contain at least L vertices (and possibly
more if P is not maximal).

3. Using Valtr’s algorithm (see [34]), we generate uniformly at ran-
dom a polygon with k vertices in a square [0,M ] × [0,M ] (for
some constant M ). We assume that the set of positions of vertices
corresponds to {f(c1), f(c2), . . . , f(ck)}. We choose then (uni-
formly at random) m − k points inside the polygon in order to fix
the remaining positions f(ck+1), . . . , f(cm). We recall that, fol-
lowing Lemma 1, only the candidates c1, . . . , ck can be ranked
last in the associated profile Pf .

Let us now specify the probability distribution π used in step 2 above.
We propose here three different distributions (the efficiency of which
will be compared in the experimental study):

• Uniform distribution: We pick the size of the convex hull be-
tween L and m using the uniform distribution πU . Formally, for
each k∈{L, . . . ,m}, we have πU (k) = 1/(m− |CL|+ 1).

• Vertices-based distribution: The idea is to fit the probability dis-
tribution of the size of the convex hull that we would get by pick-
ing m points uniformly at random points in the plane (this dis-
tribution of the sizes has no reason to be uniformly distributed).
Denoting by πm(k) the probability of having a convex hull of
size exactly k for m randomly drawn points, we define the con-
ditional probability distribution πL

m as follows, as we want to
consider only instances with a convex hull of size at least L:

πL
m(k) =

{
0 if k < L,

πm(k)∑m
i=L

πm(i)
if k ≥ L.

.

To evaluate the values πm(k), we used a Monte Carlo simulation:
we generated N random instances (with N = 106). Denoting by
nk the number of instances for which the size of the convex hull
was equal to k, we set πm(k) = nk

N
.

• Profile-based distribution: The idea is to fit the probability dis-
tribution of the number of candidates ranked last in the set of max-
imal Euclidean profiles on m candidates, distribution that we es-
timate here also using a Monte Carlo simulation (see Supplemen-
tary material A.2 for a precise definition and computation).

4.3 The profile Pf associated to a mapping f

The previous method generates a random representation function
f : C → R

2. We now describe how, given the points f(c1), f(c2),
. . . , f(cm), we determine the (unique) maximal Euclidean profile
Pf associated to f . As any preference area borders at least one in-
tersection point of bisectors, we examine the different intersection
points to determine the set of all preference areas induced by f . If we
assume w.l.o.g. that f is non-degenerate2, it amounts to consider all

2 In practice, we can get a degenerate representation while using random
generation. However, it is easy to detect, so we can simply reject it. As this
phenomenon almost never occurs, it has no impact on the performance of
the algorithm in practice.

triples and pairs of candidates, because four or more bisectors do not
intersect in a non-degenerate representation. For the sake of brevity,
we only detail how we proceed for triples, the idea being similar for
pairs.

For each triple of candidates ci, cj , ck, we compute the point
Iijk which is the circumcenter of the triangle {f(ci), f(cj), f(ck)}.
As f is non-degenerate (i.e., the points f(ci), f(cj) and f(ck)
are not aligned), this point exists and is unique. We define a fic-
titious voter vijk such that f(vijk) = Iijk. By circumcenter defi-
nition, vijk is indifferent between candidates ci, cj and ck because
‖f(vijk)−f(ci)‖=‖f(vijk)−f(cj)‖=‖f(vijk)−f(ck)‖. Let us
denote by d (resp. dc) this common distance (resp. ‖f(vijk)−f(c)‖).
The preference of vijk is of the form:

R1 >vijk {ci, cj , ck} >vijk R2,

where R1 (resp. R2) is a strict order on candidates c ∈ C such that
dc<d (resp. dc>d).

As said above, Iijk is the only point at equal distance from ci, cj
and ck. It is easy to see that there exists ε > 0 such that moving
vijk within the open ball Ball(Iijk, ε) will only impact the order
of ci, cj and ck in >vijk , without changing the order of the other
candidates (see Figure 2). More formally, for any strict order Rijk

on the set {i, j, k}, there is a point p ∈ Ball(Iijk, ε) such that the
preference order >vp of a voter vp positioned in p is of the form
R1 >vp Rijk >vp R2. Each point Iijk thus allows us to determine
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Figure 2: Left part: there are 6 preference areas around the intersec-
tion point Iijk. Right part: there exists a neighbourhood of Iijk not
crossed by any other perpendicular bisector.

6 preferences of the profile Pf , one per each of the 6 possible strict
orders Rijk.

As each preference area Dv can be adjacent to more than one in-
tersection point, there will be some duplicates among the found pref-
erences. The procedure is therefore completed by deleting duplicate
preferences in the resulting profile.

4.4 Testing if the profile P is a subprofile of [Pf ]

Finally, we need to check if P ⊆ [Pf ]. This operation reveals to be
very time-consuming (thus making the algorithm non-operational) if
it is not optimized. The following procedure allows us to greatly al-
leviate the computational burden. Let us denote by >v0 a preference
arbitrarily chosen in P . Assume that P is a subprofile of [Pf ]. Then
>v0 necessarily corresponds to some preference >v of Pf , up to a
permutation σ of the candidates in Pf . If ci1 >v0 ci2 >v0 . . . >v0

cim and cj1 >v cj2 >v . . . >v cjm , then the permutation is defined
by σ(cjk )= cik for k∈{1, . . . ,m}. By applying the permutation σ
to all the preferences of Pf , we have then P ⊆P σ

f , where P σ
f denotes

the profile obtained from Pf by permuting the candidates according

B. Escoffier et al. / Algorithmic Recognition of 2-Euclidean Preferences640

https://zenodo.org/record/8157233


to σ. Denoting by σv the permutation obtained for a preference v in
Pf (for the same choice of v0 in P ), testing whether P ⊆ [Pf ] thus
amounts to testing if there exists v∈Pf such that P ⊆Pσv

f .
In practice, we actually proceed symmetrically, i.e., we test if there

exists v∈P such that P σv ⊆ Pf for an arbitrarily chosen preference
v0 ∈ Pf (testing whether [P ]⊆ Pf is equivalent to testing whether
P ⊆ [Pf ]). This indeed allows us to take advantage of precomputing
all profiles of [P ], which avoids repeated computation of profile per-
mutations. We store these profiles in a lookup table where they can
be found quickly. Instead of performingO(m4) profile permutations
for each profile Pf (because there are O(m4) votes v in Pf [3]),
m! permutations of P are computed only once in the precomputa-
tion phase. For the small values of m we are working with (profiles
involving up to 9 candidates), it represents a significant saving in
computation time. Indeed, by storing the permuted profiles of P in a
lookup table, we can consider a thousand times more profiles Pf per
a fixed period of time than without this table.

5 Experimental study

The recognition algorithm has been implemented in C++ (the code is
available on 10.5281/zenodo.8157233). To analyse how it performs
in practice, several numerical tests were carried out on an Intel Xeon
X5677 (3.46 GHz base, 3.73 GHz turbo). Besides the computation
time, we paid a special attention to the recognition rate of the al-
gorithm, defined as the fraction of instances for which it was able
to conclude (yes or no) within a given timeout, fixed at one hour
in the results we present. The section is organized as follows. We
first present our results on real-world data from the PrefLib library
[28] in Section 5.1. In Section 5.2, we give the results on synthetic
data: we start by explaining how the data were generated, and then
we study the recognition rate and execution time in function of the
number of voters and candidates. While the recognition rate turned
out to be high in most cases both on the real-world and synthetic
datasets, we also noted some weak points for specific values ofm and
n, where many instances remained undecided. To evaluate whether
this was mainly due to the no-test or the yes-test, we made also some
experiments on randomly generated 2-Euclidean profiles, to study
the recognition rate on these instances. Moreover, we make a brief
comparison with the Gurobi Quadratic Constraint Optimizer, which
is outperformed by our algorithm both on the running time and the
recognition rate. Finally, in Section 5.3, we discuss several obser-
vations made from our experiments about the number of maximal
profiles over 5 and 6 candidates.

5.1 Experimental study on real-world data

PrefLib is a reference library that contains several types of preference
data. For our experiments, we focused only on the complete strict
order datasets (SOC data files). There are 7741 such files.

5.1.1 Recognition rates

About 4% of the instances were detected as Euclidean and 91.5%
as non-Euclidean, while 4.5% remained undecided after the timeout
of one hour. More detailed information about the recognition rates
on the different datasets as well as some characteristics of instances
are summarized in Supplementary material A.3. Let us look closer
to the profiles that were detected as 2-Euclidean. Actually, most of
these profiles are “trivially” Euclidean: [7] proved that any profile
containing at most 3 candidates, or at most 2 voters, or at most 3

voters and 7 candidates, is 2-Euclidean (and in our tests, we directly
answered yes on such profiles). In addition, there are few non-trivial
2-Euclidean profiles among the YES-instances: 10 among 13 (non-
trivial) profiles on 5 candidates, 3 among 18 profiles on 6 candidates,
5 among 22 profiles on 7 candidates and 1 among 27 profiles on 8
candidates were detected as 2-Euclidean.

5.1.2 Real-world data subprofiles

According to the previous paragraph, we see that many (non-trivial)
profiles on 5, 6, 7, or 8 candidates were non-Euclidean (or re-
mained undecided). A natural question is to study up to what degree
these preferences fit the 2-Euclidean structure. This has been stud-
ied for other preference structures such as one-dimensional single-
peakedness (see for instance [19]) and multi-dimensional single-
peakedness [32]. One of the most popular structural approximation
is the so-called voter deletion (VD), which focuses on the minimum
number of voters to remove from a given profile so that the remaining
subprofile fits the preference structure. Alternatively, it looks at the
maximum-size subprofile (in terms of voters) fitting the preference
structure. We adopt this approach here, and try to evaluate to what
extent the Preflib profiles are near to being 2-Euclidean.

Using a heuristic approach to find 2-Euclidean subprofiles, we
found that the average proportion of the profile that can be explained
by a 2-Euclidean representation was at least 87 % for profiles on
5 candidates (i.e., on average, given a Preflib profile P on 5 can-
didates with N voters, we found a 2-Euclidean subprofile of P of
size 0.87N ), at least 59 % on 6 candidates, at least 60 % on 7 can-
didates and at least 42 % on 8 candidates. This is much larger than
what is usually observed for 1-dimension, even for the less restrictive
single-peakedness condition: Sui et al. [32] reported that the best axis
explains only 2.87% (resp. 0.38%) of the profile for the 2002 Irish
general election in Dublin West (resp. North). In contrast, this is of
the same order of magnitude as the results the same authors obtained
for two-dimensional single-peakedness, namely 65.7% (resp. 47.3%)
for Dublin West (resp. North).

Our heuristic follows a simple greedy strategy: for every profile in
Preflib involving between 5 and 8 candidates, we have considered its
subprofile composed of the k pairwise distinct preferences with the
most occurrences (several voters may have the same preference), and
run our algorithm on it to determine if it is 2-Euclidean or not. Then,
we determined the maximum value ke for which P was detected as
2-Euclidean. Denoting byKe the number of voters whose preference
corresponds to one of these ke preferences, the ratioKe/N gives the
proportion of the profile which is 2-Euclidean, where N is the total
number of voters in the profile. The detailed results can be found in
Supplementary material A.4, Table 5.

5.2 Experimental study on synthetic data

To generate a random profile of n preferences over m candidates, we
draw n rankings uniformly at random from the m! possible rankings
(impartial culture assumption). In all the tests, the timeout was again
set at one hour (note that it was also the time bound set in [29] for
the experiments with nlsat [22]). For each couple of values (n,m),
the results are averaged over 10000 instances (preference profiles).

5.2.1 Probability distribution used for the convex-hull size

As discussed in the Section 4.2, several probability distributions have
been considered to pick up randomlym two-dimensional points rep-
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resenting the positions of candidates, namely the uniform distribu-
tion (on the size of the convex hull, imposed to be greater or equal
to the number L of candidates ranked last by at least one voter), the
vertices-based distribution and the profile-based distribution.

The profile-based distribution outperformed the two others for 5
candidates. For a larger number of candidates, as it was computa-
tionally hard to estimate this distribution with a sufficient precision,
we compared the performances of the algorithm with the uniform
distribution on the one side and the vertices-based distribution of the
other side. It turns out that, in general, the time needed to recognize
a profile (i.e., detect whether it is Euclidean or not) is shorter using
the uniform distribution. Nevertheless, this has hardly any impact
on the recognition rate for profiles with up to 6 candidates because
the recognition time remains below the timeout set to one hour. The
difference in the recognition rates obtained for the two distributions
grows for profiles with more candidates, as the recognition time then
approaches the timeout.

5.2.2 Phase transition

We now give the recognition rates (proportion of positive, negative
and undecided instances) for profiles with 5, 6, 7 and 8 candidates,
depending on the number of voters. The results are given in Figure 3.
We observe a phase transition: below some threshold (that depends
on m) almost all the inputs are Euclidean, whereas above some other
threshold almost all the inputs are not, and there is a transition phase
in between. We note that the phase transition is done very quickly: it
occurs between 5 and 7 voters with 6 candidates, between 5 and 6-7
voters with 7 candidates and between 4 and 6 voters for profiles with
8 candidates.

Concerning the recognition rates, quite unsurprisingly, we observe
that the largest proportions of undecided instances occur in the phase
transition. Figure 3 gives the curves of the recognition rate in func-
tion of the number of voters, for profiles involving 6 to 8 candidates.
Clearly, the proportion of undecided instances in the phase transition
increases with the number of candidates (see the peaks of the curves
of the proportions of undecided instances in the four plots).

5.2.3 Running times

First note that testing the NO-certificate is performed very quickly
(typically less than 1 second for instances with up to 8 candidates
and 10 voters). Thus, for the couples (m, n) that are beyond the phase
transition in Figure 3, as almost all the instances are recognized as
non-Euclidean, the median (i.e., 50th percentile) running time of the
algorithm is very small (typically less than 1s).

In any case, the NO-certificate part of the algorithm does not sig-
nificantly impact the global running time. Thus, we found more inter-
esting to focus on the (median) running time of the YES-part of the
algorithm. To do this, we measure the running time of the algorithm
on the yes-instances (i.e., recognized as Euclidean). The results are
given in Table 1. We note that the running time is very far from the
timeout of 3600 seconds. The dash mark means that we could not get
meaningful information: indeed, they correspond to cases where the
proportion of Euclidean profiles is very small (after the phase transi-
tion), and we could not produce enough Euclidean instances to get a
relevant value of the median (note that, as said before, in these cases
the NO-certificates allows anyway to reach a very small median run-
ning time for the algorithm).

0

m
n 4 5 6 7 8 9 10

5 0 0 0.003 0.015 0.082 0.68 0.81
6 0 0.2 0.3 24 85 392 443
7 3.543 8.6 19.9 193.3 - - -
8 6.2 31.275 - - - - -

Table 1: The median running time [s] for random instances where the
answer is YES.

5.2.4 Performances on Euclidean input profiles

The problem of the random generation of input profiles with the im-
partial culture assumption is that we do not know if the generated
profile is Euclidean or not. Hence, we cannot distinguish the non-
Euclidean profiles not detected by the NO-certificate from the Eu-
clidean profiles not recognized by the algorithm. In consequence, we
do not know if we should focus more on improving the YES-part of
the algorithm (finding a representation) or on finding out a more effi-
cient NO-certificate to reduce the proportion of undecided instances.
For this reason, we did another set of tests, with only Euclidean pro-
files as input, to have some ideas on the performance of the YES-part
of the algorithm.

Regarding the recognition rate, all Euclidean profiles of at most
25 voters over 5 candidates have been recognized within the fixed
timeout (one hour). For 6 candidates, all the instances with at most 8
voters were also recognized, and then the recognition rate decreased
very slowly with the number of voters for instances involving be-
tween 9 and 25 voters, while remaining greater than 97%. The recog-
nition rates for profiles with 7, 8 and 9 candidates are given in Table 2
(upper table). For 9 candidates, the recognition rate decreases from 7
voters, due to the fact that we often reach the timeout. Globally, we
note that the recognition rates are pretty good (including the “grey
areas” in the phase transitions), which makes us believe that the al-
gorithm performs quite well for recognizing Euclidean profiles with
up to 9 candidates, and that one should focus more on improving the
NO-certificates to reduce the proportion of undecided profiles.

The medians of running times are summarized in Table 2 (lower
table). The table stops at 10 voters, but we could go further. Indeed,
for 5 candidates, whatever the number of voters, the median time did
not exceed 10 seconds. For 6 candidates, the profiles with up to 25
voters could be recognized in the median time of 60 seconds, and for
7 candidates, the profiles with up to 16 candidates were recognized
in the median time of 300 seconds. Comparing the recognition times
of Table 1 to those of Table 2 (lower table), we note that the second
ones are better. This is not surprising as the profiles are not generated
the same way. The way they are generated here, with random points
in the plane, is closer to the way the algorithm recognizes them.

5.2.5 Comparison with the Gurobi QCP optimizer

We have implemented a Gurobi Quadratic Constraint Program to rec-
ognize Euclidean profiles3 (see Supplementary material A.5).

At first, we have performed a set of experiments with random pro-
files as input. However, no profile was detected as non-Euclidean
within the timeout of one hour by the solver (the solver was only
able to identify some Euclidean instances). So the solver is not able
to identify non-Euclidean instances, in contrast with our algorithm.

Then, we evaluated the efficiency of the solver on Euclidean in-
stances. The results are summarised in the Table 3. We give here only

3 To the best of our knowledge, there is no algorithm available in the literature
that would guarantee to return an exact solution if it exists.
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Figure 3: Recognition rates for random profiles with (from left to right) 6, 7 and 8, w.r.t. the number of voters.

m
n 4 5 6 7 8 9 10

7 1 1 1 1 0.99 0.99 0.97
8 1 1 0.98 0.95 0.89 0.81
9 1 0.96 0.81 0.63 0.21

m
n 4 5 6 7 8 9 10

5 0 0 0 0 0.0006 0.0006 0.001
6 0 0.004 0.01 0.03 0.05 0.09 0.13
7 0.04 0.26 0.94 2.76 7 16.75 29.6
8 3.5 7.5 38.1 108 415 1417
9 43.3 254 592 691 1824

Table 2: The recognition rate (upper table) and median running time
[s] (lower table) for Euclidean input profiles.

the results on profiles involving 5 to 7 voters and 5 or 6 candidates: in
fact, the solver recognized almost no profile within the timeout of 1
hour with more voters or candidates. We observe that our algorithm
significantly outperforms the QCP-model4.

Our algorithm Gurobi QCPsolver
5 candidates

voters RR median [s] RR median [s]
5 1 0 0.53 14
6 1 0 0.49 66
7 1 0 0.34 118

6 candidates
voters RR median [s] RR median [s]

5 1 0.004 0.22 186
6 1 0.01 0.2 234
7 1 0.03 0.06 926

Table 3: Recognition rates (RR) and median running times of our
algorithm and the Gurobi QCP model, for Euclidean input profiles.

5.3 Maximal Euclidean profiles for 5 and 6 candidates

As explained before, it is known that there are 3 maximal Euclidean
profiles on 4 candidates (up to a permutation of candidates). This
gives a simple characterization of Euclidean profiles on 4 candidates.
As far as we know, nothing is known on the number of maximal Eu-
clidean profiles with more than 4 candidates. For m=5 or 6, we use
our algorithm to build a set of maximal Euclidean profiles, thus pro-
viding a lower bound on this number. We simply repeat the following
procedure: we first generate m random points in the plane (using the

4 Note that regarding PrefLib profiles, the QCP-model basically does not
provide any answer, because most of the instances are non-Euclidean or
too large to be solved within 1 hour (i.e., with at least 6 candidates or 6
votes).

uniform distribution on the convex hull size). If the positions are non-
degenerated, we build the (maximal) Euclidean profile associated to
these positions. We add this profile to our set, after having tested that
it is not already contained in it (up to a permutation of candidates).

We could find 543 maximal profiles on 5 candidates5, and about
230 000 maximal profiles on 6 candidates! These lower bounds al-
ready indicate that the number of maximal profiles seem to grow
incredibly fast with the number of candidates.

For 5 candidates, we conjecture that 543 is the exact number, as
all these 543 profiles were found within 3 hours and the timeout was
set up to one week (see Figure 4 in Supplementary material A.6 giv-
ing the convergence speed). Note that if the conjecture is true, then
we would get a characterization of the Euclidean profiles on 5 candi-
dates. This would in turn give a potentially powerful NO-certificate
using subprofiles on 5 candidates. As another point, our experiments
indicate that, not surprisingly, some profiles appear much more fre-
quently than others: while 519 solutions were discovered in 93 792
iterations, 710 192 iterations were needed to get 536 solutions, and
we made 7 129 863 iterations to get all 543 solutions. We recall that if
the distribution over k solutions were uniform, the expected number
of iterations to obtain all solutions would be k(log k).

For 6 candidates, we even think that the lower bound of 230 000
is actually very far from the correct number. Indeed, we found these
profiles in about 250 000 iterations only, clearly without reaching
convergence (we stopped here as with such a high number of profiles
the test of uniqueness becomes time-consuming).

6 Conclusion

In this work, we provided an algorithm for recognizing 2-
dimensional Euclidean profiles, and evaluated its performance on
both real-world and synthetic datasets. A first question that arises
from our work concerns the phase transition we observed in the ex-
periments. It would be very interesting to find some mathematical
arguments proving bounds on this phenomenon. This would allow to
see how this transition evolves with the number of candidates.

A second question concerns the characterization of Euclidean pro-
files on 5 candidates. We were able to generate a set of 543 maximal
Euclidean profiles, but we do not know if this list is exhaustive or not.
Finding such a characterization would improve the NO-test of the al-
gorithm (hence in particular the recognition rate), which seems to be,
from our experiments, the key point to address. More generally, we
can think of adding forbidden structures in the NO-certificates.

Finally, it would be of course a natural extension of our work to
provide an algorithm able to recognize d-Euclidean preferences for
d=3 or bigger.
5 The list of these profiles is available on 10.5281/zenodo.8157233.
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