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Abstract. Self-supervised graph representation learning (SSGRL) is a
representation learning paradigm used to reduce or avoid manual labeling.
An essential part of SSGRL is graph data augmentation. Existing methods
usually rely on heuristics commonly identified through trial and error
and are effective only within some application domains. Also, it is not
clear why one heuristic is better than another. Moreover, recent studies
have argued against some techniques (e.g., dropout: that can change the
properties of molecular graphs or destroy relevant signals for graph-based
document classification tasks).

In this study, we propose a novel data-driven SSGRL approach that au-
tomatically learns a suitable graph augmentation from the signal encoded
in the graph (i.e., the nodes’ predictive feature and topological informa-
tion). We propose two complementary approaches that produce learnable
feature and topological augmentations. The former learns multi-view aug-
mentation of node features, and the latter learns a high-order view of the
topology. Moreover, the augmentations are jointly learned with the repre-
sentation. Our approach is general that it can be applied to homogeneous
and heterogeneous graphs. We perform extensive experiments on node
classification (using nine homogeneous and heterogeneous datasets) and
graph property prediction (using another eight datasets). The results show
that the proposed method matches or outperforms the SOTA SSGRL base-
lines and performs similarly to semi-supervised methods. The anonymised
source code is available at https://github.com/AhmedESamy/dsgrl/

1 Introduction

Self-supervised graph representation learning (SSGRL) has been suc-
cessfully used for graph representation learning (GRL) [12,17,26,29,37]
in various domains where labeled data is scarce and manual label is
expensive. It has recently attracted interest across domains by achieving a
competitive performance when compared to semi-supervised approaches.
Considering the scarcity of labeled data, SSGRL has emerged as a
new paradigm that narrows down the performance gap between the
unsupervised and semi-supervised learning methods.

Self-supervised learning (SSL) is commonly formulated as a predictive
or contrastive learning [46]. For predictive models [7], one first defines
a related task on which an SSL model is pre-trained to extract meaningful
patterns. The pre-trained model is subsequently refined (fine-tuned)
on a relevant but specific task of interest. Typically, an SSL model is
pre-trained over large data as a starting point. The quintessential models,
particularly from NLP, are the ones that are pre-trained on masked word
prediction tasks and are fine-tuned on other relevant tasks, such as text
classification or translation.

On the other hand, contrastive models learn based on augmented
views of a data point (e.g., image, graph) that are generated by applying
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a meaningful perturbation on the original data point. The representation
of a data point is then learned by maximizing the mutual information
between latent representations obtained from its augmented views. The
main challenge here is to produce augmented views of the data points.

The key to learning high-quality representations based on augmenta-
tion is that the perturbations should preserve semantics [1,6,38,49]. For
instance, a perturbation applied to an image of a dog should preserve

“dogness". Effective augmentation techniques for images (e.g., rotation, flip-
ping, resizing) allow learning high-quality visual representations because
they preserve the semantics of the original image. This is also true for SSL
techniques in NLP [7,21,23], (e.g. synonym augmentation and word mask-
ing), such techniques do not alter the meaning of the original sentence.

Due to the complex nature of graph data, it is much more challenging
to find appropriate techniques for augmenting graphs. While some
techniques are proposed, there is no standard technique that works well
for graphs in different domains [14,18,35,38–40,48,53]. Consequently,
most efforts rely on finding a heuristic by trial and error to identify a
suitable augmentation for the graph at hand.

Generally, there are two classes of perturbations, which either corrupt
the topology of the graph or node features. The topology can be corrupted
by dropping nodes and edges or adding new edges either randomly
or through a diffusion process [14, 35, 40, 53]. Similarly, dropout,
masking, and permutation techniques have been used for corrupting node
features [18,35]. Nonetheless, it is unclear why a particular augmentation
technique works better. A study [39] has shown that these strategies are
susceptible to destroying task-relevant information. Furthermore, in some
cases, e.g., for molecular graphs, dropout techniques alter the semantics
of the graph [46]. The effectiveness of such techniques usually comes
not from the graph augmentations but from the strong inductive bias of
the underlying learning algorithm, particularly Graph Neural Networks
(GNNs) [39].

In this paper, we follow a data-driven approach, where the augmen-
tation process is guided by the inherent signal encoded in the graph.
Such an approach establishes obvious benefits, first as one can avoid trial
and error in identifying a suitable augmentation mechanism. Second, it
provides a flexible framework that can be adapted to different domains.

Thus, we propose a novel Data-driven Self-supervised Graph
Representation Learning (DSGRL) method. DSGRL is data-driven because
it jointly learns the augmentation with the representation. Similar to
existing methods, we aim to augment either the topology or node features;
however, unlike them DSGRL learns both augmentations from the data.
DSGRLis a general approach that can be applied to both homogeneous and
heterogeneous graphs (i.e., graphs containing multiple node/edge types).

Generally, for a given graph G, and a family of augmentation heuristics
A, existing methods apply either a topological, At∼A, or feature, Af ∼
A, augmentation sampled from A. However, DSGRL does not rely on A,
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Figure 1. The Architecture of DSGRL . The left figure (a) is based on learnable feature augmentation, where we only augment node features, X. Two learnable
augmenters fΘ1(X) and fΘ2(X) are applied on X to obtain the learned augmentations X1 and X2, respectively. The middle figure (b) is used for learning topological
augmentation. Two augmentations, an identical, tΦ(A), and learned ones, tΦ′(A), are respectively applied on the adjacency matrix to obtain A and a high-order network

A′. The right figure (c) is used for combining learnable feature and topological augmentations. The augmentation results in two views G1=(A1,X1) and
G2=(A2,X2) from the augmentation space, where A1,X1,A2,X2 are set to different values as shown in the above figures based on the augmentation type. Finally, a
shared GNN encoder hΘ is applied on the views, hΘ(A1,X1) and hΘ(A2,X2), respectively, to obtain the latent representations Z1 and Z2. The data modality (A or

X) that is not affected by an augmenter is blurred.

instead it learns AtΦ and AfΘ ; where Φ and Θ are the learnable parame-
ters of the topological and feature augmenters, respectively. We materialize
tΦ using a GNN to obtain high-order node features; based on similarity
scores between these features, we compute a high-order weighted network
as a topological augmentation. The feature augmentation, fΘ, is simply a
feed-forward neural network (FFN). Note that, AfΘ in Fig. 1(a) and AtΦ

in Fig. 1(b) are technically complementary and not competitive. One can
combine both augmentations at the same time as shown in Fig. 1(c). Next,
given two augmented views G1 and G2 of a graph G, the latent represen-
tation Z=AGG(Z1,Z2) of the graph is obtained by applying a shared
GNN – hθ, Z1 = hθ(G1) and Z2 = hθ(G2). G1 and G2 are learned
using either topological or feature augmentation or a combination thereof.

Contrastive models require a negative (contrastive) term to pre-
vent collapse, and negative sampling is the most common strategy for
this [4,14,15,33–35,40,43,47,52,53]. However, it has two limitations; first,
it requires a large batch size, and second, sampling truly negative terms
is difficult. Alternatives that do not require explicit negative sampling
have been proposed to overcome such limitations [6,18,38]. Nevertheless,
the alternatives are usually based on engineering tricks. In this study, we
closely follow a recent method that uses a principled approach based on
variance, invariance and covariance to prevent collapse [1].

We perform extensive experiments using nine node classification
datasets, including homogeneous and heterogeneous datasets, and another
eight graph property predictions. We compare our method against seven
popular SOTA SSGRL methods. The results show that DSGRL matches
or improves the SSGRL baselines, and it is comparable with the

semi-supervised methods.

2 The Proposed Method

2.1 Preliminary

We consider a graph G=(A,X) with a set of N nodes V and M edges
E. A∈{0,1}N×N denotes the adjacency matrix of G and X∈RN×F is
a feature matrix, where F is the number of features. For a given row index
i, A[i]=ai and X[i]=xi represent the topological structure and feature
signals of node i. For any index i, A[:,i] = a:i and X[:,i] =x:i refers
to the indexing of the ith column of the adjacency and feature matrices,
respectively. Finally, zij corresponds to the ijth entry of any matrix Z.

We consider a message passing GNN, hΘ, is given, and

hΘ(G)=hΘ(A,X)=σ(...σ(A′X(l)W(l))...)

where, W(l)∈Θ is the weight matrix of the lth layer, σ is an activation
function, e.g., ReLU, and A′ is a transformed adjacency matrix.
Depending on the type of GNN, one can apply different transformations
on A, e.g., the symmetric normalization used in [19].

2.2 The Case for DSGRL

Several techniques for self-supervised graph representation learning (SS-
GRL) rely on perturbations by randomly dropping nodes, edges, or sub-
graphs. This perturbation is acceptable for social graphs. However, they
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are susceptible to losing semantics. For instance, dropping a node (an
atom) or an edge (a bond) from a particular molecule could alter the essen-
tial properties of the molecule [46]. Furthermore, a recent study [39] shows
that even for other tasks, e.g., document representation learning based on
graphs, dropout techniques could destroy task-relevant information.

We propose graph data augmentation techniques that are inspired by
recent studies that advocate for learning augmentation governed by the
graph signal or context.

2.3 Learnable Augmentation

The key hypothesis behind learning augmentations is that because it is
a data-driven approach, it enables us to effectively capture augmentation
signals without the human intervention needed for heuristics based on
trial and error. Therefore, we propose two alternative approaches, which
are learnable feature and topology augmentation.

2.3.1 Learnable Feature Augmentation

This technique allows us to learn node feature augmentations. Given a
graph G=(A,X), we apply a learnable feature augmentation AfΘ on
G as:

AfΘ(G)=(A,fΘ(X))

and we model f as a feed-forward neural network (FFN). Two separate
learnable functions fΘ1 and fΘ2 , parameterized by Θ1 and Θ2 compute
two augmented views of X as:

X1=fΘ1(X)∈RB×D1

X2=fΘ2(X)∈RB×D1

where

Θ1={W(l)
1 :l=1,...,L},Θ2={W(l)

2 :l=1,...,L}

are set of weights, and W
(l)
1 or W(l)

2 are the weight matrices of the l–th
layer of the FFNs, B is batch-size, D1 is the augmentation dimension,
and L is the number of layers of the FFNs. Figure 1 (a) shows DSGRL’s
architecture based on learnable feature augmentation.

2.3.2 Learnable Topology Augmentation

Studies have shown that using diffusion-based high-order networks
improves the performance of GNNs [20]. Consequently, high-order
networks have been used for augmentation in SSGRL. This study
proposes a complementary approach that learns the K–order relation
between nodes. That is, we apply At′Φ on G as:

At′Φ(G)=(t′Φ(A),X)

to obtain a high-order network

A′=t′Φ(A)

First, we learn a latent representation, H∈RB×D1 , which encodes
high-order (K–hop) signal. To this end, we employ a GNN, as GNNs
enable us to receive a signal from K–hop neighbors similar to static
diffusion algorithms, such as personalized PageRank and heat kernel.
Hence, for each node i, a GNN hΦ, parameterized by Φ is used to learn
high-order feature vector H[i]=hi and H is computed as:

H=hΦ(A,X)

where Φ={W(l) :l=1,...,K}, W(l) is the weight matrix of the l-th
layer of the GNN, and K is the number of layers.

We obtain two topological views, which are A′ = tΦ′(A) and
A= tΦ(A), where tΦ is simply an identity augmentor. The high-order
network A′ is constructed based on the high-order features as

A′=t′Φ(A)=g(H,H)

The entry a′
ij is computed as

a′
ij=

{
g(hi,hj), if g(hi,hj)>Ek∈V [g(hi,hk)]

0, otherwise

and g is defined as
g(hi,hj)=hT

i ·hj

DSGRL’s architecture based on this augmentation technique is depicted
in Fig. 1(b).

2.4 Encoding

After generating two views of the graph, either using the feature or
topology augmentor, we feed each view independently to a shared GNN
encoder, hΘ, to learn a latent graph representation. For brevity, regardless
of the augmentor, we refer to the views in the augmentation space as
G1=(A1,X1) and G2=(A′,X2). The next task is to learn two latent
representations Z1∈RB×D and Z2∈RB×D that encode the two views,
where D is the number of latent dimensions. We achieve this by using
a shared GNN, hΘ, as:

Z1=hΘ(A,X1)

Z2=hΘ(A
′,X2)

For full-batch training, the batch axis becomes N instead of B.
Henceforth though, we assume a mini-batch training.

2.5 Training

Generally, in SSGRL, we want the latent representations Z1 and Z2 of
nodes to be invariant to the perturbations. For this reason, we want to
maximize the agreement (similarity) between Z1 and Z2. Minimizing the
L-2 distance is commonly used for this purpose; thus, we use the same
strategy. We closely follow a similar formulation as [1] and define a term
called invariance based on the L-2 distance as:

inv= ||Z1−Z2||F (1)

Nonetheless, this has a trivial solution that collapses the representations.
Several strategies, mostly engineering tricks, have been used to prevent
this collapse [11,18,38]. Instead, we use a principled approach inspired
by a recent method [1] proposed for visual representation. That is, we add
two regularization terms called variance and covariance regularizations.

The variance regularization is defined as

v(Z)=
1

D

D∑
j=1

max(0,1−
√

V ar(z:j)+ε) (2)

and it constrains each dimension of the latent representation to have a vari-
ance of 1; as a result prevents data points from collapsing into a subspace.

The covariance term is defined as

c(Z)=
1

D

∑
i�=j

[ Z̄T Z̄

B−1

]2
i,j

(3)
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and it is the sum of the squared-off diagonal elements of the covariance
matrix Z̄T Z̄, where Z̄ is the mean centered representation. The covari-
ance term is normalized and scaled with respect to B and D, respectively.
As a result of constraining the off-diagonal elements of the covariance
matrix to be zero, this regularization ensures that each dimension is
independent of each other, consequently preventing the dimensions from
collapsing. Finally, we define the regularization on the latent space as:

RZ1,Z2 =β∗(v(Z1)+v(Z2))+γ∗(c(Z1)+c(Z2)) (4)

Furthermore, the augmentation models can collapse, that is, fΘ1 =fΘ2 ;
albeit, empirically, this has not been observed. Since the regularizations
mentioned above on the latent space only ensure that neither Z1 nor Z2

collapse along the batch or the dimension axes. Thus, to prevent model
collapse, we define a model regularization term as:

RΘ1,Θ2 =
∑
Wl

||WlW
T
l −I||F (5)

where Wl=
[W(l)

1

W
(l)
2

]
is a vertical stacking of W(l)

1 ∈Θ1 and W
(l)
2 ∈Θ2;

recall that W(l)
1 and W

(l)
2 are weights of the lth layer of a FFN. For any

two row indices i and j of Wl, where i �=j, the model regularization
encourages each row vector Wl[i] to be orthogonal to any other vector
Wl[j]. Consequently, �i :W(l)

1 [i]=W
(l)
2 [i]⇒W

(l)
1 �=W

(l)
2 .

The overall training cost function is then defined as:

LΨ=α∗inv+RZ1,Z2+λ∗RΘ1,Θ2 (6)

where Ψ is the set of all model parameters, that is, Ψ={Θ,Θ1,Θ2}
for the model based on feature augmentation and Ψ={Θ,Φ} for the
model based on topology augmentation. The coefficients α,β,γ, and λ
control the contribution of the different cost function terms. In most cases,
we have observed that setting these values to just one works well.

If one desires to reduce the number of hyper-parameters, we provide
an alternative formulation for Eq. 4. By following the same formulation
as Eq. 5, an alternative formulation that is inspired by Laplacian
Eigenmaps [2] is defined:

RZ1,Z2 =γ∗(||Z̃1Z̃
T
1 −I||F+||Z̃2Z̃

T
2 −I||F ) (7)

where I∈RB×B is an identity matrix and each row vector z̃i of Z̃ is
a unit vector. We refer to Eq. 7 as an orthogonality regularization, and
empirically it performs similarly to Eq. 4. The main disadvantage of
Eq. 7 is that it could be expensive for full-batch GNNs, where B=N .

Note that DSGRL is jointly optimized on both the augmenter and
encoder parameters. As a result, the learned augmentations are governed
by the inherent signal in the data.

3 Empirical Evaluation

We validate the proposed method on node classification (NC) and graph
property prediction (GPP) tasks. In the former case, the prediction is at
a node level, and for the latter, it is at a graph level. Additional thorough
analysis of the experiments and the running times of the methods and
are included in the appendix. 1

3.1 Datasets

The datasets are 8 for NC and 8 for GPP, and a summary is provided in
Tables 1 and 2.
1 https://github.com/AhmedESamy/dsgrl/blob/main/Appendix.pdf

3.1.1 NC Datasets

• Citation Networks (PubMed): Paper-to-paper citation networks, and
we classify papers into different subjects [13].

• Co-Author Networks (MAG-CS): Author collaboration network from
Microsoft Academic Graph, and the task is to predict the active field
of authors [31].

• Co-Purchased Products Network (AmazonPhoto): Co-purchased
products from Amazon Photo Category, and the task is to predict the
refined categories [31].

• Wikipedia (WikiCS): Wikipedia hyperlinks between Computer
Science articles, and we classify articles into branches of CS [31].

• Social (Facebook, GitHub, Reddit, and Yelp): Facebook contains a
page-to-page graph of verified Facebook sites, and we want to classify
pages into their categories [28]. GitHub contains the social network
of developers, and we want to classify developers as web or machine
learning developers [28]. Yelp is also the social network of Yelp users,
and we predict the business categories each user has reviewed. For
Reddit, we predict the subreddits (communities) of user posts [13,50].

3.1.2 GPP Datasets

• Chemical Datasets (DD, NCI1, PROTEINS, ENZYMES) [24] that
represent protein interaction or molecular graphs. The task is to predict
different properties of molecules or macromolecules.

• Social Datasets (IMDB-BINARY, IMDB-MULTI, REDDIT-BINARY,
COLLAB) [24] that represent the collaboration between users in differ-
ent ego-networks. The task is to predict the class of the ego-networks.

3.2 Baselines

We compare our method against strong self-supervised baselines. As a
result of a plethora of related methods, baselines are selected either based
on their popularity or if they are current SOTA methods that outperform
existing methods. Hence, for the NC task, we select DGI [40], a method
that uses corruption based on permutation of node features and topology,
MVGRL [14], which augments the topology using high-order networks
obtained through a diffusion process, and GCA [53] is a method based on
adaptive edge removal and feature masking augmentations. All of these
use a contrastive architecture using mutual information maximization
with negative sampling. Furthermore, we include a contrastive architecture
based on asymmetry called BGRL [11] for completeness. Although it was
initially proposed for visual representations, recent studies [18,38] have ex-
tended it for GRL. We use the best augmentations reported in these papers.

As there are several studies for the GPP task, we select strong
representative baselines, which are GRAPHCL [47, 48], ADGCL [35],
and INFOGRAPH [33]. For example, SimGrace [45] is shown to
give sub-optimal performance compared to GraphCL [47] as reported
in [22, 36], therefore, we only include the results for GraphCL in
our experiments. GRAPHCL learns augmentations from a set of
augmentations whereas ADGCL learns to drop edges using adversarial
training. INFOGRAPH learns by maximizing the mutual information
between graph and patch (subgraphs, node, edges) level representations.

Furthermore, we include untrained variants of DSGRL as suggested
in [39]. We refer to them as Random-F and Random-T to denote the
feature and topology augmentation-based architectures, respectively.

All the above baselines are self-supervised and unsupervised methods.
We also include semi-supervised methods; however, they are included
just for reference and not comparison.
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Table 1. Summary of the datasets used for node classification experiment. BCC, MCC, and MLC refer to the classification task, which is binary, multi-class, and
multilabel classification, respectively

Dataset MAG-CS AmazonPhoto PubMed GitHub WikiCS Dezer Yelp Reddit
N 18,333 7,650 19,717 37,700 11,701 28,281 716,847 232,965
M 163,788 238,162 88,648 578,006 297,110 185,504 13,954,819 114,615,892
F 6,805 745 500 128 300 128 300 602
#classes 15 (MCC) 8 (MCC) 3 (MCC) 2 (BCC) 15 (MCC) 2 (BCC) 100 (MLC) 41 (MCC)

Table 2. Summary of the dataset used for graph property prediction task, #G is
the number of graphs and Ñ and M̃ are the average number of nodes and edges in

each graph, respectively.

Datasets #G Ñ M̃ F #classes
DD 1178 284.32 715.66 89 2
ENZYMES 600 32.63 62.14 21 6
PROTEINS 1113 39.06 72.82 4 2
NCI1 4110 29.87 32.3 1 2
IMDB-B 1000 19.77 96.53 5 2
IMDB-M 1500 13 65.94 5 3
REDDIT 2000 429.63 497.75 5 2
COLLAB 5000 74.49 2457.78 5 3

3.3 Node Classification on Homogeneous Graphs

Following the recommended evaluation protocol for node classifica-
tion [31], we create ten splits for each dataset where there is no public
split. We use the linear evaluation protocol to quantify the quality of the
representations obtained from the SSGRL methods, where we first train
each SSGRL method on each split with no labels. Then, for each split, we
set 5% and 15% as training and validation splits used for model selection
and 80% for testing using a Linear (Logistic) classifier. Model selection
is carried out using only 1 of the ten splits, and for a fair comparison,
it is done for all the baselines. We tune all the hyper-parameters using
Bayesian optimization 2. In addition, for the baselines, the size of the
representation dimension, D, is 128; for our model, it is 64, since we
concatenate Z1 and Z2. The reported results for the small datasets are
the accuracy on the test set averaged over the ten splits. For two large
datasets, Yelp and Reddit, we only report the ROC-AUC and accuracy
using the publicly available single set of train, validation, and test sets.
The configuration of the hyper-parameters of DSGRL and additional
details for this experiment are presented in the appendix.

The results are reported in Table 3. DSGRL based on feature and
topology augmentations is better than the baselines in almost all datasets.
In addition, it is also comparable with the semi-supervised methods.
To highlight the scalability of DSGRL, we evaluate it on large-scale
datasets and report the results in Table 4. The self-supervised baselines
throw an out-of-GPU memory error for the large datasets. So we include
semi-supervised methods for reference, and not comparison.

3.4 Node Classification on Heterogeneous Graphs

Although DSGRL is primarily optimized for homogeneous graphs, it can
easily be applied to heterogeneous graphs.

Recent studies [16, 22, 25, 27, 41, 44, 51] have generalized graph
contrastive learning (GCL) to heterogeneous graphs. In these approaches,
composite sequences of edge types (i.e., meta-paths) are hand-crafted
for an underlying graph to express different possible semantics. For
example, a meta-path "author-paper-author" refers to collaboration
in a citation graph. Next, meta-path-based graph augmentations are
designed for GCL. In doing so, the qualities of the learned representations

2 Bayesian optimization using OPTUNA: https://optuna.org/

and augmentation rely heavily on the chosen meta-paths that are
typically domain-specific. DSGRL differs from this line of research, as
no pre-defined data augmentation or domain knowledge are assumed.

As a demonstration, we choose a popular dataset commonly
used to benchmark methods for heterogeneous GRL. This dataset,
IMDB [10], has three node types, which are movie, director,
and actor, and there are two undirected edge types, which are
movie-to-director and movie-to-actor. There are 11,616
(4,278–movie, 2081–director, 5,257–actor) nodes and 17,106
(4, 278–movie-to-director and 12,828–movie-to-actor)
edges. The task is to classify the movie nodes as one of the three classes
(Action, Comedy, and Drama).

The only modification we need is, instead of a single parameter Θ,
we use Θ={θR}, where θR denote the model parameter specific to an
edge type R. We use the same experimental setting and splits provided
in [10]. That is, the movie nodes are split into training (400–9.35%),
validation(400–9.35%), and testing (3,478–81.30%) nodes. For the linear
evaluation, we only use the test set just as in [10] with different training
rates, which are 20%, 40%, 60%, and 80%. For example, when using
20% for training, we will use 20% of the test set for training the linear
classifier and the remainder (80%) for evaluating and reporting the perfor-
mance of the learned representations. In Table 5, we report the F1-Score
of our model and previous methods. We take the figures for the baselines
from [10], and we see that DSGRL achieves better performance than un-
supervised methods and is sometimes comparable to the semi-supervised
ones. Although the paper’s primary focus is not on heterogeneous graphs,
this experiment highlights the potential of successfully applying a similar
approach to this kind of graph. In future work, we shall address this with
more experiments, including more baselines and datasets, and introduce
a self-supervised learning technique that generalizes not only to homoge-
neous but also heterogeneous graphs, including knowledge graphs.

3.5 Graph Property Prediction

In this experiment, we closely follow the experimental protocol suggested
for a fair comparison of GNNs in GPP [9]. Since they provide public
splits 3, we use their split in our experiment. For each dataset, they
provide ten splits, and each split contains a model selection and test splits.
The model selection has training and validation splits. Similar to the NC
experiment, we use the linear evaluation protocol and a similar model
selection procedure. As the number of features for the datasets in this
experiment is usually tiny, we also tune D for the baselines between
32 and 128 and for our method between 32 and 64. Since the social
dataset does not have features, we use the degree profile as features. The
configuration of the hyper-parameters of DSGRL and additional details
for this experiment are also in the appendix.

The results are reported in Table 6, and we use the published results
for semi-supervised methods. As shown in the table, DSGRL with feature
augmentation is better than the baselines in almost all cases. Although the
topology augmentation is comparable with the feature one for the social

3 https://github.com/diningphil/gnn-comparison/tree/master/data_splits
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Table 3. Results of the NC experiment for the small datasets. OOR corresponds to out-of-resource (GPU Memory) Random-F and Random-T are untrained variants of
DSGRL based on feature and toplogy augmentions, respectively.

Methods
Datasets

MAG-CS AmazonPhoto PubMed GitHub WikiCS Deezer

Ours

Random-F 80.2±0.1 82.33±0.1 75.5±0.1 82.5±0.1 63.4±0.3 55.4±0.2
Random-T 69.8±0.1 80.6±0.3 71.4±0.1 78.8±0.1 63.6±0.5 56.0±0.2
Feature 91.4±0.1 90.6±0.1 82.4±0.2 84.9±0.5 74.2±0.1 58.2±0.1
Topology 92.9±0.1 89.7±0.1 83.8±0.1 83.0±0.3 73.6±0.1 59.3±0.1

Self-Supervised
(Baselines)

DGI 91.1±0.2 89.0±0.6 78.6±0.5 79.1±0.7 73.6±0.4 55.2±0.6
MVGRL 88.2±0.1 87.2±0.1 77.0±0.3 79.8±0.1 61.7±0.1 OOR

GCA 91.0±0.4 86.0±1.1 83.8±0.2 OOR 72.9±0.6 OOR

BGRL 90.7±0.3 90.3±0.5 82.4±0.4 81.3±0.4 73.8±0.7 58.2±0.7

Semi-Supervised
(References)

GCN 91.7±0.3 92.0±0.4 85.4±0.4 84.1±0.3 76.7±0.6 59.7±0.6
GAT 91.3±0.1 92.3±0.5 84.7±0.1 85.5±0.3 77.3±0.5 59.5±0.6
GRAPHSAGE 91.6±0.3 92.4±0.4 84.5±0.4 84.6±0.4 77.4±0.6 61.9±0.6

Table 4. Results of the NC experiment for two of the large-scale datasets. We only include semi-supervised and scalable GNN architectures for this experiment as the
full-batch ones do not fit in GPU memory. In addition, all the SSGRL baselines throw an out-of-memory error.

Methods
Datasets

Yelp (ROC-AUC) Reddit (Accuracy)
CLUSTERGCN (semi) 78.2 95.3
GRAPHSAINT (semi) 75.6 95.7
PPRGO (semi) 77.7 91.8
DSGRL (Random-F) 72.6 82.3
DSGRL (Feature) 75.2 89.3

Table 5. Results of the NC experiment for heterogeneous graph.

Metrics Train %
Unsupervised/Self-supervised (Baselines) Ours Semi-Supervised (References)

NODE2VEC [12] ESIM [30] METAPATH2VEC [8] HEREC [32] Random-F DSGRL GAT HAN [42] MAGNN [10]

Macro-F1

20 49.00 48.37 46.05 45.61 41.58 53.14 53.64 56.19 59.35
40 50.63 50.09 47.57 46.80 44.84 54.90 55.50 56.15 60.27
60 51.65 51.45 48.17 46.84 44.12 56.25 56.46 57.29 60.66
80 51.49 51.37 49.99 47.73 45.20 60.28 57.43 58.51 61.44

Micro-F1

20 49.94 49.32 47.22 46.23 42.44 53.35 53.64 56.32 59.60
40 51.77 51.21 48.17 47.89 45.57 54.89 55.56 57.32 60.50
60 52.79 52.53 49.17 48.19 44.61 56.32 56.47 58.42 60.88
80 52.72 52.54 50.50 49.11 45.55 60.05 57.40 59.24 61.53

datasets, it could perform better for chemical datasets. We have similar ob-
servations for the baselines, which also alter the topology. Note that even
the untrained variants of DSGRL are strong competitors for these datasets.
Corroborating the observation in [39], that is, what is lost in data augmenta-
tion is compensated by the strong inductive bias of GNNs. We believe that
corrupting the topology of such datasets requires careful consideration.

4 RelatedWork

In general, there have been many frameworks for contrastive learning.
Mostly, they differ in their data augmentation techniques and the
architectures they choose to prevent collapse.
Data Augmentation Although there are well-established data

augmentation techniques in the computer vision domain, this is not
the case for the graph domain [14, 47]. Different heuristics, based on
high-order networks, perturbation of topology and attributes have been
proposed [3,14,18,40,48]. It is unclear what the relative benefit of these
augmentation strategies is, and little is known regarding the relevance
of each strategy concerning different downstream tasks. Recently,

studies [35,39,47] have proposed learnable and contextual augmentation
techniques [35,39,53]. However, these methods are restrictive because
they either specify a set of graph data augmentation techniques so that the
learning is choosing the correct technique, or they only learn to dropout
edges through adversarial training. A more relevant study, i.e., Sim-
GRACE for graph property classification, [45], has perturbed the model
weights using Gaussian noise rather than perturbing the node features
or the topology. However, a study [22] has shown that data augmentation
in the graph space is more complicated than Gaussian distribution
can capture. Therefore SimGRACE learns sub-optimal representations
compared to the previously-mentioned data augmentation counterparts.

On the other hand, recent studies [16, 22, 25, 27, 41, 44, 51] have
extended graph contrastive learning to heterogeneous networks. However,
all these approaches have employed meta-paths to design graph augmen-
tations. Therefore, their performance and the augmentation’s quality itself
are heavily conditioned on the quality of the manually-chosen meta-paths.

Our study differs from these lines of research, as no predefined data
augmentations exist. Secondly, we propose a flexible framework to jointly
learn topological or feature augmentation suitable for a given graph.
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Table 6. Results for graph property prediction experiment. We report the classification accuracy of three groups of methods: Semi-Supervised (References),
Self-Supervised (Baselines), and the variants of our method. Bold indicates the best-performing method.

Methods
Datasets

Chemical Social
DD NCI1 PROTEINS ENZYMES IMDB-B IMDB-M REDDIT COLLAB

Ours

Random-F 77.0±2.9 67.2±1.9 74.4±3.7 36.0±5.7 70.7±4.0 46.5±3.6 76.7±2.1 66.3±2.7
Ramdom-T 75.6±2.3 71.0±1.9 73.0±1.8 36.0±5.6 67.0±4.7 43.3±3.9 69.4±1.1 66.5±1.5
Feature 78.0±2.9 75.0±2.2 75.6±3.4 54.0±3.7 71.9±3.4 50.3±3.4 78.3±2.1 69.6±1.4
Topology 75.8±3.0 72.8±1.9 74.4±4.5 37.8±5.7 71.7±3.6 50.3±3.3 78.3±2.3 70.0±2.1

Self-Supervised
(Baselines)

ADGCL 69.9±3.8 67.7±1.2 71.2±2.28 20.5±3.6 69.1±3.4 41.7±2.2 70.8±2.6 67.7±2.5
GRAPHCL 76.4±2.7 75.2±1.3 73.7±5.0 25.3±6.0 71.9±4.8 47.2±4.1 78.1±1.9 69.24±1.1
INFOGRAPH 74.8±4.0 73.4±2.1 73.8±3.6 30.1±5.1 71.5±2.5 47.8±4.0 73.5±2.9 64.1±1.2

Semi-Supervised
(References)

DGCNN 76.6 -/+ 4.3 76.4±1.7 72.9±3.5 38.9±5.7 69.2±3.0 45.6±3.4 87.8±2.5 71.2±1.9
DIFFPOOL 75.0±3.5 76.9±1.9 73.7±3.5 59.5±5.6 68.4±3.3 45.6±3.4 89.1±1.6 68.9±2.0
ECC 72.6±4.1 76.2±1.4 72.3±3.4 29.5±8.2 67.7±2.8 43.5±3.1 OOR OOR
GIN 75.3±2.9 80.0±1.4 73.3±4.0 59.6±4.5 71.2±3.9 48.5±3.3 89.9±1.9 75.6±2.3
GRAPHSAGE 72.9±2.0 76.0±1.8 73.0±4.5 58.2±6.0 68.8±4.5 47.6±3.5 84.3±1.9 73.9±1.7

Architectures The key difference between existing contrastive archi-
tectures arises from the need to prevent trivial solutions. To this end,
existing studies often rely on negative sampling or contrastive terms
[14,34,40,43,47,48,52,53]. However, as sampling truly contrastive terms
are difficult, other studies have used asymmetric architectures to prevent
trivial solutions. Initially proposed for CV [6,11], such methods [5,18,38]
have empirically shown that asymmetric networks and a stop gradient op-
eration are sufficient to prevent collapse. Although the asymmetric meth-
ods avoid explicit negative sampling, they are mainly engineering tricks.

Recent studies [1,3,49] have introduced principled approaches based
on regularization. Compared to contrastive architectures with negative
sampling, these methods used a principled approach to prevent collapse.
However, in contrast, they do not require explicit negative sampling.

5 Conclusion and Discussion

This paper presents a novel data-driven self-supervised graph
representation learning method called DSGRL. Unlike existing meth-
ods, DSGRL learns augmentation governed by the graph’s inherent signal.
We propose two complementary approaches, one based on learning
high-order topology and another on learning feature augmentations. In
both cases, augmentation is jointly learned with the graph representation.

We perform an extensive empirical evaluation using eight graph prop-
erty predictions and another nine node classification datasets, including
heterogeneous and homogeneous graphs, which are publicly available.
We compare DSGRL against seven popular and SOTA baselines, three
for graph property prediction and four for node classification experiments.
Furthermore, in both experiments, we closely follow recommended
protocols for a fair comparison and tuned the hyper-parameters of all the
baselines. The overall results confirm that DSGRL surpasses the baseline
SOTA approaches.

Among the graph property prediction datasets, 4 of them are chemical,
and 4 are social datasets. For the social graphs, the empirical results show
that both augmentation techniques produce comparable results. Whereas
for the chemical graphs, the topological augmentation does not perform
well. The latter is also the case for the baselines, which rely on perturbing
the topology. This aligns with existing studies that argue against
topological perturbation for such datasets [39]. We believe topological
augmentations for chemical datasets require further careful investigation.

Last, we report on the untrained variants of the DSGRL. Our results
show that even the untrained model is significantly better for the chemical
datasets than some of the baselines. The latter is consistent with recent

findings [39], which show that the strong inductive bias of GNNs tends
to compensate for what is lost in the augmentation.
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