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Abstract. We study a portioning setting in which a public resource
such as time or money is to be divided among a given set of candi-
dates, and each agent proposes a division of the resource. We con-
sider two families of aggregation rules for this setting—those based
on coordinate-wise aggregation and those that optimize some notion
of welfare—as well as the recently proposed Independent Markets
mechanism. We provide a detailed analysis of these rules from an
axiomatic perspective, both for classic axioms, such as strategyproof-
ness and Pareto optimality, and for novel axioms, which aim to cap-
ture proportionality in this setting. Our results indicate that a simple
rule that computes the average of all proposals satisfies many of our
axioms, including some that are violated by more sophisticated rules.

1 Introduction

A town council has just received its annual funding from the govern-
ment, and it needs to determine how to split the budget among con-
structing new facilities, keeping the streets clean, and ensuring safety
in public places. The mayor is in favor of making decisions demo-
cratically, so she asks each resident of the town to propose a division
of the budget. After having collected the proposals, how should the
council aggregate them into an actual allocation?

In the problem of portioning, the aim is to divide a resource among
a given set of candidates. As illustrated in the example above, a
prominent application of portioning is participatory budgeting, a
democratic framework initiated in Porto Alegre, Brazil in 1989 and
used in over 7,000 cities around the world [26].1 Besides allotting a
budget, portioning can also be used to share time, for example, when
deciding upon the proportion of time to spend on various activities at
a conference (e.g., research talks, panels, social gatherings) or differ-
ent types of music at a graduation party (e.g., classical, rock, jazz).

Most prior works on portioning assumed that each voter’s prefer-
ences can be represented by a ranking [1], or by an approval ballot
[3, 8, 12]. However, in some portioning scenarios these preference
formats cannot fully describe the agents’ desires. For instance, if a
student wants both jazz and rock music to be played at the gradua-
tion party, but with more time devoted to rock, her preference is not
captured by a ranking or a list of approvals. Likewise, a conference
attendee who would like 75% of the time to be spent on research
talks, 15% on panels, and 10% on social gatherings ranks these ac-
tivities in the same way as another attendee who prefers a 40%–35%–

1 Participatory budgeting is a subject of much recent interest in computational
social choice [4, 6, 7, 10, 15, 21, 22, 24, 29, 30]; see the recent survey by
Rey and Maly [27]. However, as we discuss in the section on related work,
most of the participatory budgeting literature focuses on the discrete setting.

25% split, but the actual preferences of these two attendees are quite
different.

Recently, Freeman et al. [17] studied portioning with cardinal pref-
erences, wherein each voter is allowed to propose a division of the re-
source. They observed that, even though the rule that maximizes the
utilitarian social welfare is known to be strategyproof (for a specific
tie-breaking convention) [20, 25], it tends to put too much weight on
majority preferences. In light of this observation, they introduced the
independent markets (IM) mechanism, which is strategyproof and, in
some sense, more proportional. However, while strategyproofness is
an important consideration, there may be scenarios where other fea-
tures of aggregation rules are just as—if not more—desirable. Thus,
to identify a suitable aggregation rule for a specific application, it
would be useful to (1) build a catalogue of axioms for the portion-
ing setting, and (2) determine which of these axioms are satisfied by
popular aggregation rules.

Our Contributions We consider a diverse set of axioms for
portioning with cardinal preferences. Besides classic axioms, such
as strategyproofness and Pareto optimality, we put forward two
novel proportionality axioms, namely, score-unanimity and score-
representation (see Section 2 for definitions). We then conduct a
systematic study of aggregation rules with respect to these axioms.
We focus on two families of portioning rules—those that are based
on coordinate-wise aggregation and those that optimize some no-
tion of welfare—as well as the recently proposed Independent Mar-
kets mechanism [17]. We also include observations regarding rela-
tionships between the axioms. Table 1 summarizes our results. An
overview and discussion of our results can be found in Section 3.

Related Work While there is a large body of work on participa-
tory budgeting, most of it focuses on the discrete setting, where each
project is either implemented in full or not implemented at all [5].
Our model, where there is a unit of budget to be split arbitrarily
among the projects, is usually referred to as portioning [1, 3, 8, 12].
Within the portioning literature, only a few papers consider cardi-
nal preferences. The ground-breaking work of Freeman et al. [17]
focuses on designing strategyproof mechanisms for this setting, and
proposes the Independent Market mechanism. The follow-up work
of Caragiannis et al. [9] studies proportionality guarantees that can
be obtained by truthful mechanisms, and provides approximation
bounds. In a very recent paper, Goyal et al. [21] study approxima-
tion guarantees offered by mechanisms with low sample complexity.

Other related lines of work include probabilistic models in social
choice [16, 23, 28], in which the output is a probability distribution
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over candidates. There, however, a single candidate is to be chosen
according to the probability distribution, in contrast to our setting
where we portion among several alternatives. Another relevant topic
is probabilistic opinion pooling [11, 19], where the goal is to aggre-
gate probabilistic beliefs which may represent, e.g., forecasts.

2 Preliminaries

We first present the model of portioning with cardinal preferences,
and then introduce the axioms and rules that we will study.

2.1 Model

We are given a set N = {1, . . . , n} of n agents (or voters), and
a set C = {p1, . . . , pm} of m candidates. Each agent i ∈ N
has a normalized preference score vector si ∈ (R≥0)

m over the
candidates, where for each i ∈ N we have si = (si1, . . . , sim)
and

∑
j∈[m] sij = 1. An instance of our problem is the vector

I = (s1, . . . , sn), also referred to as a preference profile. For any
score vector x = (x1, . . . , xm), agent i’s disutility function is de-
fined as di(x) =

∑
j∈[m] |sij − xj |, which is the �1 distance be-

tween the agent’s score vector si and x. Given an instance I, we aim
to find a vector x with

∑
j∈[m] xj = 1 that reflects the agents’ col-

lective preferences. To do so, we use aggregation rules, which are
defined as follows.

Definition 1 (Aggregation rule). An aggregation rule F is a function
F : (R≥0)

m×n → (R≥0)
m that maps a preference profile I ∈

(R≥0)
m×n to an outcome vector x ∈ (R≥0)

m.

2.2 Axioms

We begin by introducing a basic property, which states that if all
agents unanimously agree on a score for a particular candidate, then,
in the outcome, this candidate should get exactly that score.

Definition 2 (Score-unanimity). An aggregation rule F is score-
unanimous if, for every instance I = (s1, . . . , sn) such that for some
j ∈ [m], γ ∈ [0, 1] it holds that sij = γ for all i ∈ N , the score
vector x = F (I) satisfies xj = γ.

Next, we consider another intuitive property, which states that if
a single agent increases the score allocated to a particular candidate
(while decreasing her scores for other candidates), then this candi-
date’s score in the outcome cannot decrease.

Definition 3 (Score-monotonicity). An aggregation rule F is score-
monotone if the following holds: for any two instances I =
(s1, . . . , sn) and I′ = (s′1, . . . , s

′
n) with F (I) = x and F (I′) = x′

such that for some i ∈ N , j ∈ [m] we have (1) sij < s′ij; (2)
sij′ ≥ s′ij′ for all j′ ∈ [m] \ {j}; and (3) si′j′ = s′i′j′ for all
i′ ∈ N \ {i}, j′ ∈ [m], it holds that xj ≤ x′

j .

Another notion that has recently been studied in the context of
portioning is proportionality [17]. This property requires that when
agents are single-minded, i.e., each agent places all of her score on
a single candidate, the outcome score for each candidate equals the
proportion of agents that favor this candidate. However, agents are
rarely single-minded in several applications of portioning, so an ap-
propriate notion of proportionality (or, more broadly, representation)
for general preferences is needed. We formulate one such notion for
the cardinal preference setting, and refer to it as score-representation.

Definition 4 (Score-representation). An aggregation rule F satisfies
score-representation if for every instance I = (s1, . . . , sn) such that
for some V ⊆ N , j ∈ [m], γ ∈ [0, 1] it holds that sij ≥ γ for all
i ∈ V , the score vector x = F (I) satisfies xj ≥ γ · |V |

n
.

Another important property of aggregation rules is strategyproof-
ness (see, e.g., [17]): agents should not be able to lower their disutil-
ity by misreporting their score vector.

Definition 5 (Strategyproofness). An aggregation rule F is strate-
gyproof if, for any two instances I and I′ such that I′ is obtained
from I by replacing agent i’s score vector si with another score vec-
tor s′, if F (I) = x and F (I′) = x′, then di(x) ≤ di(x

′).

A related notion is participation. This property states that each
agent weakly prefers voting truthfully to withdrawing from the ag-
gregation process. In numerous contexts (particularly for elections),
this property incentivizes higher voter turnout.

Definition 6 (Participation). An aggregation rule F satisfies partici-
pation if, for any two instances I and I′ such that I′ is obtained from
I by adding an additional agent i, if F (I) = x and F (I′) = x′,
then di(x) ≥ di(x

′).

We also consider Pareto optimality, which is a basic notion of ef-
ficiency.

Definition 7 (Pareto optimality). An aggregation rule F is Pareto
optimal (PO) if, for every instance I and the outcome x = F (I),
there does not exist another outcome x′ such that (1) di(x′) ≤ di(x)
for all i ∈ N and (2) di(x′) < di(x) for some i ∈ N .

The last two axioms we consider were studied by Freeman et
al. [17].

Definition 8 (Range-respect). An aggregation rule F is range-
respecting (RR) if for every instance I, the outcome x = F (I), and
for all j ∈ [m] it holds that mini∈N sij ≤ xj ≤ maxi∈N sij .

Definition 9 (Reinforcement). An aggregation rule F satisfies re-
inforcement if, for any two instances I = (s1, . . . , sn) and I′ =
(s′1, . . . , s

′
n′) such that F (I) = F (I′) = x, for the instance

I∗ = (s1, . . . , sn, s
′
1, . . . , s

′
n′) we have F (I∗) = x.

Remark 10. The axioms of score-unanimity, score-representation,
Pareto optimality, and range-respect can be defined for outcomes
rather than voting rules: e.g., we say than an outcome x for an in-
stance I = (s1, . . . , sn) is range-respecting if mini∈N sij ≤ xj ≤
maxi∈N sij for all j ∈ [m] (and similarly for other axioms).

2.3 Aggregation Rules

We focus on two classes of rules, namely, (1) rules that are based
on coordinate-wise aggregation and (2) rules that are based on wel-
fare optimization. In addition, we will also consider the independent
markets mechanism of Freeman et al. [17].

Coordinate-wise Aggregation Rules We start by defining the
class of coordinate-wise aggregation rules.

Definition 11. We say that an aggregation rule F is coordinate-
wise if for each n ≥ 1 there is a coordinate-aggregation func-
tion fn : (R≥0)

n → R≥0 such that, given an instance I =
(s1, . . . , sn), the function F outputs a vector x that satisfies xj =

fn(s1j ,...,snj)∑
j′∈[m] fn(s1j′ ,...,snj′ )

for each j ∈ [m].
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Coordinate-wise Welfare-based Other
F Sum Max Min Med Prod UTIL EGAL IM

Score-unanimity � X† X† X‡ X � � X†

Score-monotonicity � � � � � � ?‡ �
Proportionality � X∗ X X∗ X X∗ X∗ �

Score-representation � X X X∗ X X X∗ X
Strategyproofness X X X X X � X �

Participation � � � ?‡ X � � �
Pareto optimality X‡ X† X† X‡ X � � X†

Range-respect � X† X† X‡ X � � X†

Reinforcement � � � ?‡ X � � �

Table 1. Summary of our results. For most of the negative results, we provide a counterexample for the simplest case, but they can be easily extended by
cloning agents or adding dummy candidates. The asterisk symbol (∗) indicates that the axiom is satisfied for n = 2, but may fail when n ≥ 3 (even if m = 2).
The dagger symbol (†) indicates that the axiom is satisfied for m = 2, but may fail when m ≥ 3 (even if n = 2). The double dagger symbol (‡) indicates that
the axiom is satisfied when min{n,m} = 2; when used with X, it may fail in more general cases; when used with ?, it indicates that the case min{n,m} ≥ 3

remains open. Some of the results on UTIL and IM were obtained by Freeman et al. [17].

For each j ∈ [m], we refer to yj = fn(s1j , . . . , snj) as the pre-
normalization value for xj . The vector y = (y1, . . . , ym) is called
the pre-normalization vector. In what follows, we will omit the sub-
script n and write f instead of fn.

We study five natural coordinate-wise aggregation rules, where f
is, respectively, the median (if the number of agents is even, we take
the average of the two middle scores), sum, maximum, minimum, or
product function (for the last two rules, if yj = 0 for all j ∈ [m], we
set xj = 1/m for all j ∈ [m]). For brevity, we refer to these rules
as med, sum, max, min, and prod rules, respectively. These rules are
attractive, because they are intuitive and efficiently computable.

Welfare-based Aggregation Rules We also consider rules that are
based on welfare optimization. In particular, we focus on two popular
welfare criteria: (1) maximizing the utilitarian welfare (UTIL), i.e.,
minimizing

∑
i∈N di(x), and (2) maximizing the egalitarian welfare

(EGAL), i.e., minimizing maxi∈N di(x). Note that Nash welfare is
not well-defined in this setting, as we are considering disutilities.2

For UTIL, tie-breaking is important. Following Freeman et al. [17],
we break ties in favor of the maximum entropy division. Specifically,
we assume that UTIL outputs the utilitarian welfare-maximizing out-
come x that minimizes the quantity

∑
j∈[m](xj−1/m)2, i.e., the �2

distance to the uniform distribution xu = (1/m, . . . , 1/m). Impor-
tantly, a UTIL outcome is PO, and can be computed in polynomial
time. However, the UTIL rule fails proportionality [17].

For EGAL, if there are multiple outcomes that maximize the egal-
itarian welfare, then we break ties in a “leximin” manner. That is,
we minimize the largest disutility, then subject to that, minimize the
second-largest disutility, and so on. From this definition, it is clear
that EGAL satisfies PO. We make two further observations.

Theorem 2.1. EGAL can be computed in polynomial time.

Lemma 2.2. When n = 2, the output of the sum and med rules is an
EGAL outcome.

Since there may be multiple EGAL outcomes even after the
leximin tie-breaking, we assume for convenience (in light of
Lemma 2.2) that for n = 2, the output of EGAL is the same as that
of the sum rule. Our results for n ≥ 3 will not depend on this choice,
and we allow EGAL to break ties in any consistent manner.

2 For example, it has been observed that there is no natural equivalent of Nash
welfare in the fair allocation of chores [13, 18].

Independent Markets (IM) mechanism Freeman et al. [17] put
forward two aggregation mechanisms that both rely on introduc-
ing phantoms. The first of these mechanisms is called the Indepen-
dent Markets mechanism, and is described below. The second one is
equivalent to UTIL with the maximum entropy division tie-breaking
rule (defined earlier).

Definition 12. For each c ∈ R≥0, the c-coordinate-wise median
of candidate pj is defined as the median of the 2n + 1 values
{0, c

n
, 2c

n
, . . . , (n−1)c

n
, c, s1j , . . . , snj} (i.e., the agents’ scores for

pj and n + 1 “phantoms” that are uniformly distributed on [0, c]).
The mechanism starts with c = 0 and continuously increases c, stop-
ping when the sum of all candidates’ c-coordinate-wise medians is
1 (if a phantom score is higher than 1, it is taken to be 1). It then
outputs the vector of c-coordinate-wise medians.

All omitted proofs can be found in the full version of our paper
[14].

3 Overview and Discussion

Our results offer several insights on portioning rules. As shown in
Table 1, the most promising rules with respect to the axioms that we
study are the sum rule and UTIL, with the trade-off being that the
sum rule fails strategyproofness and Pareto optimality whereas UTIL

fails proportionality and score-representation. While the IM mech-
anism satisfies both strategyproofness and proportionality, it fails
other intuitive properties such as score-unanimity, range-respect, and
Pareto-optimality; these failures can lead to highly counterintuitive
outcomes for the voters and cast doubt on the IM mechanism as an
aggregation method.

These trade-offs between various rules may be used to inform
decision-making in a wide range of settings. For instance, consider
again the scenario where a conference organizer needs to divide time
among different activities at a conference. In this case, it is likely
difficult for an attendee to accurately predict what other attendees’
preferences are, making strategyproofness arguably less relevant as a
consideration. On the other hand, strategyproofness could be more
important in smaller-scale settings where voters know each other
well, e.g., portioning within a family or a small organization. In such
a setting, it may not be crucial that the outcome is exactly propor-
tional in the way that the proportionality axiom requires. Addition-
ally, intuitive properties such as score-unanimity and range-respect
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may be essential in settings where votes are revealed: for example, if
all voters vote 0.8 on a certain activity but the rule outputs 0.6 on this
activity, this may well lead to dissatisfaction among voters regarding
the use of that voting rule.

4 Score-Unanimity and Range-Respect

In this section, we focus on two basic properties defined in Sec-
tion 2: score-unanimity and range-respect. The former states that if
all agents assign a particular candidate pj the same score, then in the
outcome pj should get exactly that score. The latter mandates that, in
the outcome, every candidate’s score should lie between the highest
and the lowest score that this candidate obtains from the agents.

It is easy to see that if all agents give the exact same score γ to a
candidate pj , then in the outcome of any RR rule F the score of pj
has to be γ, and hence F is also score-unanimous. In fact, as we will
show later in Section 8, any PO outcome is also RR. We will now
give a direct proof of a more general result.

Theorem 4.1. Any aggregation rule that is RR or PO is also score-
unanimous.

Proof. The case of RR rules has been considered above. Now, let x
be an outcome returned by a PO rule F on an instance I. Suppose
for a contradiction that F is not score-unanimous on I. This means
that for some j ∈ [m] and γ ∈ [0, 1] we have sij = γ for all
i ∈ N , but xj �= γ. We can assume without loss of generality that
xj > γ; a similar argument works for the case xj < γ. Note that
there must exist some j′ ∈ [m] such that xj′ < si′j′ for some i′ ∈
N . Now, consider the outcome vector x′ where x′ is identical to x,
except x′

j = γ and x′
j′ = xj′ + (xj − γ). Then, at least one agent’s

(i′) disutility will decrease, and all other agents’ disutility does not
increase, a contradiction with x being Pareto optimal.

Next, we show that of the five coordinate-wise aggregation rules
we consider, the sum rule is the only one satisfying score-unanimity.

Theorem 4.2. The sum rule is score-unanimous.

Proof. Suppose for some j ∈ [m] and γ ∈ [0, 1] we have sij = γ
for all i ∈ N . Then, xj = 1

n

∑
i∈N γ = γ·n

n
= γ.

The next three results show that the max, min, and med rules sat-
isfy score-unanimity in some special cases, whereas the prod rule
fails it even in the simplest setting.

Theorem 4.3. The max and min rules are score-unanimous when
m = 2, but may fail to be so when m ≥ 3 (even when n = 2).

Proof. Since the max and min rules are PO when m = 2 (by Propo-
sition 8.6), the property follows by Theorem 4.1.

Next, we show a counterexample for n = 2 and m = 3. Suppose
we have two agents with score vectors s1 = (0, 0.2, 0.8) and s2 =
(0.8, 0.2, 0). Then, the max rule will return xmax = ( 4

9
, 1
9
, 4
9
) and

the min rule will return xmin = (0, 1, 0). It is easy to see that score-
unanimity is violated for j = 2.

Theorem 4.4. The med rule is score-unanimous when n = 2 or
m ≤ 3, but may fail to be so when n ≥ 3 and m ≥ 4.

Proposition 4.5. The prod rule may fail score-unanimity for all n ≥
2 and m ≥ 2.

Proof. Let n ≥ 2 and si = (0.8, 0.2, 0, . . . , 0) for all i ∈ N . The

prod rule returns x =
(

0.8n

0.8n+0.2n
, 0.2n

0.8n+0.2n
, 0, . . . , 0

)
. It is easy

to verify that 0.8n

0.8n+0.2n
> 0.8 for all n ≥ 2.

As for the welfare-based rules, since both UTIL and EGAL are PO
(by definition), we get the following as a corollary of Theorem 4.1.

Corollary 4.6. UTIL and EGAL are score-unanimous.

Finally, we show that the IM mechanism also fails to be score-
unanimous in general.

Theorem 4.7. The IM mechanism is score-unanimous when m = 2,
but may fail to be so when m ≥ 3 (even when n = 2).

We have argued that score-unanimity is a special case of RR. Un-
surprisingly, it is known that the IM mechanism is not RR in gen-
eral (one can use the same counterexample as in the proof of Theo-
rem 4.7) [17]. We complement this result by showing that IM satisfies
RR for two candidates.

Theorem 4.8. The IM mechanism is RR when m = 2, but may fail
to be so when m ≥ 3 (even when n = 2).

Proof. By the comment before the theorem, it suffices to prove this
when m = 2. Let x be the output vector of the IM mechanism. Re-
call that the stopping condition from the definition of the mechanism
mandates that the entries of the output vector x sum to 1.

For each j ∈ {1, 2}, denote zmax
j and zmin

j as the maximum and
minimum values that the n voters have for candidate j, respectively.
Suppose for a contradiction that the IM mechanism is not RR when
m = 2. There are two cases: either all the n+1 phantoms are strictly
less than zmin

j for some j ∈ {1, 2}, or all the n + 1 phantoms are
strictly more than zmax

j for some j ∈ {1, 2}. The latter case cannot
happen since one of the phantoms is always at 0. Thus, we focus on
the former case.

Suppose without loss of generality that all n + 1 phantoms are
strictly less than zmin

1 , so we have that x1 < zmin
1 . Then, since zmax

2 =
1 − zmin

1 , in order for x1 + x2 = 1, we must have that x2 > zmax
2 .

This means that all n+ 1 phantoms must be strictly more than zmax
2 ,

which is a contradiction.

In fact, out of the five coordinate-wise aggregation rules we study,
the sum rule is the only one that is RR for all n and m.

Theorem 4.9. The sum rule is RR.

Proof. Let x and y be the output and pre-normalization vector of
the sum rule, respectively. Then xj =

yj
n

for all j ∈ [m]. For
each j ∈ [m], let zmax

j and zmin
j be the maximum and minimum val-

ues that the n voters have for candidate j, respectively. Then, since
yj =

∑
i∈N sij , we obtain n · zmin

j ≤ yj ≤ n · zmax
j . Dividing by n

throughout, we get zmin
j ≤ xj =

yj
n
≤ zmax

j .

Theorem 4.10. The max and min rules are RR when m = 2, but
may fail to be so when m ≥ 3 (even when n = 2).

Proof. We prove the result for the max rule; the proof for the min
rule can be found in the full version [14]. For m = 2, let x be the
output vector of the max rule. For each j ∈ {1, 2}, denote zmax

j and
zmin
j as the maximum and minimum values that the n voters have for

candidate j, respectively. Then xj = zmax
j /(zmax

1 +zmax
2 ) for j = 1, 2.

We will show that the max rule is RR for p1; the same analysis
applies to p2. We have zmax

2 = 1 − zmin
1 . Given that zmin

1 ≤ zmax
1 ,
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multiplying both sides by 1−zmin
1 , we get zmin

1 (1−zmin
1 ) ≤ zmax

1 (1−
zmin
1 ). Algebraic manipulation gives us zmin

1 ≤ zmax
1

zmax
1 +(1−zmin

1 )
= x1,

as desired (since zmax
2 = 1− zmin

1 ).
For the upper bound, we know that zmin

1 ≤ zmax
1 . Adding 1 − zmin

1

to both sides, we get 1 ≤ zmax
1 +(1−zmin

1 ). Multiplying both sides by
zmax
1

zmax
1 +(1−zmin

1 )
, we get x1 =

zmax
1

zmax
1 +(1−zmin

1 )
≤ zmax

1 , as desired (since

zmax
2 = 1− zmin

1 ).
A counterexample for the max rule when n = 2 and m = 3 is

as follows. Consider a profile with two agents and three candidates,
where the score vectors are s1 = ( 2

3
, 0, 1

3
) and s2 = ( 1

3
, 1
3
, 1
3
). Then,

the max rule will return x = (0.5, 0.25, 0.25), which is not RR.

Theorem 4.11. The med rule is RR when n = 2 or m = 2 or
n = m = 3, but may fail to be RR when n ≥ 3 and m ≥ 4.

Theorem 4.1 and Proposition 4.5 imply the following:

Corollary 4.12. The prod rule may fail to be RR for all n ≥ 2 and
m ≥ 2.

As for the welfare-based rules, from Theorems 8.2–8.4, we have
that both satisfy RR.

Corollary 4.13. UTIL and EGAL are RR.

5 Score-Monotonicity

We begin this section with a lemma that provides a more gen-
eral condition for coordinate-wise aggregation rules to satisfy score-
monotonicity. This result will be useful for subsequent proofs.

Lemma 5.1. Suppose that a coordinate-wise aggregation rule F
with coordinate-wise aggregation function f is such that for every
i ∈ N , f(z1, . . . , zi, . . . , zn) ≥ f(z1, . . . , z

′
i, . . . , zn) whenever

zi ≥ z′i. Then F is score-monotone.

For all our five coordinate-wise aggregation rules, the aggregation
function clearly satisfies the condition in Lemma 5.1. Hence, we im-
mediately have the following result.

Theorem 5.2. All five coordinate-wise aggregation rules satisfy
score-monotonicity.

As for the remaining rules, Freeman et al. [17, Thm. 3] showed
that UTIL and the IM mechanism are score-monotone. We show that
EGAL is score-monotone in the special cases where n = 2 or m = 2.
The setting where n,m ≥ 3 is left as an open question.

Theorem 5.3. EGAL is score-monotone when n = 2 or m = 2.

6 Proportionality and Score-Representation

In this section, we focus on the notions of proportionality [17] and
score-representation (which is a generalization of proportionality).
Freeman et al. [17] proved that the IM mechanism satisfies propor-
tionality. However, we show that their guarantee does not carry over
for score-representation in general.

Theorem 6.1. The IM mechanism may fail score-representation,
even when n = 2 and m = 3.

Proof. Consider the case of two agents and three candidates, where
the score vectors are s1 = (0.8, 0.2, 0) and s2 = (0.8, 0, 0.2).
Then, score-representation mandates that the outcome x should sat-
isfy x1 ≥ 0.8. However, the outcome vector returned by the IM
mechanism is x′ = (0.6, 0.2, 0.2), where x1 = 0.6 < 0.8.

The question of whether the IM mechanism satisfies the score-
representation axiom when m = 2 remains open.

Now, we show that the sum rule satisfies score-representation
(and hence proportionality as well) in general. In fact, among the
coordinate-wise aggregation rules we consider, it is the only rule with
this property.

Theorem 6.2. The sum rule satisfies score-representation.

Proof. Let S ⊆ N be the set of agents whose score for a
candidate pj is at least γ, for some γ ∈ (0, 1]. Then xj =
1
n

(∑
i∈S sij +

∑
i′∈N\S si′j

)
≥ 1

n

(∑
i∈S γ + 0

)
= γ·|S|

n
.

While the general positive result only holds for the sum rule, we
show that the max and med rules satisfy score-representation when
n = m = 2, whereas the min and prod rules may fail to do so even
in the simplest setting.

Theorem 6.3. The max rule satisfies score-representation when n =
m = 2, but may fail to do so when m ≥ 3 (even for n = 2) or n ≥ 3
(even for m = 2). It also satisfies proportionality when n = 2, but
may fail to do so when n ≥ 3 (even for m = 2).

Proof. We first prove that the max rule satisfies score-representation
when n = m = 2. Assume without loss of generality that s11 ≥ s21
and s22 ≥ s12. Then, score-representation demands that (i) x1 ≥
s11
2

and x2 ≥ s22
2

, and (ii) x1 ≥ s21 and x2 ≥ s12. Property (ii)
follows from the fact that the max rule is RR when m = 2 (Theorem
4.10). We will show the max rule satisfies property (i).

Now, x1 = s11
s11+s22

and x2 = s22
s11+s22

. Since s11 + s22 ≤ 2,
x1 = s11

s11+s22
≥ s11

2
and x2 = s22

s11+s22
≥ s22

2
. Thus, property (i)

is satisfied.
We now show that the max rule may fail score-representation

when n = 2 and m = 3. Consider a profile with two agents and
three candidates, where the score vectors are s1 = ( 2

3
, 0, 1

3
) and

s2 = ( 1
3
, 1
3
, 1
3
). Then, since s13 = s23 = 1

3
, score-representation

mandates that x3 ≥ 1
3

. However, the max rule returns x =
(0.5, 0.25, 0.25) with x3 = 0.25 < 1

3
, failing this condition.

For m = 2 and n ≥ 3, we will show later that the max rule fails
the weaker proportionality property.

Next, we show that the max rule satisfies proportionality for n =
2 and m ≥ 3 (it already satisfies the stronger score-representation
property when n = m = 2). Recall that agents are single-minded
when reasoning about proportionality. If both agents give a score of
1 to the same candidate (let it be p1), then the max rule will return
x = (1, 0, . . . , 0), satisfying proportionality. Suppose both agents
give a score of 1 to different candidates. Without loss of generality,
let s11 = 1 and s22 = 1, with all other scores being 0. Then, the
max rule will return x = (0.5, 0.5, 0, . . . , 0), which also satisfies
proportionality.

Finally, we show that the max rule may fail proportionality for n ≥
3, even for m = 2. Suppose we have n− 1 agents with score vector
(1, 0) and one agent with score vector (0, 1). Then, proportionality
states that the score of candidate p1 should be n−1

n
. However, the

max rule will return the vector x = (0.5, 0.5). For any n ≥ 3, we
have x1 = 0.5 < n−1

n
. The case of more candidates can easily be

handled by adding dummy candidates for which every agent has a
score of 0.

Theorem 6.4. The med rule satisfies score-representation when n =
2, but may fail to be proportional when n ≥ 3 (even for m = 2).
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Theorem 6.5. The min and prod rules satisfy proportionality when
n = m = 2, but may fail to be so when n ≥ 3 or m ≥ 3. Both rules
may fail score-representation even when n = m = 2.

Freeman et al. [17] showed that UTIL may fail to satisfy pro-
portionality in general. We show that it satisfies the stronger score-
representation property when n = m = 2, and proportionality when
n = 2, but fails in all other cases.

Theorem 6.6. UTIL satisfies score-representation when n = m =
2, but may fail to be so when m ≥ 3. It is also proportional when
n = 2, but may fail to be so when n ≥ 3 (even for m = 2).

We now show that EGAL provides slightly better guarantees.

Theorem 6.7. EGAL satisfies score-representation when n = 2, but
may fail to be proportional for any n ≥ 3 (even for m = 2).

7 Strategyproofness and Participation

Both of the phantom-based mechanisms proposed by Freeman et
al. [17] that we study in this work, i.e., the IM mechanism and UTIL,
have been proven to satisfy strategyproofness. Unfortunately, none
of the five coordinate-wise aggregation rules enjoys this property.

Proposition 7.1. Each of the sum, med, max, min, and prod rules
may fail to be strategyproof for all n ≥ 2 and m ≥ 2.

Next, we show that this negative result extends to EGAL as well.

Proposition 7.2. EGAL may fail to be strategyproof for all n ≥ 2
and m ≥ 2.

As seen above, the rules we consider may fail strategyproofness
even in the simplest case. We will now focus on participation, which
is generally viewed as a less demanding property. IM and UTIL are
known to satisfy participation [17]. We will now show that three of
the five coordinate-wise aggregation rules and EGAL also satisfy this
property.

Theorem 7.3. The sum rule satisfies participation.

Theorem 7.4. The max rule satisfies participation.

Proof. Let x and x′ be the outcome vector with i not participating
and participating, respectively. Let y and y′ be the corresponding
pre-normalization vectors. If y = y′, then the property is trivially
satisfied; thus we assume y �= y′.

We state two lemmas whose proofs are in the full version [14].

Lemma 7.5. For any j ∈ [m], if x′
j > xj , then y′

j > yj .

Lemma 7.6.
∑

j∈[m] y
′
j ≥ 1.

Let [m] = S ∪ T , where S ⊆ [m] is the set of indices where for
each α ∈ S, x′

α > xα, and T ⊆ [m] is the set of indices where for
each β ∈ T , x′

β ≤ xβ . Now, we have that
∑
α∈S

(x′
α − xα) =

∑
β∈T

(xβ − x′
β). (1)

We claim that for all indices α ∈ S, siα ≥ x′
α. Suppose for a

contradiction that siα < x′
α. Then, siα < x′

α =
y′
α∑

k∈[m] y
′
k
≤ y′

α,
where the rightmost inequality follows from Lemma 7.6. It follows
that y′

α = yα. However, by the definition of S and Lemma 7.5, we
arrive at a contradiction. Hence, siα ≥ x′

α > xα.

This property shows that for indices in S, agent i’s participation
results in a decrease in her disutility by exactly

∑
α∈S(x

′
α − xα).

Together with (1), her net disutility (across [m]) from participating is
nonnegative, and we obtain the desired result.

Theorem 7.7. The min rule satisfies participation.

Theorem 7.8. The med rule satisfies participation when n ≤ 2 or
m = 2.

Proposition 7.9. The prod rule may fail participation for all n ≥ 2
and m ≥ 2.

Theorem 7.10. EGAL satisfies participation.

Proof. Let I and I′ be the instances where i does not participate
and participates, respectively. Also let x and x′ be the corresponding
outcome vectors returned by EGAL. Consider the case where x �= x′;
otherwise participation is trivially satisfied.

Suppose for a contradiction that di(x) < di(x
′). Let U be the

function that takes in a multiset of nonnegative real numbers and
outputs a vector containing the elements in the set, sorted in non-
increasing order.

Then, define z := U({dk(x) : k ∈ N \ {i}}) and z′ :=
U({dk(x′) : k ∈ N \ {i}}).

Consider two vectors v,v′ of the same length V . We say that v =
v′ if vk = v′k for all k ∈ [V ]. Furthermore, we say that v 	 v′ if
vk > v′k for some k ∈ [V ] and vk′ = v′k′ for all k′ < k.

Now, since x′ is chosen over x under instance I′, together with the
fact that di(x) < di(x

′), we have that zk > z′k for some k ∈ N \{i}
and zk′ = z′k′ for all k′ < k, i.e., z 	 z′. However, since x is
chosen over x′ under instance I, z′ 
 z, giving us a contradiction.
Therefore, the claim is proven.

8 Pareto Optimality

Next, we turn our attention to Pareto optimality. We first establish the
relationships between PO and RR.

Lemma 8.1. Every PO outcome is RR.

We now show that PO and RR are equivalent in the special cases
of two agents or two candidates. We start by considering the case
n = 2.

Theorem 8.2. For n = 2, an outcome is PO if and only if it is RR.

Proof. The forward direction has been established in Lemma 8.1.
We prove the other direction. Let the score vectors of the two agents
be s1 = (s11, . . . , s1m) and s2 = (s21, . . . , s2m). Then, for any
outcome x we have that d1(x) + d2(x) ≥ ∑

j∈[m] |s1j − s2j |.
Also, if x is RR, it holds that d1(x) + d2(x) ≤∑

j∈[m] |s1j − s2j |.
Combining the two inequalities, for any RR outcome x, we have that
d1(x) + d2(x) =

∑
j∈[m] |s1j − s2j |. Thus, any other RR outcome

will have the same sum of disutilities, and if one agent were to have a
strict decrease in disutility, the other agent must have a strict increase
in disutility. This shows that x is PO.

The same property is observed in the case of two candidates.

Theorem 8.3. For m = 2, an outcome is PO if and only if it is RR.

Proof. The forward direction has been established in Lemma 8.1.
We prove the other direction. Let the outcome x be RR. Consider any
other outcome x′. Without loss of generality, suppose that x1 > x′

1.
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Then, it must be that x2 < x′
2. Since x is RR, there exists some agent

i ∈ N such that si1 ≥ x1. Correspondingly, si2 ≤ x2. Note that

di(x) = (si1−x1)+(x2−si2) < (si1−x′
1)+(x′

2−si2) = di(x
′).

This means that the disutility of agent i increases when going from
x to x′. Thus x is PO.

However, if the numbers of agents and candidates exceed two, the
relationship between PO and RR becomes one-sided.

Theorem 8.4. For n ≥ 3 and m ≥ 3, every PO outcome is RR.
However, the converse may not hold even when n = m = 3.

Building on the above observations, we obtain the following re-
sults.

Proposition 8.5. The sum rule is PO when n = 2 or m = 2, but
may fail to be so when both n,m ≥ 3.

Proposition 8.6. The max and min rules are PO when m = 2, but
may fail to be so when m ≥ 3 (even when n = 2).

The following results are corollaries of our results on RR (Sec-
tion 4) and the relationships between RR and PO established earlier
in this section.

Corollary 8.7. The med rule is PO when n = 2 or m = 2, but may
fail to be so when n ≥ 3 and m ≥ 4.

Corollary 8.8. The prod rule may fail to be PO for all n ≥ 2 and
m ≥ 2.

Corollary 8.9. The IM mechanism is PO when m = 2, but may fail
to be so when m ≥ 3 (even when n = 2).

As for the welfare-based rules, UTIL and EGAL are both PO by
definition.

We will now consider PO outcomes from an algorithmic perspec-
tive. Finding a PO outcome is easy: we can simply define the vector
x to be exactly si for some agent i ∈ N . Then, di(x) = 0, whereas
di(x

′) > 0 for any other outcome vector x′. In some problem do-
mains, determining whether an outcome is PO can be computation-
ally difficult [2]. In contrast, our next result shows that in our setting
checking the PO property is computationally tractable.

Theorem 8.10. The problem of determining whether an outcome x′

is PO is polynomial-time solvable.

9 Reinforcement

The last property we consider is reinforcement. We show that three
of the five coordinate-wise aggregation rules satisfy this property. In
contrast, the med rule satisfies it in the special case of two agents or
two candidates, while the prod rule may fail it even in the simplest
setting.

Theorem 9.1. The sum, max, and min rules satisfy reinforcement.

Proof. We prove this for the sum rule; the proofs for the max and
min rules can be found in the full version [14].

Suppose we have two instances I = (s1, . . . , sn) and I′ =
(s′1, . . . , s

′
n′). Let N and N ′ be the corresponding sets of agents.

Consider the sum rule. For each j ∈ [m], if 1
n

∑
i∈N sij = xj

and 1
n′

∑
i∈N′ s

′
ij = xj , then

∑
i∈N sij = n · xj and

∑
i∈N′ s

′
ij =

n′ · xj . Combining the two, we have that
∑

i∈N sij +
∑

i∈N′ s
′
ij =

(n+ n′) · xj . This gives us 1
n+n′ ·

(∑
i∈N sij +

∑
i∈N′ s

′
ij

)
= xj ,

as desired.

Theorem 9.2. The med rule satisfies reinforcement when n = 2 or
m = 2.

Proposition 9.3. The prod rule may fail reinforcement for all n ≥ 2
and m ≥ 2.

As for the rest of the rules, UTIL and the IM mechanism have
been shown to satisfy reinforcement [17]. We show that EGAL also
satisfies this axiom.

Theorem 9.4. EGAL satisfies reinforcement.

Proof. Let I and I ′ be two instances, and let x be the outcome vec-
tor returned by EGAL in both instances. Let N and N ′ be the sets
of agents in those instances, respectively. Consider a third instance
I∗ derived by combining the two instances, with the set of agents
N∗ := N ∪N ′, and let the outcome returned by EGAL in this com-
bined instance be x∗.

Let U be the function that takes in a multiset of nonnegative real
numbers and outputs a vector containing the elements in the set,
sorted in non-increasing order. Then, define

z := U({dk(x) : k ∈ N}), z∗ := U({dk(x∗) : k ∈ N}),
y := U({dk(x) : k ∈ N ′}), y∗ := U({dk(x∗) : k ∈ N ′}),
w := U({dk(x) : k ∈ N∗}), w∗ := U({dk(x∗) : k ∈ N∗}).
Consider two vectors v,v′. of the same length V . We say that

v = v′ if vk = v′k for all k ∈ [V ]. Furthermore, we say that v 	 v′

if vk > v′k for some k ∈ [V ] and vk′ = v′k′ for all k′ < k.
Additionally, for any two vectors u and v of possibly different

length, let u||v be the vector containing all the elements in both u
and v, sorted in non-increasing order. Note that if we have four vec-
tors u,u′,v,v′ such that u 
 u′ and v 
 v′, then u||v 
 u′||v′.

Since the outcome returned by EGAL under the combined instance
I∗ is x∗, it must be that w 
 w∗. If w = w∗, then x = x∗ (since we
assume that a consistent tie-breaking rule is used for EGAL). Suppose
for a contradiction that EGAL does not satisfy reinforcement, i.e.,
w 	 w∗.

Now, since x is chosen over x∗ in instance I, z∗ 
 z. Also, since
x is chosen over x∗ in instance I′, y∗ 
 y. Then, we have that w∗ =
z∗||y∗ 
 z||y = w, which contradicts our assumption. Hence, the
result follows.

10 Conclusion

In this work, we analyzed two natural classes of aggregation rules
for portioning with cardinal preferences (namely, those based on
coordinate-wise aggregation and welfare optimization) as well as
the IM mechanism with respect to a number of appealing axiomatic
properties. Some of these axioms were proposed in prior work, while
others, such as score-representation and score-unanimity, are new.
We show that a simple rule that takes the average of the proposals
satisfies most of our properties. In contrast, while the IM mechanism
possesses the desirable strategyproofness property, it violates some
of the other axioms. Thus, in settings where strategyproofness is not
a major concern, IM is not necessarily the optimal aggregation rule.

Besides resolving the open questions that remain, avenues for fu-
ture research include the following: (1) considering other coordinate-
wise aggregation rules or characterizing certain rules within this
class, (2) studying other classes of aggregation rules, (3) investigat-
ing other disutility models (e.g., �2 or �∞ norms), and (4) finding
a suitable analog of Nash welfare in this setting and exploring its
axiomatic properties.
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