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Abstract. We develop a game-theoretical model of a classroom
scenario, where n students collaborate on a common task. We assume
that there exists an objective truth known to the students but not to the
course instructor. Each of the students estimates the contributions of
all team members and reports her estimates to the instructor. Thus,
a matrix A of peer evaluations arises and the instructor’s task is to
grade students individually based on peer evaluations.

The method of deriving individual grades from the matrix A is
supposed to be psychometrically valid and reliable. We argue that
mathematically it means that 1) the collective truth-telling is a strict
Nash equilibrium and 2) individual grade of student i does not de-
pend on the true contribution of student j for j �= i.

Existing methods of peer evaluation commonly used in educa-
tional practice fail to satisfy at least one of these properties. We
construct a new method of peer evaluation satisfying both desired
properties for n ≥ 5. We share a large dataset (1201 students, 220
teams, 6619 evaluations) of peer evaluations collected in undergrad-
uate courses taught by the author, outline some practical challenges,
and show how these challenges can be addressed.

1 Introduction

A vast body of literature exists on methods of assessment in tertiary
education ([20]). In practice, however, written final exams prevail,
even though most students will never take an exam in their life after
graduation and therefore exam grades are hardly able to capture the
true potential of a student to thrive in a complex work environment.

Even though most people never take formal exams after leaving
school, working in teams and writing reports are typical job tasks.
Teamwork and report writing are taught at universities, but grading
every individual student fairly based on a team’s report is a challenge.
For instance, if all the team members get the same grade, then a free-
rider problem may occur — see [14], [12], [5], or [1].

The most obvious solution to the free-rider problem is peer evalua-
tion ([7]). The simplest and yet popular approach to peer evaluation is
letting each student grade contribution of each of the team members
in absolute terms, i.e., out of 10, a 100, as A, B, C or in a similar way
— see [11], [16], [18], or [4]. According to our experience, peer eval-
uation in absolute terms results in almost all students giving maximal
scores to each other just not to jeopardize their friends’ final grades.
Thavikulwat and Chang criticize the whole idea of peer evaluation
in [23] and propose to replace it with a different procedure based on
students choosing their preferred group size.
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There exist sophisticated peer evaluation systems. The system de-
scribed in [5] is based on each student allocating a certain number of
points between their teammates. Kauffman et al. introduce in [13] a
mixed system where students give each other ratings from a list of
nine terms such as "excellent", "very good" etc. but these ratings are
then converted into a numeric value by dividing everyone rating by
the team’s average.

A system of peer evaluation is a procedure of calculating the "true”
(at least, as it is perceived by team members) contribution of each of
the team members to the common task based on mutual evaluations
reported by team members. A system of peer evaluation may or may
not have certain desired qualities. Among most important sought–
after qualities of educational assessment are validity, reliability, and
practicality ([10], [17], [19]).

A valid assessment measures what it is supposed to measure. For
example, a test on factual knowledge cannot be a valid assessment for
critical thinking. Likewise, a system of peer evaluation that allows
students to manipulate their own scores by purposely lying about the
contributions of their teammates is not valid since it assesses a skill
of clever deception rather than honest teamwork.

A reliable assessment yields the same results each time it is used
in the same setting. For example, an oral exam where a student is
supposed to explain a randomly picked topic from the syllabus is not
reliable since the grade of a student who learned half of the syllabus
will depend on random chance. In terms of assessing individual con-
tribution to teamwork, all students who worked in a team of, say, 5
and who contributed, say, 25% of the total team effort (i.e., more than
the average in their respective teams), should get the same grade in
the end.

A practical assessment should be easy to implement in a real class-
room given existing constraints. For example, a written final exam is
not practical for massive open online courses. Likewise, an assess-
ment method for individual contribution to teamwork that is based
on the instructor interviewing all students rather than on peer evalu-
ation is not practical for large classes.

In this paper, we develop a mathematical model of peer evaluation
for individual contribution to teamwork. We prove that the collective
truth–telling in our model is a strict Nash equilibrium and argue that
it means that the assessment system is valid. We also show that our
assessment method is reliable. Finally, we explain how the instruc-
tor’s judgement can be integrated into our assessment method.

Individual Contributions
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2 Related works

While we are constructing a mathematical model of peer evaluation
in learning teams, there are a few superficially similar problems in
game theory literature.

The first of them is peer grading or peer assessment — see, for
example [25], [22], [9], and [24]. Despite essentially the same name,
the main scenario is completely different. In peer grading, a large
group of students is required to submit their individual work (essays,
assignments, reports etc.) to a common pool and then each student
gets to evaluate a small number of peers’ works according to cri-
teria designed by the course instructor. The challenges are to dis-
tribute grading, write clear guidelines for students, and convert sev-
eral grades given by peers to one final grade that is fair in the sense
that it must be a close approximation to a grade that the instructor
would give.

The second problem that is related to ours is peer nomination —
see, for example, [2], [3], [15]. In peer nomination, the real-life moti-
vation is a scenario where a number of researchers are competing for
grants and they themselves select proposals that are worthy of fund-
ing. This setup is somewhat similar to ours in that there is assumed
to be a ground truth — ranking, i.e., an order on the set of propos-
als. The key differences with our setup are that in peer nomination
the group is large, i.e., every agent only evaluates a fraction of other
agents’ proposals, and that the output is binary while the output in
our scenario is numeric.

The third game–theoretical problem that somehow resembles ours
is fair division — see, for example, [8] and [21]. In fair division,
n agents, too, compete for some common resource. However, the
similarity ends here. The main difference is that in fair division, each
agent has their own opinion on the value of each resource and the
objective is to distribute resources between the agents in a desirable
way. For example, it may be desired that each agent’s fraction of
resource is at least 1/n (proportional division), that everyone values
their own share at least as anyone else’s share (envy-free division)
etc. In peer evaluation of individual contribution to teamwork, the
resource (grades) is equally valued by all the agents, but there exists
a ground truth about who deserves more and who deserves less of that
resource. The main objective is to design a procedure that encourages
all agents to evaluate others consistently with the ground truth and the
main mathematical tool is a strict Nash equilibrium.

A rigorous mathematical theory of peer evaluation is outlined in
[6]. However, their theory is very broad and does not provide a spe-
cific reliable method of grading (reliability is not even mentioned).
Here, we are going to narrow the scope of the theory and, borrowing
some ideas from [6], provide a practical method of grading.

3 Mathematical Theory

3.1 Setup

We assume that n ≥ 3 students collaborate on a common goal of
completing a set of well-defined tasks and there exists the objective
truth — individual contribution of each student to teamwork. If the
true contribution of the i th student is ti, then the objective truth is
the vector

t = (t1, t2 . . . , tn) ∈ Δn−1 ⊂ R
n,

where

Δn−1 = {(t1, . . . , tn) : t1 ≥ 0, . . . , tn ≥ 0,
n∑

i=1

ti = n} ⊂ R
n

is the (n − 1)-simplex. Note that we require the mean individual
contribution rather than the sum to equal 1.

The instructor observes the final product of teamwork (e.g., a re-
port or a presentation) and evaluates the team with a score T . Intu-
itively, if the course instructor just wanted to give all students indi-
vidual scores proportional to their effort, then the "fair" score given
to student i should be ti × T .

The vector t is known to students but can’t be observed by the
instructor directly. What students report to the instructor is a matrix

A ∈ Mn×n(R≥0)

of evaluations of each student by each student, where Mn×n(R≥0)
is the set of n× n matrices with non-negative real entries. Note that
even though practical systems of peer evaluation with negative scores
exist, one can convert such a system to a system with non-negative
scores simply by taking the exponential function of each score.

Further, let the entry in row i, column j of matrix A, i.e., aij ,
be evaluation of student i by student j. Then, for each i, the vector
Ai∗ = (ai1, ai2, . . . , ain) is the vector of evaluations received by
student i and, for each j, the vector A∗j = (a1j , a2j , · · · , anj) is
the vector of evaluations reported by student j. The system of peer
evaluation should motivate students to report truthful evaluations, i.e,
A∗j should be proportional to t for all j = 1, 2, . . . , n if all students
are truthful.

Some additional conditions may be imposed on A in practice. For
example, in all practical systems of peer evaluation known to the au-
thor, students cannot report that everyone contributed nothing, i.e.,
A∗j can’t be the zero vector. Further, if self-evaluations are not col-
lected, then aii = 0 for all i. It is also often required that the sum
of evaluations reported by each student should be constant, i.e., that
A∗j ∈ Δn−1.

3.2 Mechanism

Definition 1 A mechanism (a term adopted from [6]) is an algo-
rithm for calculating the vector of individual grades, i.e., a function

f : Mn×n(R≥0) −→ Δn−1,

A = (aij)1≤i≤n,1≤j≤n �−→ f(A) = g = (g1, g2 . . . , gn).

Note that the output of the mechanism, i.e., the vector g of indi-
vidual grades may or may not be equal to the vector t of true contri-
butions.

3.3 Valid and reliable assessment

Definition 2 A mechanism is incentive–compatible if collective
truth-telling is a strict Nash equilibrium, i.e., lying decreases one’s
own score given that others tell the truth.

A mechanism is reliable if, assuming that all students report the
truth, then gi is an increasing function of ti. In particular, gi does
not depend on tj for j �= i. It means that

gi(t1, . . . , tn) = gi(t
′
1, . . . , t

′
n)

holds for two different vectors (t1, . . . , tn) and (t′1, . . . , t
′
n) as long

as ti = t′i.

We will, at least for the time being, assume that students report
their evaluations independently, i.e., they do not form coalitions. This
may sound like a strong assumption, but in practice, such coalitions
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are usually noticed by students themselves, reported to the instruc-
tor, and acted against. In that case, the only practical consideration
that will discourage them from being truthful is the possibility of
increasing their own score by deliberately reporting incorrect evalu-
ations of other students. In other words, if a mechanism is incentive-
compatible, then it translates to a valid assessment method.

To understand reliability, think of students A and B from different
teams, whose teams got the same score, and whose true individual
contribution is the same. For the assessment to be reliable, students
A and B should get the same final grade.

Now we will outline two mechanisms that are commonly used in
educational practice and show that one of them is not valid and the
other one not reliable.

Pie-to-all mechanism

The pie-to-all mechanism works as follows. Each student gets a pie
of size n and then distributes her pie among all team members, in-
cluding herself, in proportion to their contribution to the team effort.
The final individual grade of a team member is the average piece of
pie that he received from all the team members. It means that we
have

aij ≥ 0,
n∑

i=1

aij = n, gi =
1

n

n∑
j=1

aij . (1)

The pie-to-all mechanism is reliable if all students are truthful in
their evaluations of themselves and others. Indeed, if all students re-
port the truth, then the output of the mechanism is, clearly, the ob-
jective truth. It means that a hypothetical student whose contribution,
is, say, 1.1 (i.e., 10% more than the average) will get a score of 1.1
regardless of the contribution of each of her teammates.

However, the pie-to-all mechanism is not valid because it includes
self-evaluation and students have incentives to overestimate their
own contribution. In the extreme case, gi is maximized when aii = n
and aij = 0 for i �= j regardless of what the rest of the students
report. The collective truth–telling is not a Nash equilibrium. In a
practical educational setting, it is hardly possible to just claim "I did
all the work and my teammates did nothing", but the very existence
of the incentive to inflate one own’s contribution may shift the focus
of assessment from fairly evaluating everyone to cleverly justifying
one’s own high score. Still, the pie-to-all mechanism has been used
in practice — see, for example, [13].

Pie-to-others mechanism

The pie-to-others mechanism works as follows. Each student gets
one pie of size n and then distributes her pie among all her team-
mates, not including herself, in proportion to their contribution to the
team effort. The final individual grade of a team member is the aver-
age piece of pie that he received from all the team members. It means
that we have

aij ≥ 0, aii = 0,
n∑

i=1

aij = n, gi =
1

n

n∑
j=1

aij . (2)

The only difference with the pie-to-all mechanism (1) is the absence
of self-evaluation, which is expressed by aii = 0.

The pie-to-others is a very popular mechanism, probably the most
popular one. Its clear advantage is that the collective truth–telling is a
(non-strict) Nash equilibrium, for one can’t change one’s own score
by deliberately lying. However, a huge issue with the pie-to-others
mechanism is that it does not yield a reliable assessment method as
the following examples show.

Example 1 Consider a hypothetical team of three students whose
vector of true contributions is

t =

(
3

2
,
3

4
,
3

4

)
.

If everyone is truthful, the matrix of peer evaluations and the vector
of individual grades are

A =

⎡⎣ 0 2 2
3/2 0 1
3/2 1 0

⎤⎦ , g =

⎡⎣4/35/6
5/6

⎤⎦ �=
⎡⎣3/23/4
3/4

⎤⎦
We see that the pie-to-others mechanism does not output the ob-

jective truth even when all students report the truth. In our experi-
ence, students who major in mathematics figure this out and become
unhappy if they hear that they will be evaluated through the pie-to-
others mechanism. However, this does not make the pie-to-others
mechanism unreliable. To understand why it is unreliable, let us look
at one more example.

Example 2 Consider a hypothetical team of three students whose
vector of true contributions is

t =

(
3

2
,
3

2
, 0

)
.

The matrix of peer evaluations and the vector of individual grades
are

A =

⎡⎣0 3 3/2
3 0 3/2
0 0 0

⎤⎦ , g =

⎡⎣3/23/2
0

⎤⎦ = t,

which means that now all the students are fairly rewarded.

Examples 1 and 2 show that the pie-to-others mechanism is not
reliable since the contribution of the first student is the same in both
examples but her final score is different.

The unreliability of the pie-to-others mechanism is not its only
issue. The other issue comes from the fact that it is profitable for
the strongest students to just do all the work by themselves without
letting their teammates do anything. It’s then (and only then) that
they will be fairly rewarded for their hard work. In the author’s ex-
perience, this behaviour is common in real classrooms and a serious
weakness of the pie-to-others mechanism is that it incentivizes such
behaviour.

4 Reliable incentive–compatible mechanism

We assume that at most one entry of the objective truth vector t is 0,
i.e., ti+tj > 0 and aik+ajk > 0 whenever i �= j. The author admits
that this assumption may sound too strong. However, it comes from
the author’s experience and is probably specific to the cultural back-
ground. In the author’s experience, situations, when some students
do not contribute to teamwork in the beginning, are not unheard of.
However, whenever this happens, students usually communicate it to
the instructor so that he could encourage or warn non-contributing
team members to start working. Students need to get a clear message
that if they contribute nothing to teamwork, they will fail the course
but if they do a bare minimum, they will probably pass, albeit with
a low grade. A specific trick that helps is a preliminary non-graded
round of peer evaluation. Another helpful action is meeting with all
the learning teams and discussing their progress a few weeks before
the deadline.

Also, we assume that n ≥ 5. Note that our mechanism is reliable
even for n = 3 and n = 4, but we do not know even if incentive–
compatible mechanisms exist for n = 3 or n = 4.
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4.1 Relative contributions

The key ingredient of our mechanism is the relative contribution

rkij =
aik

aik + ajk
, (3)

of student i to student j according to student k. The quantity rkij is the
share of i’s contribution in the combined i’s and j’s contribution in
k’s opinion. Note that if all students are truthful, i.e., evaluations they
submit are proportional to the objective truth, then we have aik =
ckti, where ck is the coefficient of proportionality, and

rkij =
aik

aik + ajk
=

ckti
ckti + cktj

=
ti

ti + tj
.

Thus, for every i and every j �= i, we have the vector

rij =
(
r1ij , · · · , r̂iij , · · · , r̂jij , · · · , rnij ,

)
∈ R

n−2 (4)

of relative contributions, where the terms with a hat are discarded.
Note that rij + rji = (1, . . . , 1).

4.2 Auxiliary matrix

Now let

bij =

{
1, i = j,
median(rij)

median(rji)
, i �= j.

(5)

Note that bij ∈ R≥0 ∪ {∞}. We will call B = (bij)1≤i,j≤n the
auxiliary matrix for the raw peer evaluation matrix A.

Lemma 1 If all students report the truth, then

bij =
ti
tj

Note that, according to our assumption, ti and tj cannot be both
equal to 0, i.e., ti/tj ∈ R≥0 ∪ {∞}.

Proof 1 If all students report the truth, then all entries of the vector
rij are equal to ti

ti+tj
and hence the median of rij is ti

ti+tj
. In the

same manner, the median of rji is tj
ti+tj

. We can see that bij = ti/tj

if i �= j and it is obvious that bii = 1 = ti
ti

.

4.3 Perceived contributions

Now we will outline the main idea of our mechanism. Given a matrix
of peer evaluations A, we first construct the auxiliary matrix B. Note
that, if all students report the truth, then columns of B are propor-
tional to the objective truth t with the coefficient of proportionality
chosen so that bii = 1 for all i. Now, in order to extract the vector
s of perceived contributions from B, we divide each column of B
by the mean of its entries, then take row medians (here, medians are
needed to avoid issues with infinite entries that may occur when a
student contributed zero to teamwork), and normalize the result by
dividing it by its mean. Below is a worked example.

Example 3 In this example, we have a hypothetical team of 5 stu-
dents. Let the matrix of peer evaluations be

A =

⎡⎢⎢⎢⎢⎣
1 1 5 2 2
1 2 4 2 3
1 3 3 3 4
1 4 2 3 5
1 5 1 3 6

⎤⎥⎥⎥⎥⎦

Note that we do not require a common normalization. The full calcu-
lation of relative peer evaluations rkij for all i, j, k will take too much
space, so we will show r12, r21, and r23 here just to demonstrate the
method. Rows of this matrix are indexed by pairs (i, j) and columns
by k, the median of each rij is highlighted:

i j 1 2 3 4 5
1 2 5/9 1/2 2/5
2 1 4/9 1/2 3/5
2 3 1/2 2/5 3/7

The auxiliary matrix B whose entries are row medians of R and their
inverses is

B =

⎡⎢⎢⎢⎢⎣
1 1 1/2 2/5 2/3
1 1 3/4 1 1
2 4/3 1 4/5 1

5/2 1 5/4 1 1
3/2 1 1 1 1

⎤⎥⎥⎥⎥⎦
Its normalized version with 2 decimal places and highlighted row
medians is

Bnorm =

⎡⎢⎢⎢⎢⎣
0.63 0.94 0.56 0.48 0.71
0.63 0.94 0.83 1.19 1.07
1.25 1.25 1.11 0.95 1.07
1.56 0.94 1.39 1.19 1.07
0.94 0.94 1.11 1.19 1.07

⎤⎥⎥⎥⎥⎦
The vector of perceived contributions is the normalized vector of row
medians, i.e.,

s = (0.63, 0.95, 1.13, 1.21, 1.09).

Note that our method of calculating perceived contributions still
works if the contribution of one student is 0 and other students report
it as 0. In that case, one column of B will have infinite entries and
it will be impossible to normalize that column, but row medians will
be well-defined.

Lemma 2 Consider the mechanism f(A) = s, where s is the vector
of perceived contributions calculated as described above. Let n ≥ 5
and suppose that n− 1 out of n students report evaluations that are
perfectly consistent, i.e., n− 1 out of n columns of the matrix A are
proportional to each other. Then s is independent of the remaining
column of A, i.e., evaluations reported by the last student don’t affect
the vector s of perceived contributions.

Proof 2 If n ≥ 5, then each rij has at least 3 entries. If all students
but one report perfectly consistent evaluations, then all but one en-
tries of rij are equal. Changing the remaining entry won’t change
the median of rij and hence can’t change the auxillary matrix B,
from which s is calculated.

Note that Lemma 2 implies that the collective truth–telling is a
(non-strict) Nash equilibrium if n ≥ 5.

4.4 Relative error of reported evaluations

Consider a peer evaluation matrix A and the vector of perceived con-
tributions s calculated as described in section 4.3. Consider normal-
ized columns of A, i.e.,

vij =
naij∑n
i=1 aij

F. Duzhin / Learning in Teams: Peer Evaluation for Fair Assessment of Individual Contributions 609



Then
vj = (v1j , v2j , . . . , vnj) ∈ Δ(n−1)

is j th version of truth and ∣∣∣∣vij − si
si

∣∣∣∣
is the relative error of evaluation of student i by student j. Let

Ej =
1

n

n∑
i=1

∣∣∣∣vij − si
si

∣∣∣∣ (6)

be the average relative error of student j’s version of truth. Notice
that Ej = 0 if and only if vj = s, i.e., evaluations reported by j are
perfectly consistent with perceived contributions s. It may happen
that si = 0 for some i (we assume that at most one entry of s is 0).
In that case, our convention is that 0/0 = 0 and 1/0 = n.

4.5 Our mechanism

Finally, our mechanism takes into account the vector of perceived
contributions s calculated as described in section 4.3 and consistency
of every student’s version of truth with s defined by (6). The final
grade of student j is

gj = (1− ε)sj + εmax(1− Ej , 0), (7)

where ε > 0 is some small number. The author sets ε = 0.05 in
his classroom, but the exact value of ε is not important. Note that
the mean grade is less than 1 unless all students report perfectly con-
sistent evaluations. In the author’s experience, the fact that the mean
grade is less than 1 does not lead to any practical issues. However, the
vector of final grades calculated according to (7) can be normalised
if needed.

Lemma 3 Consider the mechanism defined by (7). The collective
truth–telling is a strict Nash equilibrium if n ≥ 5.

Proof 3 Suppose that all but one student report the truth, i.e., A∗j is
proportional to t for all j �= k. According to Lemma 2, it follows that
s = t regardless of evaluations A∗k reported by k. Thus, the grade
of student k is

gk = (1− ε)tk + εmax(1− Ek, 0)

and it is maximized if and only if Ek = 0, which happens if and only
if evaluations k reports are also perfectly consistent with the truth.

Theorem 1 The mechanism defined by (7) is incentive–compatible
and reliable.

Proof 4 Incentive compatibility is Lemma 3. Reliability of our mech-
anism follows from Lemma 1.

5 Practical considerations

5.1 Instructor’s judgment

It is not realistic to expect that actual students will be completely
truthful and accurate in their evaluations. It is therefore desirable to
have some procedure of discrediting evaluations that are not trust-
worthy.

Our solution is that students not only give numeric evaluations
to each other, but also provide justifications, i.e., write short ex-
planations on why they gave a particular evaluation. The instructor
will then read these explanations and give each a score for trust-
worthiness. Let the instructor’s score for justification of evaluation
given to student i by student j be wij .

The scores wij are then used in the updated definition of the aux-
iliary matrix B as follows. We begin with (4), the familiar definition
of vectors of relative contribution rij , but now we introduce weights
into it. The relative contribution of students i and j according to k,
i.e.,

aik

aik + ajk

is now an entry of rij with weight wik + wjk. Equation (5) that de-
fines bij via medians of rij will now use weighted medians instead.
The rest of our mechanism, i.e., the definition of the auxiliary matrix
B, the vector of perceived evaluations s, the errors Ej of evaluations
reported by j, and the vector of final grades g remain unchanged.

In practice, we use non-negative integers as scores given by the
instructor to students’ explanations of their evaluations, which means
that the weighted median is simply the median of the vector obtained
from rij by repeating each of its entries as many times as the weight
of the entry. However, this is not important and other instructors can
use non-integer weights if they think it is more appropriate.

5.2 Missing values

In practice, students may fail to submit evaluations of some or all
of their teammates, i.e., an actual matrix A may have missing val-
ues. If student j did not submit evaluations at all, then the instructor
will just set wij = 0 and aij = 1 for all i, i.e., grades will be
calculated as if student j reported that all team members contributed
equally to teamwork, but her evaluations are just ignored in the calcu-
lation of the vector of perceived contributions. If student j submitted
evaluations of some but not all of her teammates, then the instructor
will set missing evaluations to be the average of existing evaluations
with, again, zero scores for trustworthiness. Our mechanism remains
incentive compatible if at least 5 and reliable if at least 3 students
submit their evaluations.

5.3 Coalitions

In practice, coalitions may occur. For instance, if two friends are in
the same team, they may be tempted to give each other unfairly high
evaluations. Our assessment mechanism prevents this behaviour on
several levels.

First, from the proof of Lemma 2, it is clear that its stronger ver-
sion actually holds — namely, in a team of n students, if n − c are
perfectly consistent in their evaluations, then the remaining c can’t
change the vector s of perceived contributions if c ≤ n−2

2
. It means

that teams of 7 or 8 students are resistant to coalitions of size 2, teams
of 9 or 10 students are resistant to coalitions of size 3 etc.

Second, students know that a part of their final grade is given for
consistency of evaluations they report with the vector of perceived
truth. It means that two friends are explicitly discouraged from giv-
ing each other unfairly high evaluations because they know that by
giving each other too generous evaluations they will sacrifice a part
of their grades. At the same time, their mutual evaluations aij and
aji won’t affect the median of rij , i.e., they can’t be confident that
their evaluations of each other will actually increase their grades.

Third, if the instructor suspects a coalition, he can reduce the
weight of evaluations reported by students involved in the coalition.

F. Duzhin / Learning in Teams: Peer Evaluation for Fair Assessment of Individual Contributions610



6 Empirical results

6.1 Educational setup

Between 2017 and 2021, the author taught a number of relatively
large undergraduate courses where a main assessment component
(between 35% and 50% of the total course mark) was a team project.
Teams had 5 or 6 students. Some teams were formed by students
themselves and some by the author. Most students majored in math-
ematics.

Individual contribution to team project was assessed by some ver-
sion of mechanism (7). The author also graded the final product of
teamwork, i.e., a report and a presentation, according to a rubric.
Final individual grade to student i for the project was given by the
formula

0.9× (q + (1− q)si)× T + 0.05× ei + 0.05×max(1− Ei, 0),

where si is the perceived contribution of student i calculated as de-
scribed in section 4.3, Ei is the relative error of evaluations submitted
by i defined by (6), ei is the average score given by the instructor to
student i for providing justifications for evaluations that i reported, T
is the score given to the whole team according to the rubric, and q is
a hyperparameter defining the trade-off between two extremes — all
team members get the same score and team members who contribute
very little get a near-zero score. The value of q in the courses taught
by the author varied between 0 and 0.5, depending on the university’s
current policies.

We anonymized the data by assigning random identifiers to
courses, students, and teams. The summary is given in Table 1.

Table 1. Information on the courses taught by the author the data were
collected from — the number of students, the number of teams, and the

number of records (evaluations) for each course are given.

course ID Students Teams Records
1 HV 210 38 1170
2 LS 175 32 965
3 QN 210 38 1170
4 RS 163 30 895
5 TD 190 36 1016
6 XY 253 46 1403

Total 1201 220 6619

6.2 Data

We collected peer evaluations in each team, normalised the matrix
of peer evaluations dividing each column by its mean, and computed
the vector of perceived truth in each case. The full dataset is available
here: http://peerdata.kdl.me/

6.3 Statistics

Do we actually need a non-trivial method for assessing individual
contributions to teamwork? Let us look at statistics. First, 28 out
220, or 13% of teams in our undergraduate courses submitted all
equal evaluations (aik = ajk for all i, j, k), i.e., all students in those
teams were fine with getting equal grades for the project. Out of all
1201 students, 11, or 1%, contributed nothing to teamwork, i.e., their
perceived contribution was 0.

Further, there are 192 teams who reported non-equal evaluations.
Out of 1048 students in those teams, 134, or 13% still reported all
equal evaluations (i.e., aik = ajk for all i, j and for a given k); 46,

or 4% reported incomplete evaluations (at least one aik is undefined
for a given k); and 30, or 2% did not report peer evaluations at all (all
aik are undefined for a given k). Now if we exclude all students who
reported equal peer evaluations and students who missed at least one
evaluation, there still remain 886, or 72% of 1201 students who have
put some serious thought into the peer evaluation exercise.

It means that some method for grading individual contributions to
teamwork is very important for educational practice.

6.4 Consistency of empirical evaluations

To understand to which extent our model of teamwork is applicable
to real life, let us do some data analysis. Our "ideal" assumption is
that there exists a vector t of objective truth whose entries are ac-
tual contributions of all the team members to teamwork and that the
vector t is known to students. If it were the case and if all students re-
ported the truth, then all matrices of peer evaluation would have rank
1. Of course, this is not observed in practice — everyone has their
own version of the truth, which leads to all sorts of disagreements
between evaluators.

For every two students from the same team, we can measure how
well their versions of truth agree. To do it, we compute the Spear-
man correlation coefficient between evaluations reported by them.
The Spearman correlation coefficient measures the strength of mono-
tonic relationship between two variables. It equals 1 if and only if two
students rank all team members from highest to lowest in exactly the
same order and −1 if and only if two students rank all team members
in the opposite order.

Our dataset contains 1704 pairs of evaluators for whom the Spear-
man correlation coefficient can be computed. This excludes students
who submitted all equal evaluations, students who did not complete
peer evaluation, and self-evaluations. The histogram of empiric cor-
relations is shown in Figure 1.

We can tell that a good number of evaluations are quite consistent.
To interpret Figure 1, let us think of a simplified scenario, in which
some students try to fairly and honestly evaluate their team members’
contributions to teamwork and the rest of the students just submit
some rubbish evaluations. Let’s say that we expect the correlation
between honest evaluators to be 0.8 or above and that the fraction of
honest evaluators is q. Then the fraction of correlations that are 0.8
or above will be q2. The empirical fraction of correlations that are
0.8 or above is 0.54, i.e., 73% of students are honest evaluators.
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Figure 1. Empirical distribution of the correlation coefficient between
pairs of different evaluators.

The fraction of 73% of honest evaluators found here is consistent
with the 72% of students who submitted non-equal evaluations found
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in the previous section. In either case, it seems that at least 70% of
students take the peer evaluation exercise seriously.

6.5 Justifications

We also required students to justify their evaluations by writing a
short testimonial that reflects on the contribution of the evaluatee, her
strengths, and suggestions for improvement. Here is an example of
such a justification (it comes with a score of 0.8, i.e., below average):

[NAME] has played his part by contributing to the introduction
and literature review portion of the project. He has been proac-
tive in discussions and tries his best to help us out if we have
any doubts. He has good interpersonal skills and is a comfort-
able team member to work with. However, one area of improve-
ment could be diligence as he could have put in more effort in
his work.

The instructor read all such justifications and assigned them scores
for trustworthiness according to the following rule: 5 out of 10 if
there is an explanation of the contribution of the student who is evalu-
ated, 3 for strengths, and 2 for suggestions for improvement. It means
that the score for the testimonial cited above was 10 out of 10.

To scale our method of assessing individual contribution to team-
work to very large classes, including massive open online courses,
one can train an AI that will assign trustworthiness scores to justi-
fications of peer evaluations automatically. This is, however, a topic
for a different study.

7 Discussion

We have introduced a mathematical model of teamwork with the
main objective of developing a valid, reliable, and practical assess-
ment method of individual contribution to teamwork. The main as-
sumption is that there exists an objective truth — a vector t whose
entries measure individual contributions to teamwork precisely. Our
empirical results show that this idealistic assumption is not too far
from reality.

We defined mathematically desirable properties of an assessment
method, namely, incentive compatibility (called validity in psycho-
metrics) and reliability. Then we have argued that existing assess-
ment methods that are widely used in actual classrooms do not satisfy
these properties.

We then introduced a new assessment method that is incentive–
compatible and reliable for teams of at least 5 students such that at
most one of the students contributes nothing to teamwork. We proved
that our assessment method is incentive–compatible by showing that
the collective truth–telling is a strict Nash equilibrium. Since the ob-
jective truth is unobservable, it means that any matrix of peer eval-
uations of rank 1 is a strict Nash equilibrium. However, we do not
know if other Nash equilibria exist and we do not know if incentive–
compatible assessment methods exist if the number of students in the
team is 3 or 4.
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