
Worrisome Properties of Neural Network Controllers
and Their Symbolic Representations

Jacek Cyranka a;*, Kevin E M Churchb and Jean-Philippe Lessardc

aInstitute of Informatics, University of Warsaw
bCentre de Recherches Mathématiques, Université de Montréal
cDepartment of Mathematics and Statistics, McGill University

Abstract. We raise concerns about controllers’ robustness in sim-
ple reinforcement learning benchmark problems. We focus on neural
network controllers and their low neuron and symbolic abstractions.
A typical controller reaching high mean return values still generates
an abundance of persistent low-return solutions, which is a highly
undesirable property, easily exploitable by an adversary. We find that
the simpler controllers admit more persistent bad solutions. We pro-
vide an algorithm for a systematic robustness study and prove exis-
tence of persistent solutions and, in some cases, periodic orbits, using
a computer-assisted proof methodology.

1 Introduction

The study of neural network (NN) robustness properties has a long
history in the research on artificial intelligence (AI). Since establish-
ing the existence of so-called adversarial examples in deep NNs in
[14], it is well known that NN can output unexpected results by
slightly perturbing the inputs and hence can be exploited by an adver-
sary. Since then, the robustness of other NN architectures has been
studied [44]. In the context of control design using reinforcement
learning (RL), the robustness of NN controllers has been studied
from the adversarial viewpoint [29, 42]. Due to limited interpretabil-
ity and transparency, deep NN controllers are not suitable for de-
ployment for critical applications. Practitioners prefer abstractions of
deep NN controllers that are simpler and human-interpretable. Sev-
eral classes of deep NN abstractions exist, including single layer or
linear nets, programs, tree-like structures, and symbolic formulas. It
is hoped that such abstractions maintain or improve a few key fea-
tures: generalizability – the ability of the controller to achieve high
performance in similar setups (e.g., slightly modified native simula-
tor used in training); deployability – deployment of the controller in
the physical world on a machine, e.g., an exact dynamical model is
not specified and the time horizon becomes undefined; verifiability –
one can verify a purported controller behavior (e.g., asymptotic sta-
bility) in a strict sense; performance – the controller reaches a very
close level of average return as a deep NN controller.

In this work, we study the robustness properties of some symbolic
controllers derived in [24] as well as deep NNwith their a few neuron
and symbolic abstractions derived using our methods. By robustness,
we mean that a controller maintains its average return values when
changing the simulator configuration (scheme/ time-step) at test time

∗ Corresponding Author. Email: jcyranka@gmail.com

while being trained on some specific configuration. Moreover, a ro-
bust controller does not admit open sets of simulator solutions with
extremely poor return relative to the average. In this regard, we found
that NNs are more robust than simple symbolic abstractions, still
achieving comparable average return values. To confirm our find-
ings, we implement a workflow of a symbolic controller derivation:
regression of a trained deep NN and further fine-tuning. For the sim-
plest benchmark problems, we find that despite the controllers reach-
ing the performance of deep NNs measured in terms of mean return,
there exist singular solutions that behave unexpectedly and are per-
sistent for a long time. In some cases, the singular solutions are per-
sistent forever (periodic orbits). The found solutions are stable and
an adversary having access to the simulation setup knowing the ex-
istence of persistent solutions and POs for specific setups and initial
conditions may reconfigure the controlled system and bias it towards
the bad persistent solutions; resulting in a significant performance
drop, and if the controller is deployed in practice, may even lead to
damage of robot/machine. This concern is critical in the context of
symbolic controllers, which are simple abstractions more likely to be
deployed on hardware than deep NNs. Two systems support the ob-
served issues. First, the standard pendulum benchmark from OpenAI
gym [4] and the cartpole swing-up problem.

Each instance of an persistent solution we identify is verified math-
ematically using computer-assisted proof (CAP) techniques based on
interval arithmetic [27, 38] implemented in Julia [3]. Doing so, we
verify that the solution truly exists and is not some spurious object re-
sulting from e.g., finite arithmetic precision. Moreover, we prove the
adversarial exploitability of a wide class of controllers. The existence
of persistent solutions is most visible in the case of symbolic con-
trollers. For deep NN, persistent solutions are less prevalent, and we
checked that deep NN controllers’ small NN abstractions (involving
few neurons) somewhat alleviate the issue of symbolic controllers,
strongly suggesting that the robustness is inversely proportional to
the number of parameters, starkly contrasting with common beliefs
and examples in other domains.

Main Contributions. Let us summarize the main novel contribu-
tions of our work to AI community below.

Systematic controller robustness study. In light of the average re-
turn metric being sometimes deceptive, we introduce a method for
investigating controller robustness by designing an persistent solu-
tions search and the penalty metric.

Identification and proofs of abundant persistent solutions. We sys-

ECAI 2023
K. Gal et al. (Eds.)
© 2023 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA230311

517

tematically find and prove existence of a concerning number of per-
sistent orbits for symbolic controllers in simple benchmark problems.
Moreover, we carried out a proof of a periodic orbit for a deep NN
controller, which is of independent interest. To our knowledge, this
is the first instance of such a proof in the literature.

NN controllers are more robust than symbolic. We find that the
symbolic controllers admit significantly more bad persistent solu-
tions than the deep NN and small distilled NN controllers.

1.1 Related Work

(Continuous) RL. A review of RL literature is beyond the scope of
this paper (see [34] for an overview). In this work we use state-of-
the-art TD3 algorithms dedicated for continuous state/action spaces
[12] based on DDPG [25]. Another related algorithm is SAC [16].

Symbolic Controllers. Symbolic regression as a way of obtaining
explainable controllers appeared in [22, 20, 24]. Other representa-
tions include programs [39, 37] or decision trees [26]. For a broad
review of explainable RL see [41].

Falsification of Cyber Physical Systems (CPS) The research on fal-
sification [2, 10, 40, 43] utilizes similar techniques for demonstrating
the violation of a temporal logic formula, e.g., for finding solutions
that never approach the desired equilibrium. We are interested in so-
lutions that do not reach the equilibrium but also, in particular, the
solutions that reach minimal returns.

Verification of NN robustness using SMT Work on SMT like Re-
LUplex [5, 11, 21] is used to construct interval robustness bounds
for NNs only. In our approach we construct interval bounds for so-
lutions of a coupled controller (a NN) with a dynamical system and
also provide existence proofs.

Controllers Robustness. Design of NN robust controllers focused
on adversarial defence methods [29, 42].

CAPs. Computer-assisted proofs for ordinary differential equa-
tions (ODEs) in AI are not common yet. Examples include validation
of NN dynamics [23] and proofs of spurious local minima [32].

1.2 Structure of the Paper

Section 2 provides background on numerical schemes and RL frame-
work used in this paper. Section 3 describes the training workflow for
the neural network and symbolic controllers. The class of problems
we consider is presented in Section 4. We describe the computer-
assisted proof methodology in Section 5. Results on persistent peri-
odic orbits appear in Section 6, and we describe the process by which
we search for these and related singular solutions in Section 7.

2 Preliminaries

2.1 Continuous Dynamics Simulators for AI

Usually, there is an underlying continuous dynamical system with
control input that models the studied problem s′(t) = f(s(t), a(t)),
where s(t) is the state, a(t) is the control input at time t, and f is
a vector field. For instance, the rigid body general equations of mo-
tion in continuous time implemented in robotic simulators like Mu-
JoCo [36] are Mv′ + c = τ + JT f , J, f is the constraint Jacobian
and force, τ is the applied force, M inertia matrix and c the bias
forces. For training RL algorithms, episodes of simulated rollouts
(s0, a0, r1, s1, . . .) are generated; the continuous dynamical system
needs to be discretized using one of the available numerical schemes
like the Euler or Runge-Kutta schemes [17]. After generating a state
rollout, rewards are computed rk+1 = r(sk, ak). The numerical

schemes are characterized by the approximation order, time-step, and
explicit/implicit update. In this work, we consider the explicit Euler
(E) scheme sk+1 = sk + hf(sk, ak); this is a first-order scheme
with the quality of approximation being proportional to time-step h
(a hyperparameter). Another related scheme is the so-called semi-
implicit Euler (SI) scheme, a two-step scheme in which the velocities
are updated first. Then the positions are updated using the computed
velocities. Refer to the appendix for the exact form of the schemes.

In the research on AI for control, the numerical scheme and time-
resolution1 of observations h are usually fixed while simulating
episodes. Assume we are given a controller that was trained on sim-
ulated data generated by a particular scheme and h; we are interested
in studying the controller robustness and properties after the zero-
shot transfer to a simulator utilizing a different scheme or h, e.g.,
explicit to semi-implicit or using smaller h’s.

2.2 Reinforcement Learning Framework

Following the standard setting used in RL, we work with a Markov
decision process (MDP) formalism (S,A, F, r, ρ0, γ), where S is a
state space, A is an action space, F : S × A → S is a deterministic
transition function, r : S × A → R is a reward function, ρ0 is an
initial state distribution, and γ ∈ (0, 1) is a discount factor used in
training. S may be equipped with an equivalence relation, e.g. for
an angle variable θ, we have θ ≡ θ + k2π for all k ∈ Z. In RL,
the agent (policy) interacts with the environment in discrete steps
by selecting an action at for the state st at time t, causing the state
transition st+1 = F (st, at); as a result, the agent collects a scalar
reward rt+1(st, at), the (undiscounted) return is defined as the sum
of discounted future reward Rt =

∑T
i=t r(si, ai) with T > 0 be-

ing the fixed episode length of the environment. RL aims to learn
a policy that maximizes the expected return over the starting state
distribution.

In this work, we consider the family of MDPs in which the transi-
tion function is a particular numerical scheme. We study robustness
w.r.t. the scheme; to distinguish the transition function used for train-
ing (also called native) from the transition function used for testing,
we introduce the notation Ftrain and Ftest resp. e.g. explicit Euler
with time-step h is denoted F∗(E, h), where ∗ ∈ {test, train}.

3 Algorithm for Training of Symbolic Controllers
and Small NNs

Carrying out the robustness study of symbolic and small NN con-
trollers requires that the controllers are first constructed (trained).
We designed a three-step deep learning algorithm for constructing
symbolic and small NN controllers. Inspired by the preceding work
in this area the controllers are derived from a deep RL NN controller.
The overall algorithm is summarized in Alg. 1.

3.1 RL Training

First we train a deep NN controller using the state-of-the-art model-
free RL algorithm TD3 [25, 12] – the SB3 implementation [30]. We
choose TD3, as it utilizes the replay buffer and constructs determinis-
tic policies (NN). Plots with the evaluation along the training proce-
dure for studied systems can be found in Appendix C of the extended
version of the paper [8].

1 While in general time-resolution may not be equal to the time step, in this
work we set them to be equal.

J. Cyranka et al. / Worrisome Properties of Neural Network Controllers and Their Symbolic Representations518

Algorithm 1 Symbolic/Small NN Controllers Construction

input MDP determining studied problem; RL training h-params;
symbolic & small NN regression h-params; fine-tuner h-params;

output deep NN policy πdeep; small NN policy πsmall; family of
symbolic policies {πsymb,k} (k complexity);

1: Apply an off-policy RL algorithm for constructing a determinis-
tic deep NN policy πdeep;

2: Using the replay buffer data apply symbolic regression for com-
puting symbolic abstractions {πsymb,k} (having complexity k)
of deep NN controller and MSE regression for small NN πsmall

policy distillation;
3: Fine-tune the constructed controllers parameters for maximizing

the average return using CMA-ES and/or analytic gradient.

3.2 Symbolic Regression

A random sample of states is selected from the TD3 training replay
buffer. Symbolic abstractions of the deep NN deterministic policies
are constructed using the symbolic regression over the replay buffer
samples. Following earlier work [22, 20, 24] the search is performed
by an evolutionary algorithm. For such purpose, we employ the PySR
Python library [6, 7]. The main hyperparameter of this step is the
complexity limit (number of unary/binary operators) of the formulas
(k in Alg. 1). This procedure outputs a collection of symbolic repre-
sentations with varying complexity. Another important hyperparam-
eter is the list of operators used to define the basis for the formulas.
We use only the basic algebraic operators (add, mul., div, and multip.
by scalar). We also tried a search involving nonlinear functions like
tanh, but the returns were comparable with a larger complexity.

3.3 Distilling Simple Neural Nets

Using a random sample of states from the TD3 training replay buffer
we find the parameters of the small NN representation using the
mean-squared error (MSE) regression.

3.4 Controller Parameter Fine-tuning

Just regression over the replay buffer is insufficient to construct con-
trollers that achieve expected returns comparable with deep NN con-
trollers, as noted in previous works. The regressed symbolic con-
trollers should be subject to further parameter fine-tuning to max-
imize the rewards. There exist various strategies for fine-tuning.
In this work, we use the non-gradient stochastic optimization co-
variance matrix adaptation evolution strategy (CMA-ES) algorithm
[19, 18]. We also implemented analytic gradient optimization, which
takes advantage of the simple environment implementation, and per-
forms parameter optimization directly using gradient descent on the
model rollouts from the differentiable environment time-stepping im-
plementation in PyTorch.

4 Studied Problems

We perform our experimental investigation and CAP support in the
setting of two control problems belonging to the set of standard
benchmarks for continuous optimization. First, the pendulum prob-
lem is part of the most commonly used benchmark suite for RL –
OpenAI gym [4]. Second, the cart pole swing-up problem is part of
the DeepMind control suite [35]. Following the earlier work [13] we
used a closed-form implementation of the cart pole swing-up prob-
lem. While these problems are of relatively modest dimension, com-
pared to problems in the MuJoCo suite, we find them most suitable

to convey our message. The low system dimension makes a self-
contained cross-platform implementation easier and eventually pro-
vides certificates for our claims using interval arithmetic and CAPs.

4.1 Pendulum

The pendulum dynamics is described by a 1d 2nd order nonlinear
ODE. We followed the implementation in OpenAI gym, where the
ODEs are discretized with a semi-implicit (SI) Euler method with
h = 0.05. For training we useFtrain(SI, 0.05). Velocityω is clipped
to the range [−8, 8], and control input a to [−2, 2]. There are several
constants: gravity, pendulum length and mass (g, l,m), which we
set to defaults. See Appendix A ([8]) for the details. The goal of
the control is therefore to stabilize the up position θ = 0 mod 2π,
with zero angular velocity ω. The problem uses quadratic reward for
training and evaluation r = −�θ�2−0.1ω2−0.001a2, where �θ� =
arccos(cos(θ)) at given time t and action a. The episode length is
200 steps. The max reward is 0, and large negative rewards might
indicate long-term simulated dynamics that are not controlled.

4.2 Cartpole Swing-up

The cartpole dynamics is described by a 2d 2nd order nonlinear
ODEs with two variables: movement of the cart along a line (x, x′),
and a pole attached to the cart (θ, θ′). We followed the implementa-
tion given in [15]. The ODEs are discretized by the explicit Euler (E)
scheme with h = 0.01. As with the pendulum we use clipping on
some system states, and several constants are involved, which we set
to defaults. See Appendix B ([8]) for details. The goal of the control
is to stabilize the pole upwards θ = 0 mod 2π while keeping the
cart x within fixed boundaries. The problem uses a simple formula
for reward r = cos θ, plus the episode termination condition if |x| is
above threshold. The episode length is set to 500, hence the reward
is within [−500, 500]. Large negative reward is usually indicative
of undesirable behaviour, with the pole continuously oscillating, the
cart constantly moving, and escaping the boundaries fairly quickly.

5 Rigorous Proof Methodology

All of our theorems presented in the sequel are supported by a
computer-assisted proof, guaranteeing that they are fully rigorous
in a mathematical sense. Based on the existing body of results and
our algorithm we developed in Julia, we can carry out the proofs
for different abstractions and problems as long as the set of points
of non-differentiability is small, e.g., it works for almost all prac-
tical applications: ReLU nets, decision trees, and all sorts of prob-
lems involving dynamical systems in a closed form. The input to our
persistent solutions prover is a function in Julia defining the con-
trolled problem, the only requirement being that the function can be
automatically differentiated. To constitute a proof, this part needs to
be carried out rigorously with interval arithmetic. Our CAPs are au-
tomatic; once our searcher finds a candidate for a persistent solu-
tion/PO, a CAP program attempts to verify the existence of the so-
lution/PO by verifying the theorem (Theorem 1) assumptions. If the
prover succeeds this concludes the proof.

5.1 Interval Arithmetic

Interval arithmetic is a method of tracking rounding error in nu-
merical computation. Operations on floating point numbers are in-
stead done on intervals whose boundaries are floating point num-

J. Cyranka et al. / Worrisome Properties of Neural Network Controllers and Their Symbolic Representations 519

bers. Functions f of real numbers are extended to functions f de-
fined on intervals, with the property that f(X) necessarily contains
{f(x) : x ∈ X}. The result is that if y is a real number and Y is a
thin interval containing y, then f(y) ∈ f(Y). For background, the
reader may consult the books [27, 38]. Function iteration on intervals
leads to the wrapping effect, where the radius of an interval increases
along with composition depth. See Figure 1 for a visual.

episode
0 500 1000

0

1

2

3

4

episode
0 500 1000

lo
g(
r)

-100

-50

0

Figure 1: Left: midpoint of interval enclosure of a proven persistent
solution (see Appendix Tab. 23 [8]). Right: log-scale of radius of the
interval enclosure. Calculations done at 163 bit precision, the mini-
mum possible for this solution at episode length 1000.

5.2 Computer-assisted Proofs of Periodic Orbits

For x = (x1, . . . , xn), let ||x|| = max{|x1|, . . . , |xn|}. The follow-
ing is the core of our CAPs.

Theorem 1 Let G : U → R
n be continuously differentiable, for U

an open subset of Rn. Let x ∈ R
n and r∗ ≥ 0. Let A be a n × n

matrix2 of full rank. Suppose there exist real numbers Y , Z0 and Z2

such that

||AG(x)|| ≤ Y, (1)

||I −ADG(x)|| ≤ Z0 (2)

sup
|δ|≤r∗

||A(DG(x+ δ)−DG(x))|| ≤ Z2, (3)

where DG(x) denotes the Jacobian of G at x, and the norm on ma-
trices is the induced matrix norm. If Z0 +Z2 < 1 and Y/(1−Z0 −
Z2) ≤ r∗, the map G has a unique zero x satisfying ||x − x|| ≤ r
for any r ∈ (Y/(1− Z0 − Z2), r∗].

A proof can be completed by following Thm 2.1 in [9]. In Sec. 5.3,
we identify G whose zeroes correspond to POs. Conditions (1)–(3)
imply that the Newton-like operator T (x) = x − AG(x) is a con-
traction on the closed ball centered at the approximate zero x with
radius r > 0. Being a contraction, it has a unique fixed point (x such
that x = T (x)) by the Banach fixed point theorem. AsA is full rank,
G(x) = 0, hence an orbit exists. The radius r measures how close
the approximate orbit x is to the exact orbit, x. The contraction is rig-
orously verified by performing all necessary numerical computations
using interval arithmetic. The technical details appear in Appendix D
([8]).

5.3 Set-up of the Nonlinear Map

A PO is a finite MDP trajectory. Let the step size be h, and let the
period of the orbit be m. We present a nonlinear map that encodes
(as zeroes of the map) POs when h is fixed. However, for technical

2 In practice, a numerical approximation A ≈ DF (x)−1.

reasons (see Appendix E [8]), it is possible for such a proof to fail. If
Alg. 2 fails to prove the existence of an orbit with a fixed step size h,
we fall back to a formulation where the step size is not fixed, which
is more likely to yield a successful proof. This alternative encoding
map G2 is presented in Appendix D ([8]). Given h, pick g(h, ·) ∈
{gE, gSI} one of the discrete dynamical systems used for numerically
integrating the ODE. Let p be the dimension of the state space, so
g(h, ·) : R

p → R
p. We interpret the first dimension of Rp to be

the angular component, so that a periodic orbit requires a shift by
a multiple of 2π in this variable. Given h, the number of steps m
(i.e. period of the orbit) and the number of signed rotations j in the
angular variable, POs are zeroes of the map (if and only if) G1 :
R

pm → R
pm, defined by

G1(X) =

⎛
⎜⎜⎜⎜⎜⎝

x0 − g(h, xm) + (j2π,0)
x1 − g(h, x0)
x2 − g(h, x1)

...
xm − g(h, xm−1)

⎞
⎟⎟⎟⎟⎟⎠

,

where 0 is the zero vector in Rp−1,X = (x1, . . . , xm) for xi ∈ R
p,

and x1, . . . , xm are the time-ordered states.

6 Persistent Orbits in Controlled Pendulum

When constructing controllers using machine learning or statistical
methods, the most often used criterion for measuring their quality
is the mean return from performing many test episodes. The mean
return may be a deceptive metric for constructing robust controllers.
More strongly, our findings suggest that mean return is not correlated
to the presence of periodic orbits or robustness. One would typically
expect a policy with high mean return to promote convergence to-
ward states that maximize the return for any initial condition (IC)
and also for other numerical schemes. Our experiments revealed rea-
sons to believe this may be true for deep NN controllers. However,
in the case of simple symbolic controllers, singular persistent solu-
tions exist that accumulate large negative returns at a fast pace. By
persistent solutions we mean periodic orbits that remain ε away from
the desired equilibrium. This notion we formalize in Sec. 7.1. We
emphasize that all of the periodic orbits that we prove are necessary
stable in the usual Lyapunov sense, i.e., the solutions that start out
near an equilibrium stay near the equilibrium forever, and hence fea-
sible in numerical simulations. We find such solutions for controllers
as provided in the literature and constructed by ourselves employ-
ing Alg. 1. We emphasize that our findings are not only numerical,
but we support them with (computer-assisted) mathematical proofs
of existence.

6.1 Landajuela et. al [24] Controller

First, we consider the symbolic low complexity controller for the
pendulum a = −7.08s2 − (13.39s2 + 3.12s3)/s1 + 0.27, derived
in [24] (with model given in Appendix A [8]), where s1 = cos θ,
s2 = sin θ, s3 = ω = θ′, and a is the control input. While
this controller looks more desirable than a deep NN with hundreds
thousand of parameters, its performance changes dramatically when
using slightly different transition function at test-time, i.e., halved
h (Ftest(SI, 0.025)) or the explicit Euler scheme (Ftest(E, 0.05)).
Trajectories in Fig. 2 illustrate that some orbits oscillate instead of
stabilizing at the equilibrium ŝ = θ̂ = 0 mod 2π. The average return
significantly deteriorates for the modified schemes and the same ICs

J. Cyranka et al. / Worrisome Properties of Neural Network Controllers and Their Symbolic Representations520

compared to Ftrain(SI, 0.05); see Tab. 1. Such issues are present in
deep NN controllers and small distilled NN to a significantly lower
extent. We associate the cause of the return deterioration with ex-
istence of ’bad’ solutions – persistent periodic orbits (POs) (formal
Def. 1). Using CAPs (c.f., Sec. 5) we obtain:

Theorem 2 For h ∈ H = {0.01, 0.005, 0.0025, 0.001}, the non-
linear pendulum system with controller a from [24] described in the
opening paragraph of Section 6.1 has a periodic orbit (PO) under
the following numerical schemes;

1) (SI) with step size h ∈ H ,
2) (E) at h = 0.05 (native), and for all h ∈ H .
The identified periodic orbits are persistent (see Def. 2) and gener-

ate minus infinity return for infinite episode length, with each episode
decreasing the reward by at least 0.198.

(a) (SI), h = 0.05
(native)

(b) (E), h = 0.05 (c) (SI), h = 0.025

Figure 2: 100 numerical simulations with IC ω = 0 and θ sampled
uniformly, time horizon set to T = 6, x-axis shows the (unnormal-
ized) ω, and y-axis θ. In (a), all IC are attracted by an equilibrium at
ω = 0mod2π, θ = 0. Whereas when applying different Ftest, (b)
and (c) show existence of attracting periodic solutions (they can be
continued infinitely as our theorems demonstrate).

6.2 Our Controllers

The issues with robustness and performance of controllers of Sec. 6.1
may be an artefact of a particular controller construction rather
than a general property. Indeed, that controller had a division by
s1. To investigate this further we apply Alg. 1 for constructing
symbolic controllers of various complexities (without divisions).
Using Alg. 1 we distill a small NN (single hidden layer with
10 neurons) for comparison. In step 2 we use fine-tuning based
on either analytic gradient or CMA-ES, each leading to different
controllers. The studied controllers were trained using the default
transition Ftrain(SI, 0.05), and for testing using Ftest(E, 0.05),
Ftest(E, 0.025), Ftest(SI, 0.05), Ftest(SI, 0.025).

Tab. 1 reveals that the average returns deteriorate when using
other numerical schemes for the symbolic controllers obtained us-
ing Alg. 1, analogous to the controller from [24]. The average return
discrepancies are very large as well. We emphasize that all of the
studied metrics for the symbolic controllers are far from the metrics
achieved for the deep NN controller. Terminating Alg. 1 at step 2 re-
sults in a very bad controller achieving mean return only of −1061,
i.e., as observed in the previous works the symbolic regression over a
dataset sampled from a trained NN is not enough to construct a good
controller. Analogous to Theorem 2, we are able to prove the follow-
ing theorems on persistent periodic orbits (Def. 1) for the controllers
displayed in Table 1.

Theorem 3 For h ∈ H = {0.025, 0.0125}, the nonlinear pendu-
lum system with controller generated by analytic gradient refinement
in Tab. 1 has POs under

1) (SI) with h ∈ H and at the native step size h = 0.05,
2) (E) with h ∈ H .
The identified periodic orbits are persistent (see Def. 2) and gener-

ate minus infinity return for infinite episode length, with each episode
decreasing the reward by at least 0.18.

Theorem 4 For h = 0.0125 and h = 0.05 (native) with scheme (E),
the nonlinear pendulum system with controller generated by CMA-
ES refinement in Tab. 1 has POs which generate minus infinity return
for infinite episode length, with each episode decreasing the reward
by at least 0.20.

7 Systematic Robustness Study

We consider a controller to be robust when it has “good" return statis-
tics at the native simulator and step size, which persist when we
change simulator and/or decrease step size. If a degradation of re-
turn statistics on varying the integrator or step size is identified, we
wish to identify the source.

7.1 Background on Persistent Solutions and Orbits

Consider a MDP tuple (S,A, F, r, ρ0, γ), a precision parameter ε >
0, a policy π : S → A (trained using Ftrain and tested using Ftest),
a desired equilibrium ŝ (corresponding to the maximized reward r),
and episode length N .

Definition 1 We call a persistent periodic orbit (PO) (of period n) an
infinite MDP trajectory (s0, a0, r1, s1, a1, . . .), such that skn = s0
for some n > 1 and all k ∈ N, and such that ‖ŝ − sj‖ > ε for all
j ≥ 0.

Definition 2 A finite MDP trajectory of episode length N
(s0, a0, p1, s1, a1, . . . , sN) such that ‖ŝ− sj‖ > ε for all 0 ≤ j ≤
N is called a persistent solution.

Locating the objects in dynamics responsible for degradation of the
reward is not an easy task, as they may be singular or local minima of
a non-convex landscape. For locating such objects we experimented
with different strategies, but found the most suitable the evolutionary
search of penalty maximizing solutions. The solutions identified us-
ing such a procedure are necessarily stable. We introduce a measure
of ’badness’ of persistent solutions and use it as a search criteria.

Definition 3 We call a penalty value, a function p : S × A → R+,
such that for a persistent solution/orbit the accumulated penalty
value is bounded from below by a set threshold M � 0, that is∑N−1

i=0 p(si, ai) ≥ M .

Remark 4 The choice of particular penalty in Def. 3 depend on the
particular studied example. We choose the following penalties in the
studied problems.

1. p(s, a) = −r(s, a) for pendulum.
2. p(s, a) = −r(s) + 0.5(θ′)2 + 0.5(x′)2 for cartpole swing-

up. Subtracting from the native reward value r(s) = cos θ the
scaled sum of squared velocities (the cart and pole) and turning off
the episode termination condition. This allows capturing orbits that
manage to stabilize the pole, but are unstable and keep the cart mov-
ing. The threshold M in Def. 3 can be set by propagating a number
of trajectories with random IC and taking the maximal penalty as M .

Remark 5 For a PO, the accumulated penalty admits a linear lower
bound, i.e.

∑n−1
m=0 p(sm, am) ≥ Cn for some C > 0. Thm. 2 implies

C = 0.14 for the POs in Tab. 6 in the Appendix [8].

J. Cyranka et al. / Worrisome Properties of Neural Network Controllers and Their Symbolic Representations 521

Table 1: Comparison of different controllers for the pendulum. Mean ± std.dev. rounded to decimal digit, returns over 100 episodes reported
for different Ftest (larger the better). Ftest = Ftrain marked in bold. In this case mean return is equal to negative accumulated penalty.
Absolute return discrepancies measure discrepancy in episodic return between different schemes (E/SI) for the same IC (smaller the better).
The meaning of observation vector at given time t, x0 = cos θ(t), x1 = sin θ(t), x2 = ω(t) = θ(t)′.

MEAN RETURN FOR GIVEN Ftest
h = 0.05 h = 0.025 DISCREPANCY

ORIGIN FORMULA SI E SI E RETURN E / SI

ALG. 1, 3.ANALYTIC (SYMB. k = 9) ((((1.30 · x2 + 4.18 · x1)x0) + 0.36x1)/ − 0.52) −207 ± 183 −604 ± 490 −431 ± 396 −910 ± 853 479 ± 416
ALG. 1, 3.CMA-ES (SYMB. k = 9) ((((−10.59x2 + −42.47x1)x0) + 1.2x1)/5.06) −165 ± 113 −659 ± 461 −331 ± 225 −1020 ± 801 538 ± 401

ALG. 1, SMALL NN 10 NEURONS DISTILLED SMALL NN −157 ± 99 −304 ± 308 −311 ± 196 −290 ± 169 188 ± 285

[24] (a1) −7.08x1 − (13.39x1 + 3.12x2)/x0 + 0.27 −150 ± 87 −703 ± 445 −318 ± 190 −994 ± 777 577 ± 401

TD3 TRAINING DEEP NN −149 ± 86 −138 ± 77 −298 ± 171 −278 ± 156 18 ± 38

7.2 Searching for and Proving Persistent Orbits

We designed a pipeline for automated persistent/periodic orbits
search together with interval proof certificates. By an interval proof
certificate of a PO we mean interval bounds within which a CAP
that the orbit exist was carried out applying the Newton scheme
(see Sec. 5.2), whereas by a proof certificate of a persistent solution
(which may be a PO or not) we mean interval bounds for the solution
at each step, with a bound for the reward value, showing that it does
not stabilize by verifying a lower bound ‖ŝ − st‖ > ε. The search
procedure is implemented in Python, while the CAP part is in Julia,
refer Sec. 5 for further details.

Algorithm 2 Persistent Solutions/Orbits Search & Prove

input Ftest; control policy π; h-parameters of the evolutionary
search; penalty function p; trajectory length; search domain;

output interval certificates of persistent/periodic orbits;
1: for each MDP do
2: for number of searches do
3: initialize CMA-ES search within specified bounds;
4: search for a candidate maximizing penalty p during the

fixed episode length;
5: end for
6: order found candidates w.r.t. their p value;
7: end for
8: for each candidate do
9: search for nearby periodic orbit with Newton’s method cor-

rection applied to suitable sub-trajectory;
10: if potential periodic orbit found then
11: attempt to prove existence of the orbit with Thm. 1;
12: if proof successful then
13: return an interval certificate of the orbit;
14: else
15: return proof failure;
16: end if
17: else
18: return periodic orbit not found;
19: end if
20: produce and return an interval certificate of the uncontrolled

solution;
21: end for

7.3 Findings: Pendulum

Changing simulator or step size resulted in substantial mean return
loss (see Tab. 1), and simulation revealed stable POs (see Fig. 2).
We proved existence of POs using the methods of Section 5.2–5.3.
Proven POs are presented in tables in Appendix F ([8]). See also
Fig. 3, where an persistent solution shadows an unstable PO before

converging to the stable equilibrium. We present proven persistent
solutions in the tables in Appendix F ([8]).

Comparing the mean returns in Tab. 1 we immediately see that
deep NN controller performance does not deteriorate as much as for
the symbolic controller, whereas the small net is located between
the two extremes. This observation is confirmed after we run Alg. 2
for the symbolic controllers and NN. In particular, we did not iden-
tify any stable periodic orbits or especially long persistent solutions.
However, the Deep NN controller is not entirely robust, admitting
singular persistent solutions achieving returns far from the mean; re-
fer to Tab. 4. On the other hand, the small 10 neuron NN also seems
to be considerably more robust than the symbolic controllers. For
the case Ftest(E, 0.05) the average returns are two times larger than
for the symbolic controllers, but still two times smaller than for the
deep NN. However, in the case Ftest(E, 0.05), the average returns
are close to those of the deep NN contrary to the symbolic con-
trollers. The small NN compares favorably to symbolic controllers
in terms of E/SI return discrepancy metrics, still not reaching the
level of deep NN. This supports our earlier conjecture (Sec. 1) that
controller robustness is proportional to the parametric complexity.

Table 2: Examples of persistent solutions found by the persistent so-
lutions Search & Prove Alg. 2 for the pendulum maximizing accu-
mulated penalty, episodes of fixed length N = 1000. The found per-
sistent solutions were the basis for the persistent orbit/solution proofs
presented in Appendix F ([8])

CONTROLLER MDP
∑

r(s, a)

ALG. 1 (k = 9) (SI) h = 0.05 −9869.6
ALG. 1 (k = 9) (SI) h = 0.025 −1995.7

ALG. 1 SMALL NN (SI) h = 0.05 −926.8
ALG. 1 SMALL NN (SI) h = 0.025 −1578.4
ALG. 1 SMALL NN (E) h = 0.05 −747.3

[24] (a1) (SI) h = 0.05 −873.8
[24] (a1) (SI) h = 0.025 −1667.6
[24] (a1) (E) h = 0.05 −5391.1

DEEP NN (SI) h = 0.05 −426.4
DEEP NN (SI) h = 0.025 −818.6
DEEP NN (E) h = 0.05 −401.4

7.4 Findings: Cartpole Swing-Up

We computed the mean return metrics for a representative symbolic
controller, a distilled small NN controller and the deep NN, see
Tab. 3. For the symbolic controller, the average return deteriorates
more when changing the simulator’s numerical scheme to other than
the native (Ftrain(E, 0.01)). Notably, the E/SI discrepancy is an or-
der of magnitude larger than in the case of deep NN. As for the pen-

J. Cyranka et al. / Worrisome Properties of Neural Network Controllers and Their Symbolic Representations522

Table 3: Mean± std.dev. reported, rounded to single decimal digits, of returns over 100 episodes reported for different Ftest (larger the better).
Ftest = Ftrain marked in bold. Return discrepancies measure discrepancy in episodic return between different schemes (E/SI) for the same
IC (smaller the better). The formula for the symbolic controller with k = 21 appears in Appendix Tab. 27 [8]

MEAN RETURN FOR GIVEN Ftest
h = 0.01 h = 0.005 DISCREPANCY

ORIGIN SI E SI E RETURN E / SI

ALG. 1, 3.CMA-ES (SYMB. k = 21) 220.2 ± 96.7 334.3 ± 37 474.6 ± 194.3 632.2 ± 119.3 121.9 ± 88.9
ALG. 1, SMALL NN (25 NEURONS) 273.3 ± 128.7 332.9 ± 79.2 585.1 ± 229.1 683.7 ± 103.3 86.6 ± 135.1

TD3 TRAINING 381.2 ± 9.1 382.9 ± 9 760.9 ± 18.4 764.0 ± 18.1 1.7 ± 0.9

-4 -2 0
-5

0

5

t
0 5 10 15

-4

-2

0

Figure 3: A persistent solution with poor reward ≈ −7527 over
episode length 1000 with step size h = 0.0125, plotted until near-
stabilization at t = 17.825. Left: plot in phase space. Right: time
series of θ. Other data for this solution is in Appendix Tab. 22 [8]

dulum, the small NN sits between the symbolic and deep NN in terms
of the studied metrics. We computed the mean accumulated shaped
penalty p(s, a) = −r(s)+0.5(θ′)2 +0.5(x′)2 for the selected con-
trollers in Tab. 5. The contrast between the deep NN and the symbolic
controller is clear, with the small NN being in between those two ex-
tremes. The mean penalty is a measure of the prevalence of persistent
solutions. However, we emphasize that the Deep NN controller is not
entirely robust and also admits singular persistent solutions with bad
returns, refer to Tab. 4. Rigorously proving the returns for the deep
NN was not possible in this case; see Rem. 6.

Investigating the persistent solutions found with Alg. 2 in Fig. 4
we see that in case Ftest(SI, 0.01) the symbolic controller admits
bad persistent solutions with xt decreasing super-linearly, whereas θ
stabilizes at θ ∼ 0.01. In contrast, the deep NN exhibits fairly stable
control with small magnitude oscillations. This example emphasizes
the shaped penalty’s usefulness in detecting such bad persistent so-
lutions. We can see several orders of magnitude differences in the
accumulated penalty value for the deep NN controller vs. the sym-
bolic controller case. We identify and rigorously prove an abundance
of persistent solutions for each of the studied symbolic controllers.
For example, we can prove:

Theorem 5 For the symbolic controller with complexity k = 21
and native step size h = 0.01, there are 2000-epsiode persistent
solutions of the cartpole swing-up model with accumulated penalty
≥ 2.66 × 105 for the explicit scheme, and ≥ 3.77 × 105 for the
semi-implicit scheme. With the Small NN controller, the conclusions
hold with accumulated penalties ≥ 6263 and ≥ 2.68× 106.

We demonstrate persistent solutions for each considered controller
in Tab. 4. The found persistent solutions were the basis for the
persistent orbit/solution proofs presented in Appendix G ([8]). The
symbolic and small NN controllers admit much worse solutions
with increasing velocity, as illustrated in Fig. 4b. Deep NN con-
trollers admit such bad solutions when tested using smaller time steps
((E, 0.005), (SI, 0.005)); see examples in Tab. 4. They also exhibit
persistent periodic solutions, albeit with a small ε; see Fig. 4a. We
have proven the following.

Table 4: Examples of persistent solutions found by the transient so-
lutions Search & Prove Alg. 2 for the cartpole-swingup maximizing
the accumulated penalty, episodes of fixed lengthN = 2000 without
taking into account the termination condition. The found persistent
solutions were the basis for the persistent orbit/solution proofs pre-
sented in Appendix G ([8])

CONTROLLER MDP
∑

r(s, a)

ALG. 1 (k = 21) (SI) h = 0.01 −41447.2
ALG. 1 (k = 21) (SI) h = 0.005 −11204.3
ALG. 1 (k = 21) (E) h = 0.01 −29878.0
ALG. 1 (k = 21) (E) h = 0.005 −8694.3

ALG. 1 SMALL NN (SI) h = 0.01 −2684696.8
ALG. 1 SMALL NN (SI) h = 0.005 −798442.3
ALG. 1 SMALL NN (E) h = 0.01 −520.9
ALG. 1 SMALL NN (E) h = 0.005 −2343.8

DEEP NN (SI) h = 0.01 306.6
DEEP NN (SI) h = 0.005 −396074.9
DEEP NN (E) h = 0.01 226.5
DEEP NN (E) h = 0.005 −1181.7

Theorem 6 For h close to3 0.005 and h = 0.01 (native), the cart-
pole swing-up model has POs for (E) and (SI) with the deep NN
controller. The mean penalties along orbits are greater than −0.914
and are persistent4 with ε ≥ 0.036.

Remark 6 We were not able to rigorously compute the penalty val-
ues of the persistent solutions for the deep NN controller due to wrap-
ping effect of interval arithmetic calculations [38], which is made
much worse by the width of the network (400,300) and the long ep-
siode length (which introduces further composition). However, this is
not a problem for the periodic orbits: we enclose them using Theo-
rem 1, which reduces the wrapping effect.

Table 5: Comparison of different controllers for the cartpole swing-
up for h = 0.01. Mean and std.dev. (after ±) reported of accu-
mulated penalties

∑
p(sk) =

∑−r(sk) + 0.5(θ′k)
2 + 0.5(x′

k)
2

(larger the worse) over 100 episodes reported for different Ftest.
Ftest = Ftrain marked in bold. Controllers same as in Tab. 3.

ORIGIN SI E

ALG. 1, 3.CMA-ES (SYMB. k = 21) 3123.0± 719.9 2257.2± 234.1
ALG. 1, SMALL NN (25 NEURONS) 1413.4± 9670.1 404.2± 148.4

TD3 TRAINING 335.7± 64.7 425.6± 72.1

3 The exact step size is smaller than h, with relative error up to 2%. See
Appendix G ([8]) for precise values and detailed data for the POs.

4 With respect to the translation-invariant seminorm ||(x, ẋ, θ, θ̇)|| =

max{|ẋ|, |θ|, |θ̇|}

J. Cyranka et al. / Worrisome Properties of Neural Network Controllers and Their Symbolic Representations 523

0 100 200 300 400 500
t

0

1

2

3

example transient for deep NN controller

θt

xt

(a) Deep NN controller

0 100 200 300 400 500
t

−10

−5

0

5
example transient for symbolic (k = 21) controller

θt

xt

(b) a symbolic controller

Figure 4: The persistent solutions (evolution of (θ, x) (Def. 2) for
cartpole swing-up problem found with Alg. 2 that maximize ac-
cumulated penalty

∑
p(s, a) =

∑−r(s) + 0.5(θ′)2 + 0.5(x′)2

over episodes of length 2000 without terminations, using SI with
h = 0.01. (a)

∑
p(s, a) = −306; (b)

∑
p(s, a) = 37746.

8 Codebase

Our full codebase is written in Python and Julia shared in a github
repository [1]. The reason why the second part of our codebase is
written in Julia is the lack of a suitable interval arithmetic library
in Python. The Python part of the codebase consists of four inde-
pendent parts – scripts: deep NN policy training, symbolic/small NN
controller regression, regressed controller fine-tuning and periodic
orbit/persistent solution searcher. All controllers that we use are im-
plemented in Pytorch [28]. For the deep NN policy training we just
use the Stable-baselines 3 library [30], which outputs a trained pol-
icy (which achieved the best return during training) and the train-
ing replay buffer of data. For the symbolic regression we employ
the PySR lib. [6]. For the regressed controller fine-tuning we em-
ploy the pycma CMA-ES implementation [18]. Our implementation
in Julia uses two external packages: IntervalArithmetic.jl [33] (for
interval arithmetic) and ForwardDiff.jl [31] (for forward-mode auto-
matic differentiation). These packages are used together to perform
the necessary calculations for the CAPs.

9 Conclusion and Future Work

Our work is a first step towards a comprehensive robustness study
of deep NN controllers and their symbolic abstractions, which are
desirable for deployment and trustfulness reasons. Studying the con-
trollers’ performance in a simple benchmark, we identify and prove
existence of an abundance of persistent solutions and periodic orbits.
Persistent solutions are undesirable and can be exploited by an adver-
sary. Future work will apply the developed methods to study higher
dimensional problems often used as benchmarks for continuous con-
trol.

10 Acknowledgements

The project is financed by the Polish National Agency for Aca-
demic Exchange. The first author has been supported by the Polish
National Agency for Academic Exchange Polish Returns grant no.
PPN/PPO/2018/1/00029 and the University of Warsaw IDUB New
Ideas grant. This research was supported in part by PL-Grid Infras-
tructure.

References

[1] Code repository. https://github.com/MIMUW-RL/worrisome-nn. Ac-
cessed: 2023-07-27.

[2] Houssam Abbas, Georgios Fainekos, Sriram Sankaranarayanan, Franjo
Ivančić, and Aarti Gupta, ‘Probabilistic temporal logic falsification of
cyber-physical systems’, ACM Trans. Embed. Comput. Syst., 12(2s),
(may 2013).

[3] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah, ‘Ju-
lia: A fresh approach to numerical computing’, SIAM review, 59(1),
65–98, (2017).

[4] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider,
John Schulman, Jie Tang, and Wojciech Zaremba. Openai gym, 2016.

[5] Rudy Bunel, Ilker Turkaslan, Philip H.S. Torr, Pushmeet Kohli, and
M. Pawan Kumar, ‘A unified view of piecewise linear neural network
verification’, in Proceedings of the 32nd International Conference on
Neural Information Processing Systems, NIPS’18, p. 4795–4804, Red
Hook, NY, USA, (2018). Curran Associates Inc.

[6] Miles Cranmer. Pysr: Fast & parallelized symbolic regression in
python/julia, September 2020.

[7] Miles Cranmer, Alvaro Sanchez-Gonzalez, Peter Battaglia, Rui Xu,
Kyle Cranmer, David Spergel, and Shirley Ho, ‘Discovering sym-
bolic models from deep learning with inductive biases’, NeurIPS 2020,
(2020).

[8] Jacek Cyranka, Kevin E M Church, and Jean-Philippe Lessard, ‘Worri-
some properties of neural network controllers and their symbolic rep-
resentation —- extended version’, arXiv preprint arXiv:2307.15456,
(2023). https://arxiv.org/abs/2307.15456.

[9] Sarah Day, Jean-Philippe Lessard, and Konstantin Mischaikow, ‘Vali-
dated Continuation for Equilibria of PDEs’, SIAM Journal on Numeri-
cal Analysis, 45(4), 1398–1424, (jan 2007).

[10] Tommaso Dreossi, Alexandre Donzé, and Sanjit A. Seshia, ‘Compo-
sitional falsification of cyber-physical systems with machine learning
components’, J. Autom. Reason., 63(4), 1031–1053, (dec 2019).

[11] Rüdiger Ehlers, ‘Formal verification of piece-wise linear feed-forward
neural networks’, in Automated Technology for Verification and Analy-
sis, eds., Deepak D’Souza and K. Narayan Kumar, pp. 269–286, Cham,
(2017). Springer International Publishing.

[12] Scott Fujimoto, Herke van Hoof, and David Meger, ‘Addressing Func-
tion Approximation Error in Actor-Critic Methods’, arXiv e-prints,
arXiv:1802.09477, (February 2018).

[13] Yarin Gal, Rowan McAllister, and Carl Edward Rasmussen, ‘Improv-
ing PILCO with Bayesian neural network dynamics models’, in Data-
Efficient Machine Learning workshop, International Conference on
Machine Learning, (2016).

[14] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy, ‘Explaining
and harnessing adversarial examples’, arXiv preprint arXiv:1412.6572,
(2014).

[15] David Ha, ‘Evolving stable strategies’, blog.otoro.net, (2017).
[16] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker,

Sehoon Ha, Jie Tan, Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter
Abbeel, et al., ‘Soft actor-critic algorithms and applications’, arXiv
preprint arXiv:1812.05905, (2018).

[17] E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Differen-
tial Equations I (2nd Revised. Ed.): Nonstiff Problems, Springer-Verlag,
Berlin, Heidelberg, 1993.

[18] Nikolaus Hansen, Youhei Akimoto, and Petr Baudis. CMA-ES/pycma
on Github. Zenodo, DOI:10.5281/zenodo.2559634, February 2019.

[19] Nikolaus Hansen, Sibylle D. Müller, and Petros Koumoutsakos, ‘Re-
ducing the time complexity of the derandomized evolution strategy
with covariance matrix adaptation (cma-es)’, Evolutionary Computa-
tion, 11(1), 1–18, (2003).

[20] Daniel Hein, Steffen Udluft, and Thomas A. Runkler, ‘Interpretable
policies for reinforcement learning by genetic programming’, Engi-
neering Applications of Artificial Intelligence, 76, 158–169, (2018).

[21] Guy Katz, Clark Barrett, David L. Dill, Kyle Julian, and Mykel J.
Kochenderfer, ‘Reluplex: An efficient smt solver for verifying deep
neural networks’, in Computer Aided Verification, eds., Rupak Majum-
dar and Viktor Kunčak, pp. 97–117, Cham, (2017). Springer Interna-
tional Publishing.

[22] Jiří Kubalík, Eduard Alibekov, and Robert Babuška, ‘Optimal control
via reinforcement learning with symbolic policy approximation’, IFAC-
PapersOnLine, 50(1), 4162–4167, (2017). 20th IFAC World Congress.

J. Cyranka et al. / Worrisome Properties of Neural Network Controllers and Their Symbolic Representations524

[23] Christian Kuehn and Elena Queirolo. Computer validation of neural
network dynamics: A first case study, 2022.

[24] Mikel Landajuela, Brenden K Petersen, Sookyung Kim, Claudio P San-
tiago, Ruben Glatt, Nathan Mundhenk, Jacob F Pettit, and Daniel Fais-
sol, ‘Discovering symbolic policies with deep reinforcement learning’,
in Proceedings of the 38th International Conference on Machine Learn-
ing, eds., Marina Meila and Tong Zhang, volume 139 of Proceedings of
Machine Learning Research, pp. 5979–5989. PMLR, (18–24 Jul 2021).

[25] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas
Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra, ‘Con-
tinuous control with deep reinforcement learning.’, in ICLR, eds.,
Yoshua Bengio and Yann LeCun, (2016).

[26] Guiliang Liu, Oliver Schulte, Wang Zhu, and Qingcan Li, ‘Toward in-
terpretable deep reinforcement learning with linear model u-trees’, in
ECML/PKDD, (2018).

[27] Ramon E. Moore, Interval analysis, Prentice-Hall, Inc., Englewood
Cliffs, N.J., 1966.

[28] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala,
‘Pytorch: An imperative style, high-performance deep learning library’,
in Advances in Neural Information Processing Systems 32, 8024–8035,
Curran Associates, Inc., (2019).

[29] Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta,
‘Robust adversarial reinforcement learning’, in Proceedings of the 34th
International Conference on Machine Learning, eds., Doina Precup and
Yee Whye Teh, volume 70 of Proceedings of Machine Learning Re-
search, pp. 2817–2826. PMLR, (06–11 Aug 2017).

[30] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maxi-
milian Ernestus, and Noah Dormann, ‘Stable-baselines3: Reliable re-
inforcement learning implementations’, Journal of Machine Learning
Research, 22(268), 1–8, (2021).

[31] Jarrett Revels, Miles Lubin, and Theodore Papamarkou. Forward-mode
automatic differentiation in julia, 2016.

[32] Itay Safran and Ohad Shamir, ‘Spurious local minima are common in
two-layer ReLU neural networks’, in Proceedings of the 35th Interna-
tional Conference on Machine Learning, eds., Jennifer Dy and Andreas
Krause, volume 80 of Proceedings of Machine Learning Research, pp.
4433–4441. PMLR, (10–15 Jul 2018).

[33] David P. Sanders, Luis Benet, Luca Ferranti, Krish Agarwal, Benoît
Richard, Josua Grawitter, Eeshan Gupta, Marcelo Forets, Michael F.
Herbst, yashrajgupta, Eric Hanson, Braam van Dyk, Christopher
Rackauckas, Rushabh Vasani, Sebastian Miclut,a-Câmpeanu, Sheehan
Olver, Twan Koolen, Caroline Wormell, Daniel Karrasch, Favio An-
dré Vázquez, Guillaume Dalle, Jeffrey Sarnoff, Julia TagBot, Kevin
O’Bryant, Kristoffer Carlsson, Morten Piibeleht, Mosè Giordano,
Ryan, Robin Deits, and Tim Holy. Juliaintervals/intervalarithmetic.jl:
v0.20.8, October 2022.

[34] Richard S. Sutton and Andrew G. Barto, Reinforcement Learning: An
Introduction, The MIT Press, second edn., 2018.

[35] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego
de Las Casas, David Budden, Abbas Abdolmaleki, Josh Merel, Andrew
Lefrancq, Timothy Lillicrap, and Martin Riedmiller, ‘DeepMind Con-
trol Suite’, arXiv e-prints, arXiv:1801.00690, (January 2018).

[36] Emanuel Todorov, Tom Erez, and Yuval Tassa, ‘Mujoco: A physics en-
gine for model-based control’, in 2012 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, pp. 5026–5033. IEEE, (2012).

[37] Dweep Trivedi, Jesse Zhang, Shao-Hua Sun, and Joseph J Lim, ‘Learn-
ing to synthesize programs as interpretable and generalizable policies’,
in Advances in Neural Information Processing Systems, eds., M. Ran-
zato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan,
volume 34, pp. 25146–25163. Curran Associates, Inc., (2021).

[38] Warwick Tucker, Validated Numerics, Princeton University Press, jul
2011.

[39] Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet
Kohli, and Swarat Chaudhuri, ‘Programmatically interpretable rein-
forcement learning’, in Proceedings of the 35th International Confer-
ence on Machine Learning, eds., Jennifer Dy and Andreas Krause, vol-
ume 80 of Proceedings of Machine Learning Research, pp. 5045–5054.
PMLR, (10–15 Jul 2018).

[40] Masaki Waga, ‘Falsification of cyber-physical systems with robustness-
guided black-box checking’, in Proceedings of the 23rd International

Conference on Hybrid Systems: Computation and Control, HSCC ’20,
New York, NY, USA, (2020). Association for Computing Machinery.

[41] Lindsay Wells and Tomasz Bednarz, ‘Explainable ai and reinforcement
learning—a systematic review of current approaches and trends’, Fron-
tiers in Artificial Intelligence, 4, (2021).

[42] Tsui-Wei Weng, Krishnamurthy (Dj) Dvijotham*, Jonathan Uesato*,
Kai Xiao*, Sven Gowal*, Robert Stanforth*, and Pushmeet Kohli, ‘To-
ward evaluating robustness of deep reinforcement learning with con-
tinuous control’, in International Conference on Learning Representa-
tions, (2020).

[43] Yoriyuki Yamagata, Shuang Liu, Takumi Akazaki, Yihai Duan, and
Jianye Hao, ‘Falsification of cyber-physical systems using deep re-
inforcement learning’, IEEE Transactions on Software Engineering,
47(12), 2823–2840, (2021).

[44] Hanshu YAN, Jiawei DU, Vincent TAN, and Jiashi FENG, ‘On robust-
ness of neural ordinary differential equations’, in International Confer-
ence on Learning Representations, (2020).

J. Cyranka et al. / Worrisome Properties of Neural Network Controllers and Their Symbolic Representations 525

