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Abstract. The orthogonality constraints, including the hard and
soft ones, have been used to normalize the weight matrices of Deep
Neural Network (DNN) models, especially the Convolutional Neu-
ral Network (CNN) and Vision Transformer (ViT), to reduce model
parameter redundancy and improve training stability. However, the
robustness to noisy data of these models with constraints is not al-
ways satisfactory. In this work, we propose a novel two-stage ap-
proximately orthogonal training framework (TAOTF) to find a trade-
off between the orthogonal solution space and the main task solu-
tion space to solve this problem in noisy data scenarios. In the first
stage, we propose a novel algorithm called polar decomposition-
based orthogonal initialization (PDOI) to find a good initialization
for the orthogonal optimization. In the second stage, unlike other
existing methods, we apply soft orthogonal constraints for all lay-
ers of DNN model. We evaluate the proposed model-agnostic frame-
work both on the natural image and medical image datasets, which
show that our method achieves stable and superior performances to
existing methods. Supplementary materials can be found in https:
//github.com/nonameinformation/anonymous/tree/main.

1 Introduction

In the past decades, Deep Neural Network (DNN) models, espe-
cially the Convolutional Neural Network (CNN) and Vision Trans-
former (ViT), have developed rapidly in the computer vision field
[19, 30, 31, 25]. Although these models can automatically learn the
hidden deep features from images, there still exist several problems
with them. For example, the parameterization or model capacity uti-
lization is insufficient, gradient explosion or disappearance, and there
exists significant redundancy among different feature channels [26].
In view of this, orthogonality constraints, including the hard and soft
ones, were recently used in the field of deep learning to improve
model performance. When the filters are learned to be as orthogo-
nal as possible, they become irrelevant and reduce the redundancy of
learning features [26]. Then the model capacity is made full use of,
and the ability of feature expression is improved as well. For exam-
ple, a hard orthogonality constraint was imposed in CNN [10], and
retraction-based Riemannian optimization algorithms were used to
solve it. A soft orthogonality constraint was imposed in CNN [26]
with an orthogonal penalty loss.

However, in these works, inappropriate orthogonal constraints are
often imposed, ignoring a more important advantage of orthogonal

constraints: robustness to noise samples (e.g., noise, blur, exposure,
and so on). Applying appropriate orthogonal constraints can make
each layer of the model closer to a 1-Lipschitz function. Given a
small perturbation to input Δx, the change of output Δy is bounded
to be low. Therefore, the model enjoys robustness under noisy data.
For example, if we only use the hard orthogonality constraint, one is-
sue is that the solution set of the primary optimization objective does
not necessarily intersect with the hard orthogonality constraints [6].
In other words, if the weight matrices of these models are too close to
orthogonal matrices, the performance may be worse. Meanwhile, the
computing cost of the hard constraints is always expensive. On the
other hand, if we only use the soft orthogonality constraint, it is in-
effective to make the weight matrix orthogonal enough, and thus re-
duces layers’ 1-Lipschitz property. More detailed explanations about
these issues will be presented in Sec. 3.1.

In this work, to solve the above issues, we propose a two-stage
approximately orthogonal training framework (TAOTF) to find the
trade-off between the Stiefel manifold and the main task solution set.
More specifically, in the first stage, we propose a novel algorithm
called polar decomposition-based orthogonal initialization (PDOI)
to find a starting point in the Stiefel manifold. This process is some-
what similar to the hard orthogonal constraints but with a much
smaller computational cost. Then, in the second stage, we implement
soft orthogonal regulation with an orthogonal penalty loss (e.g., spec-
tral restricted isometry property (SRIP) [2]) on all layers of DNN,
and use a common European optimizer (e.g., Adam) to find an op-
timal point. We train the CNN and ViT models using the proposed
TAOTF framework and then evaluate these TAOTF-based models on
both natural and medical images.

To evaluate the robustness of our framework compared to other
methods, we simulate possible data challenges with datasets and con-
duct comparative experiments, which demonstrate the superiority of
our framework. Except for these two models, this novel framework
can be also used together with other DNN models, e.g., the Recur-
rent Neural Network (RNN), to further improve the robustness per-
formances in real scene datasets.

In summary, three contributions can be summarized as follows:

(1) We propose a novel model-agnostic framework called TAOTF by
combining the advantages of soft and hard orthogonality con-
straints to improve the robustness performances in DNNs, espe-
cially the CNN and ViTs.

(2) In the first stage of TAOTF, to find a suitable starting point for or-
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Figure 1: Our proposed two-stage orthogonal training framework
(TAOTF). In the first stage, we use PDOI to find a suitable starting
point on Stiefel Manifold by iterating with low computing costs. In
the second stage, we impose soft orthogonal constraints on all layers
of DNN to find a trade-off.

thogonal optimization, we propose a novel algorithm called PDOI
to search near the initial point and update parameter matrices. To
our knowledge, this is the first time that a projection-based Rie-
mannian optimization algorithm is used in the training of DNNs.

(3) We also conduct extensive experiments in many image datasets,
including natural and medical ones. The experimental results
show that TAOTF-based models have better robustness perfor-
mances to noisy perturbations than existing methods.

2 Related Works

In this section, we mainly review some related works in the literature
about the applications of hard and soft orthogonality constraints in
the DNN models, especially the CNN and Transformers.

2.1 Hard orthogonality constraints

To our knowledge, the first work using hard orthogonality constraints
in CNN was [10], where the Stiefel layer was introduced, and Rie-
mannian optimization techniques on matrix manifolds were used in
AlexNet and VGG. Then, a new backpropagation with a variant of
stochastic gradient descent (SGD) on Stiefel manifolds [13] was
exploited to update the structured connection weights. In [12], the
authors generalized such square orthogonal matrices to rectangular
ones, and formulated this problem in Feed-forward Neural Networks
(FNNs) as an optimization problem over multiple dependent Stiefel
manifolds. Recently, in [14], an alternative approach was proposed
based on a parameterization stemming from Lie group theory, and
the constrained optimization problem was transformed into an un-
constrained one over a Euclidean space.

2.2 Soft orthogonality constraints

The soft orthogonality constraints were mainly solved using a
penalty loss function calculating the discrepancy between the iden-
tity matrix I and the product of weight matrix W and its transpose
W T , e.g., ‖WW T − I‖. To our knowledge, the first work using
this soft orthogonality constraint in training DNNs was [21], where
it was used in RNNs to help avoid gradient vanishing/ explosion, and
the first work using the soft orthogonality constraint in CNNs was
[27], which helped to stabilize the layer-wise distribution of activa-
tions. In [2], to enforce the orthogonality regularizations, the authors
used a novel regularization form for orthogonality in CNNs, named

Spectral Restricted Isometry Property (SRIP). In [26], a new orthog-
onality based CNN (OCNN) was proposed, and good results on mul-
tiple natural datasets were achieved approving their robustness under
attack. In [7], class vectors were applied to improve the ability of the
model to resist the label noise of datasets for cancer diagnosis.

In transformers, orthogonal weights can also improve numerical
stability during training and upper-bound the Lipschitz constant of
linear transformations. In [29], they first applied the basic orthogo-
nality constraint on transformers and achieved good results in sev-
eral NLP tasks such as neural machine translation and sequence-to-
sequence dialogue generation. In [6], they developed an orthogonal
Vision Transformer (O-ViT), which also used methods like [14] to
impose orthogonality constraints on self-attention layers.

3 Methods

In this section, we will detailedly introduce the new training frame-
work TAOTF (Fig. 1). In Sec. 3.1, we will explain the reason why we
propose a new two-stage orthogonal training framework. In Sec. 3.2,
the proposed algorithm PDOI to find a good optimization starting
point in the first stage will be introduced. In Sec. 3.3, we will intro-
duce the soft constraints we use in the second stage.

3.1 Why we need a two-stage framework?

In a DNN model, it is well known that, if X is the weight matrix
of the i-th layer, then the training of X is to solve the following
optimization problem:

min
X∈Rn×p

g(X) (1)

where g is the loss function. Let

St(p, n)
def
= {X ∈ R

n×p : XTX = Ip}

be the Stiefel manifold, where 1 ≤ p ≤ n, and Ip denotes the identity
matrix of size p. As explained in Sec. 1, to reduce the redundancy
of learning features, we would like to impose orthogonality on the
weight matrix X .

One approach is to use a hard orthogonality constraint, and then
problem (1) becomes a Riemannian optimization problem [1] on the
Stiefel manifold [15], i.e.,

min
X∈St(p,n)

g(X). (2)

In the iterations of the algorithm to solve problem [1], the weight ma-
trix X will always stay in St(p, n), and thus can be kept columnly
orthogonal. The other approach is to use a soft orthogonality con-
straint, and then problem (1) becomes

min
X∈Rn×p

g(X) + λr(X), (3)

where λ > 0 and r(X) is a regularization term to enforce the or-
thogonality of X .

As introduced in Sec. 2, the above hard and soft orthogonality con-
straints were both used to improve the robustness performances of
DNN or ViT models. However, as explained in Fig. 2, the solution
matrices of problem (1) maybe not be in St(p, n). Therefore, if we
only use the hard orthogonality constraint to solve problem (2), the
solution may be too restrictive. In other words, the solution set of the
primary optimization objective does not necessarily intersect with
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Figure 2: Stiefel manifold and the solution set. The solution set of the
primary optimization objective does not necessarily intersect with the
Stiefel manifold, our method can find a balance point between them.

the hard orthogonality constraints [6], and thus the performance of
the trained DNN models may degrade. On the other hand, if we only
use the soft orthogonality constraint to solve problem (3), the solu-
tion may be far away from St(p, n), and thus the DNN models may
still suffer from the parameter redundancy, and it is not robust enough
as well.

Enforcing proper orthogonality constraints can generate a more
uniform spectrum of W [26], which makes network layers (like the
convolution layer f ) closer to a 1-Lipschitz function like

‖f (x1)− f (x2)‖ ≤ ‖x1 − x2‖ . (4)

And in the analysis of numerical stability, enforcing orthogonality
constraints can upper-bound the Lipschitz constant of linear trans-
formations [29]. The Lipschitz constant is a measure that estimates
the rate of change (variation) of representations. Given a slight per-
turbation to the input Δx, the variation of the output Δy is bounded
low, producing a robust and less sensitive representation of data per-
turbations. Therefore, the model enjoys robustness to noisy data.

Therefore, in this work, we propose a novel TAOTF framework,
which includes two stages at each iteration to find the trade-off be-
tween the search space of the main task and the orthogonality con-
straint. From a perspective of optimization theory, it can be under-
stood that we first solve problem (2) to calculate a suitable starting
point, and then solve problem (3). It will be seen in Sec. 4 that, al-
though the TAOTF framework includes two stages, it still has com-
petitive convergence speed. One reason is the use of a projection-
based PDOI algorithm in the first stage, which does not need to cal-
culate the retraction map. The other reason is that we control the
iteration numbers at the first stage.

3.2 First Stage: Orthogonal Initialization

To solve the problem (2), the retraction-based optimization algorithm
[1] was proposed in recent years. However, as the retraction-based al-
gorithms are generally expensive, in this work, inspired by low-rank
orthogonal approximation of tensors [4], we propose a novel algo-
rithm PDOI in Algorithm 1, to find a local optimum as the starting
point for orthogonal optimization of the second stage. Although the
global convergence of the Xk is not determined, under this mild con-
dition, the input point can be converged (locally) to an extreme point
by the PDOI algorithm nearby, which can be used as the starting
point for the next stage. The initial point found in this way, on the
one hand, satisfies the constraint of the Stifel manifold, and on the
other hand, finds a point closer to the main task search space on the
Stifel manifold with low computing costs. We use the SVD to com-
pute the polar decompositions (i.e., projection). Compared with other
retractions (such as exponential mapping), polar decomposition is a

simpler way and not expensive. Furthermore, as it is an initialization
method, we only need to iterate a few times in the first stage.

Algorithm 1: PDOI algorithm
Input: a starting point X0, a positive constant γ > 0.
Output: Xk, k ≥ 1.

1: for k=1,2,..., until a stopping criterion is satisfied do

2: Compute∇g (Xk−1).
3: Compute the SVD decomposition (UΣV T ) of

∇g (Xk−1) + γXk−1. (5)

4: Update Xk to be the product of two orthogonal matrices
UV T .

5: end for

The PDOI algorithm employs an alternating procedure (iterating
through X0, X1,...,Xk,...,XN ), where in each step all but one (Xn)
parameters are fixed [4]. In general, algorithms of this type, includ-
ing alternating least squares, are not guaranteed global convergence,
but the iterations can search for points closer to the main task on
the Stiefel manifold. Moreover, of the generated parameter sequence,
every converging subsequence converges to a stationary point of the
objective function, which can be a suitable starting point from the
perspective of optimization theory.

As proved in [11], the initial weights from the orthogonal group
not only speeds up convergence relative to the standard Gaussian ini-
tialization with iid weights but close to isometry during training to
enable efficient convergence and the 1-Lipschitz property. The algo-
rithm PDOI guarantees that the starting point is on the Stiefel man-
ifold (initial weights in the orthogonal group), and through multiple
iterations, it can find a better starting point close to the input point
that is suitable for both the orthogonal constraints and the main tasks.
Extensive experiments have been conducted to prove this view.

3.3 Second Stage: Orthogonal Optimization

Recall that the Restricted Isometry Property (RIP) condition of a ma-
trix W ∈ R

n×n means that, for all vectors x ∈ R
n that are k-sparse,

there exists a small δW ∈ (0, 1) such that

(1− δW ) ‖x‖22 ≤ ‖Wx‖22 ≤ (1 + δW ) ‖x‖22. (6)

The positive constant δW in equation (6) is called the constrained
isometric constant. If δW is very small, it can be interpreted as those
k columns are approximately orthogonal. If the equation (6) is satis-
fied with δW = 0 for all k-sparse vectors x ∈ R

n, then the matrix
W ∈ R

n×n satisfies the isometric characteristics of k-order con-
straints. The RIP can be used to measure the similarity between the
subset composed of k columns in a matrix and an orthogonal matrix.

The extreme case with k = n was also considered in [2], where
the RIP condition will force the whole matrix W to be very close to
an orthogonal one, i.e.,

∣
∣
∣
∣

‖Wx‖2
‖x‖2 − 1

∣
∣
∣
∣
≤ δW , ∀x ∈ R

n. (7)

In this case, the RIP condition (7) is termed as the Spectral Restricted
Isometry Property (SRIP) regularization.
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Existing methods [26, 29, 2, 6, 10, 8] always only impose or-
thogonality constraints on the deep convolutional layers or the self-
attention layer of Transformers. However, if we only impose orthog-
onality constraints on only some layers of the network, the differ-
ent levels of orthogonality will destroy the 1-Lipschitz property of
the global model and damage model robustness against small pertur-
bations. And we proved this view through extensive experiments in
Sec. 4. Therefore, we impose soft constraints like SRIP regulation
(7) on all layers of the model to solve the orthogonal optimization in
the second stage.

This process is to separate the starting point found in the first stage
from the Stiefel manifold, and further explore the main task solution
space but is still limited by the Stiefel manifold. Through such a pro-
cess, the trade-off of the main task and the orthogonal constraints can
be well found, and the final loss function in (3) is

min
X∈Rn×p

g(X) = gM (X) + λgSRIP (X), (8)

where gSRIP (X) is the spectral norm of WW T − I , that is

supx∈Rn,x �=0

∣
∣
∣
‖Wx‖2
‖x‖2 − 1

∣
∣
∣, and gM (X) is main task loss.

4 Experiments

In this section, to evaluate the efficiency of the proposed TAOTF
framework, we conduct several experiments of the TAOTF-based
DNN models on various datasets, including natural and medical
ones. We implement these models on top of the deep learning frame-
work PyTorch. Unless otherwise stated, the experimental results are
measured in Top-1 Accuracy. We train the models with the clean
dataset and test them with simulated noisy datasets. For simulat-
ing noise, we utilize the Albumentations tool [3], with the simulated
noise intensity as its default initial value. All experimental results in
this work exceed the average of twenty test results. More detailed
experimental results can be seen in Supplementary Material.

4.1 Experiments on Kaggle APTOS 2019

4.1.1 Dataset

We first use the public dataset Kaggle APTOS 2019, which was col-
lected by the Aravind Eye Hospital in India’s rural areas, to evaluate
the proposed TAOTF-CNN and TAOTF-ViT models.

This dataset contains 3662 retinal images, and the labels were
provided by the clinicians who rated the development of Diabetic
retinopathy (DR) in each image by a scale of “0, 1, 2, 3, 4", mean-
ing “no DR", “mild", “moderate", “severe" and “proliferative DR",
respectively. Note that this dataset doesn’t have equal distributions
among the different classes. For example, it has far more normal data
with the label “0" than other classes. We randomly shuffle the entire
dataset into three subgroups, i.e., training (70%), validation (10%),
and testing (20%).

4.1.2 Image Preprocessing

As different fundus images have different length-width ratios, and the
width of different black edges around the eyeball is also different, we
can not straightly resize the images based on their sizes. Therefore,
in this experiment, we resize the fundus images (224×224) based on
the eyeball radius and then use the feature enhancement method. In

Origin Image Occlusion GradientShap SaliencyOrigin Image Occlusion GradientShap Saliency

Origin Image Occlusion GradientShap SaliencyOrigin Image Occlusion GradientShap Saliency

Figure 3: The Glaucoma Detection Classification visualization
(blur image) by Towhee, including Occlusion, GradientShap, and
Saliency. And the first row is the classification visualization of the
baseline model ResNet, and the second row is the classification visu-
alization of TAOTF-based ResNet.

this process, the difference between the original image and the Gaus-
sian blurred one (equivalent to the background) is used to enhance
the feature.

4.1.3 Models and Settings

We choose the ResNet18, ViT3 (3 transformer blocks), and ViT6
(6 transformer blocks) models to test the robustness performances
of TAOTF-based models on the Diabetic Retinopathy classification
task. For training these models, the total epoch of the training is 200.
We start the learning rate with lr = 3 × 10−5, with weight decay
1e-4. The weight λ of the regularization loss is 10−3, the model is
trained using Adam, and the batch size is 8. In the above training
process, we use Cross Entropy (CE) Loss for the criterion.

4.1.4 Experimental Results on Clean Dataset

Proper orthogonality constraints can help fully utilize the model ca-
pacity. We also have conducted ablation experiments for each part of
the framework based on the ViT3 model.

The experimental results show that adding soft orthogonal con-
straints to all layers of DNN can help improve the model perfor-
mance. The experimental results on the clean dataset are summarized
in Supplementary Material. It can be seen that the proposed TAOTF-
based models have better performances than other methods. Addi-
tionally, as it is an imbalanced dataset, we also conduct the ablation
experiments on the clean dataset and evaluate the performances with
Recall, which can be seen in Supplementary Material.

4.1.5 Noisy Dataset for Testing Roubustness

To evaluate the robustness of TAOTF-based models compared with
other methods, we ask for ophthalmologists and conclude 13 com-
mon data corruption of fundus images and classified into 4 types.
Then we simulated these possible data challenges to build a noisy
test set for test model robustness performances. For example, the
geometric transformation could test model performance to the po-
sition deviation, viewing angle deviation, and data size deviation,
the spatial transformation could test the model performance to the
change of light, color, contrast, and brightness, and finally test the
model performance to fuzzy images and images with more noise.
Our method improves model robustness by modifying the training
process (TAOTF is a model-agnostic training framework) rather than
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Experiment on Noisy APTOS 2019

Clean Noise Blur Weather Digital
Methods Clean Gaussian. ISO. Multiplicative. Gauss. Median Motion Optical Rotate RGB Bright Frog Saturation
ResNet 91.17% 87.32% 89.13% 87.05% 75.60% 63.80% 78.14% 79.86% 64.43% 90.22% 81.60% 63.53% 83.06%

ResNet+SRIP [2] 91.17% 89.58% 89.16% 87.95% 76.12% 64.70% 77.45% 81.61% 68.57% 90.85% 89.13% 66.82% 86.50%
ResNet+OCNN [26] 91.08% 88.50% 88.86% 87.08% 77.75% 67.51% 76.60% 80.71% 70.29% 90.01% 88.01% 65.73% 88.04%

ResNet+hard constraints 90.75% 83.79% 88.41% 84.06% 80.80% 69.74% 75.91% 85.99% 69.84% 91.76% 90.88% 72.52% 88.41%
ResNet+WaveCNet [16] 92.18% 89.93% 88.13% 87.89% 75.39% 69.23% 80.46% 86.23% 70.08% 89.95% 84.96% 66.43% 86.14%
TAOTF-ResNet (Ours) 92.53% 93.30% 92.12% 92.66% 89.76% 82.84% 84.87% 86.00% 76.93% 92.66% 91.76% 88.38% 92.84%

TAOTF-ResNet50+WaveCNet (Ours) 93.12% 93.18% 92.29% 92.61% 90.01% 85.09% 85.21% 88.27% 77.01% 92.44% 92.37% 89.93% 92.91%
ViT3 90.99% 90.10% 89.49% 87.23% 74.47% 63.80% 74.02% 70.40% 66.34% 89.47% 88.35% 73.10% 83.15%

ViT3+orth-initialization 89.92% 87.95% 87.91% 85.19% 75.39% 63.06% 71.92% 77.00% 63.53% 87.59% 88.25% 72.07% 80.43%
ViT3+hard constraints 87.62% 86.32% 88.04% 85.24% 75.45% 63.10% 72.61% 76.30% 69.54% 87.23% 88.92% 71.26% 81.52%

ViT3+SRIP 91.07% 90.12% 90.55% 90.19% 70.95% 68.24% 73.22% 74.68% 66.33% 91.67% 90.21% 69.56% 89.69%
ViT3+satge2 (self-attention layers) 92.60% 92.32% 93.04% 89.52% 72.92% 65.52% 76.93% 79.53% 64.49% 92.66% 93.57% 61.08% 89.61%
ViT3+satge2 (transformer blocks) 95.74% 93.39% 94.38% 93.75% 75.45% 75.79% 75.75% 79.31% 65.43% 93.84% 94.38% 67.30% 92.78%

ViT3+satge2 (patch embdding) 95.11% 93.84% 93.75% 94.03% 72.94% 69.11% 76.99% 80.19% 63.98% 94.47% 92.84% 61.65% 91.39%
TAOTF-ViT3 (Ours) 95.87% 95.87% 95.81% 95.82% 86.23% 75.39% 80.92% 87.14% 74.94% 95.87% 95.56% 74.70% 95.29%

ViT6 92.18% 88.89% 87.17% 88.40% 77.71% 72.06% 74.86% 78.36% 67.29% 89.88% 88.90% 75.78% 81.33%
ViT6+hard constraints 91.69% 77.66% 75.30% 80.65% 51.39% 50.33% 57.26% 62.26% 50.42% 78.11% 75.75% 52.78% 76.06%

ViT6+SRIP 93.32% 88.68% 89.58% 90.40% 71.89% 66.03% 76.39% 74.79% 66.18% 89.04% 88.77% 69.72% 85.18%
TAOTF-ViT6 (Ours) 94.06% 94.05% 93.12% 93.51% 78.82% 76.30% 76.45% 79.62% 69.82% 93.30% 92.84% 76.48% 90.67%

Experiment on Glaucoma Detection

ResNet 92.97% 88.67% 90.67% 88.50% 89.50% 87.50% 90.33% 89.00% 75.17% 89.67% 90.17% 76.50% 74.00%
ResNet+SRIP 94.00% 92.50% 90.50% 89.00% 89.00% 90.50% 89.00% 86.00% 77.67% 88.67% 89.50% 82.17% 80.00%

ResNet+OCNN 93.83% 87.50% 85.50% 88.50% 88.50% 88.50% 88.50% 87.17% 75.67% 85.67% 88.80% 82.17% 74.67%
ResNet+hard constraints 92.50% 91.00% 89.00% 90.17% 91.00% 86.00% 90.37% 87.50% 78.33% 90.50% 90.17% 86.70% 81.97%
TAOTF-ResNet (Ours) 94.67% 94.50% 94.00% 93.97% 93.92% 93.17% 93.67% 93.77% 84.00% 93.97% 93.67% 91.09% 92.84%

Experiment on Skin Lesion Classification

ResNet50 92.89% 87.25% 86.21% 86.21% 87.17% 86.38% 86.54% 87.25% 59.62% 84.48% 81.94% 81.93% 79.93%
ResNet50+OCNN 92.74% 85.27% 86.29% 86.39% 87.12% 85.24% 86.71% 85.93% 59.85% 84.92% 82.36% 82.42% 78.23%

ResNet50+WaveCNet 90.04% 88.00% 88.06% 87.88% 88.07% 87.99% 85.41% 86.84% 61.86% 85.49% 83.21% 80.07% 81.00%
ResNet50+SRIP 92.53% 86.24% 85.45% 84.38% 86.80% 86.24% 84.06% 86.23% 57.75% 83.99% 82.57% 80.69% 78.38%

ResNet50+hard constraints 91.46% 87.97% 87.34% 89.14% 89.17% 88.42% 88.62% 88.02% 61.69% 86.21% 86.26% 84.75% 82.27%
TAOTF-ResNet50 (Ours) 94.08% 94.06% 92.26% 94.02% 93.69% 92.63% 91.72% 94.36% 63.54% 91.29% 90.68% 88.12% 86.95%

Table 1: Results on medical test sets (Classification). We mainly used the ViT3 model to conduct ablation experiments on the noisy Kaggle
APTOS 2019, and the experiment results confirmed the role of each component of TAOTF. “orth-initialization" means that we select orthogonal
initialization weights for training. “hard constraints" means that we impose hard orthogonal constraints (retraction-based manifold optimization
algorithm) on model layers. For compared methods, we set the same hyperparameters for a fair comparison.

Inputs Baseline Ours

Figure 4: Glaucoma Detection Classification visualization by class
activation maps (CAM) [34]. Our framework can help models find
the accurate location of lesions (key features).

modifying the model structure (such as WaveCNet), these two types
of methods are complementary and can be used together to enhance
model robustness.

4.1.6 Experimental Results on Noisy Data

We also have conducted ablation experiments for each part of the
framework based on the ViT3 model. The experimental results show
that all parts of our framework have improved the robustness of the
model to a certain extent. And the results of the test set are summa-
rized in Tab. 1. It can be seen that the proposed TAOTF-based mod-
els have better robustness performances than other existing methods
in this task. Because proper orthogonality can generate a more uni-
form spectrum of W and makes network layers closer to a 1-Lipschitz
function. Given a slight perturbation to the input Δx, the variation of
the output Δy is bounded low, producing a robust and less sensitive
representation of data perturbations.

4.2 Experiments on Glaucoma Detection Dataset

4.2.1 Experimental Setup

For datasets, we choose a Kaggle Glaucoma Detection Dataset to test
our framework performance. The dataset contains 650 images/OCT
scans of the eyes. The labels were provided by clinicians who rated
the Glaucoma in each image on a scale of “0, 1", which means “No
Glaucoma", and “Glaucoma" respectively. We randomly shuffle the
entire dataset into three subgroups, i.e., training (70%), validation
(10%), and testing (20%).

For the training process, in the experiments, we choose the
ResNet18 model to classify Glaucoma and test the performance of
our framework. We use the Ranger with lr = 3× 10−5, with weight
decay 1e-3, and train it for 130 epochs. The weight λ of the regular-
ization loss is 10−3. In the above training process, we use CE Loss
as the criterion.

4.2.2 Experimental Results

We compare our TAOTF with prior works. And our framework sig-
nificantly outperforms existing methods, which shows that TAOTF-
based models have stronger robustness in this medical dataset. See
Tab. 1 for a detailed comparison. After that, our model visualization
can be seen Fig. 3 and Fig. 4.

4.3 Experiments on Skin Lesion Classification

4.3.1 Experiment Setup

For datasets, this dataset contains the training data for the ISIC 2019
challenge [5], and datasets from previous years (2018 and 2017).
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Experiment on CIFAR-100

Clean Noise Blur Weather Digital
Methods Clean Gaussian. ISO. Multiplicative. Gauss. Median Motion Optical Rotate RGB Bright Frog Saturation

WideResnet 68.87% 35.87% 21.75% 27.77% 03.86% 13.25% 19.25% 26.50% 23.34% 51.93% 52.19% 54.07% 47.59%
WideResnet+SRIP 70.97% 45.06% 33.02% 40.76% 07.40% 19.29% 29.31% 37.53% 41.24% 59.06% 58.92% 60.95% 55.19%

WideResnet+hard constraints 71.04% 53.40% 38.24% 46.72% 17.94% 27.70% 41.60% 52.18% 42.85% 64.54% 64.06% 65.91% 60.20%
TAOTF-WideResnet (Ours) 71.09% 61.06% 45.66% 56.02% 20.24% 33.89% 47.15% 57.56% 59.04% 69.52% 69.21% 71.01% 65.35%

Experiment on CIFAR-10

MobileViT 83.53% 80.03% 72.30% 74.75% 69.21% 69.37% 74.73% 80.59% 69.15% 81.50% 81.90% 83.06% 81.18%
MobileViT+SRIP 84.35% 79.61% 71.99% 74.29% 69.24% 69.30% 75.14% 80.37% 69.72% 81.64% 81.89% 83.27% 81.26%

MobileViT+hard constraints 77.80% 77.19% 69.88% 71.64% 71.44% 70.44% 76.42% 80.83% 70.95% 81.28% 82.51% 83.28% 81.00%
TAOTF-MobileViT (Ours) 84.10% 81.44% 75.33% 77.94% 75.10% 74.32% 77.72% 82.20% 72.35% 83.49% 84.97% 84.57% 83.17%

VGG19 [23] 92.69% 90.43% 85.06% 85.00% 37.59% 56.12% 72.78% 85.39% 81.59% 91.74% 91.77% 92.69% 90.72%
VGG19+hard constraints 88.51% 85.54% 79.95% 79.99% 37.78% 50.43% 67.11% 78.13% 75.95% 85.55% 86.51% 88.51% 85.14%

VGG19+SRIP 93.08% 90.34% 85.74% 86.12% 39.08% 55.08% 73.68% 85.13% 82.74% 91.71% 91.95% 93.04% 91.10%
TAOTF-VGG19 (Ours) 93.70% 93.11% 92.51% 89.67% 89.08% 45.27% 59.28% 77.21% 85.64% 86.29% 92.21% 91.76% 92.73%

Table 2: Results on CIFAR-100/CIFAR-10 test sets. Especially, to demonstrate the generalization performance of TAOTF for various neural
network models. We conducted as many model tests as possible and simulated 12 common data challenges for testing. In order to compare
with other methods and control variables more strictly, we selected the same basic settings of the experiment for a fair comparison, without
taking complex data enhancement methods and other tricks.

[24] [9]. The dataset contains 25331 images available to classify
dermoscopic images among nine diagnostic categories. The labels
were provided by clinicians who rated the classification of a skin le-
sion in each image on a scale of “0, 1, 2, 3, 4, 5, 6, 7, 8", which
means “Melanoma", “Melanocytic nevus", “Basal cell carcinoma",
“Actinic keratosis", “Benign keratosis", “Dermatofibroma", “Vascu-
lar lesion", “Squamous cell carcinoma", “None of the above". We
randomly shuffled the entire dataset into three subgroups, i.e., train-
ing (80%), validation (10%), and testing (10%).

For training, we choose ResNet-50 to test our framework [17]. We
use the Adam with lr = 0.001, and train it for 100 epochs. The
weight λ of the regularization loss is 10−4. In the above training, we
use the CE Loss as the criterion [18].

4.3.2 Experimental Results

We compare our framework TAOTF with other methods. See Tab. 1
for a detailed comparison. The above results confirm that imposing
proper orthogonality constraints for models has stronger robustness
performances on this noisy test dataset.

4.4 Experiments on Brain MRI segmentation

4.4.1 Experiment Setup

The dataset contains brain MR images together with manual FLAIR
abnormality segmentation masks. The dataset containing 3929 im-
ages was obtained from The Cancer Imaging Archive (TCIA). They
correspond to 110 patients included in The Cancer Genome Atlas
(TCGA) lower-grade glioma collection with at least fluid-attenuated
inversion recovery (FLAIR) sequence and genomic cluster data avail-
able. We randomly shuffle the entire dataset into three subgroups,
i.e., training (70%), validation (10%), and testing (20%). We choose
UNet [22], which is composed of 10 convolution layers. Training
takes 30 epochs with the TAOTF regularizer applied to the model.
The weight λ of the regularization loss is 10−3 and all of other set-
tings retain as standard default. In the above training process, we use
Binary Cross Entropy (BCE) and Dice loss as the criterion.

4.4.2 Experiment Results

We compare TAOTF-based UNet with other methods. See Tab. 3 for
a detailed comparison. The above results confirm that TAOTF-based
models can help improve segmentation tasks. For lambda, we mainly

use the parameter from as default [2] . We test the model performance
in different lambada settings in stage 2 and find that the choice of
lambda has little impact within the above range(10−5, 10−3). Part
of the reason is that the first stage has already found a good starting
point on the Stiefel manifold (strong orthogonal weight matrices).

BCE (↓) ACC (↑) F1-Score (↑)

UNet 0.00713 0.996 0.837

UNet+SRIP 0.00949 0.996 0.811

TAOTF-UNet (Ours) 0.00697 0.997 0.843

Table 3: Results on Brain MRI segmentation test sets. The proposed
TAOTF can help improve segmentation performance.

4.5 Experiments on CIFAR-10/CIFAR-100

4.5.1 Experiment Setup

For datasets, the CIFAR-10 dataset has a total of 60000 color images.
These images are 32×32×3 and are divided into 10 categories, with
6000 images in each category. Among them, 50000 images are used
for training, another 10000 images are used for testing. The CIFAR-
100 dataset has 100 categories, with 500 training images and 100
testing images per category.

For training, in the first dataset CIFAR-10, we choose the
MobileViT-s [20], which combined with the transformers and CNNs,
to test our framework performance on the CIFAR-10 dataset. We use
the AdamW with lr = 0.001 to train it for 60 epochs. In the second
dataset, we choose 28-depth WideResNet [28] to test our framework
performance on the CIFAR-100 dataset further. We use the Adam
with lr = 0.0005 to train it for 80 epochs. The weight λ of the regu-
larization loss is 10−4. In the above training, the criterion chosen is
CE Loss with 0.1 label smoothing to reduce overfitting.

4.5.2 Experimental Results

In order to demonstrate the generalization performance of TAOTF,
we only select the most representative models to show generaliza-
tion performance of TAOTF, such as wideResNet, a representative
of increasing the width of networks, and the mobileViT, which com-
bines transformers and CNNs. We compare our framework TAOTF
with other methods. See Tab. 2 for a detailed comparison. The above
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results confirm that TAOTF-based models can also resist the corrup-
tion of natural images to a certain extent.

To better understand how our framework works, we design a sim-
ple auxiliary denoising experiment on CIFAR-10. We add random
noise with noise factor 0.1 and choose a simple denoising model
DnCNN [32] with the corresponding depth of 16 to test our frame-
work. We use the Adam with lr = 0.001, batchsize = 32, and train
it for 35 epochs. The weight λ of the regularization loss is 10−4.
In the above training, we use the MSE Loss as the criterion. See
Tab. 4 for a detailed comparison. Our TAOTF-based models can ig-
nore small input perturbations (e.g., noise, blur), enjoying robustness
under noisy data.

PSNR (↑) SSIM (↑) LPIPS (↓)

CNN 26.697 0.893 0.092

TAOTF-CNN (Ours) 29.117 0.942 0.084

Table 4: Results on Denoising CIFAR-10 test sets. “PSNR" is Peak
Signal to Noise Ratio, “SSIM" is Structural Similarity, and “LPIPS"
is Learned Perceptual Image Patch Similarity [33]. Proper orthogo-
nality constraints can help the model ignore small input perturbations
and improve model performance facing low-level tasks (e.g., noise,
blur).

5 Conclusion

In this paper, according to the practical difficulties encountered
in data quality, we proposed a new two-stage training framework
TAOTF, which can find a trade-off between the orthogonality con-
straint and the main task solution set, and propose an orthogonal ini-
tialization algorithm PDOI in the first stage that can find a suitable
starting point for orthogonal optimization. Then we use the gradi-
ent descent algorithm with soft orthogonal constraints to find a better
point. Our framework was tested both on transformers and CNNs,
and the experimental results show that our framework can signifi-
cantly improve the robustness performances of these models facing
noisy data.
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