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Abstract. The goal of inductive logic programming is to induce
a logic program (a set of logical rules) that generalises training ex-
amples. Inducing programs with many rules and literals is a major
challenge. To tackle this challenge, we introduce an approach where
we learn small non-separable programs and combine them. We imple-
ment our approach in a constraint-driven ILP system. Our approach
can learn optimal and recursive programs and perform predicate inven-
tion. Our experiments on multiple domains, including game playing
and program synthesis, show that our approach can drastically out-
perform existing approaches in terms of predictive accuracies and
learning times, sometimes reducing learning times from over an hour
to a few seconds.

1 Introduction

The goal of inductive logic programming (ILP) [27, 8] is to induce a
logic program (a set of logical rules) that generalises examples and
background knowledge (BK). The challenge is to efficiently search
a large hypothesis space (the set of all programs) for a solution (a
program that correctly generalises the examples).

To tackle this challenge, divide-and-conquer approaches [4] divide
the examples into subsets and search for a program for each subset.
Separate-and-conquer approaches [28] search for a rule that covers
(generalises) a subset of the examples, separate these examples, and
then search for more rules to cover the remaining examples. Both
approaches can learn programs with many rules and literals. However,
as they only learn from a subset of the examples, they cannot per-
form predicate invention and struggle to learn recursive and optimal
programs so tend to overfit.

To overcome these limitations, recent approaches [24, 22, 10, 14]
use meta-level search [8] to learn optimal and recursive programs.
However, most recent approaches struggle to learn programs with
many rules in a program, many literals in a rule, or both. For instance,
ASPAL [6] precomputes every possible rule allowed in a program
and uses an answer set solver to find a subset that covers the examples.
However, this now widely adopted precomputation approach [24, 22,
37, 34] does not scale to rules with more than a few literals. Likewise,
many recent approaches struggle to learn programs with more than a
few rules [13, 11, 10, 33, 19].

In this paper, our goal is to overcome the scalability limitations
of recent approaches yet maintain the ability to learn recursive and
optimal programs and perform predicate invention. The key idea
is to first learn small non-separable programs that cover some of
the examples and then search for a combination (a union) of these
programs that covers all the examples.
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Non-separable programs can be seen as building blocks for larger
programs. A program h is separable when (i) it has at least two rules,
and (ii) no predicate symbol in the head of a rule in h also appears
in the body of a rule in h. A program is non-separable when it is not
separable. For instance, consider the program p1:

p1 =


happy(A)← rich(A)
happy(A)← friend(A,B), famous(B)
happy(A)← married(A,B), beautiful(B)


This program has three rules which can be learned separately and
combined. In other words, the union of the logical consequences of
each rule is equivalent to the logical consequences of p1. Therefore,
p1 is separable. By contrast, consider the program p2:

p2 =

{
happy(A)← rich(A)
happy(A)← married(A,B), happy(B)

}
This program has two rules that cannot be learned separately because
the second recursive rule depends on the first rule. In other words, the
union of the logical consequences of each rule is not equivalent to the
consequences of p2. Therefore, p2 is non-separable.

To explore this idea, we build on learning from failures (LFF) [10].
LFF frames the learning problem as a constraint satisfaction problem
(CSP), where each solution to the CSP represents a program. The goal
of a LFF learner is to accumulate constraints to restrict the hypothesis
space. For instance, POPPER, a LFF learner, uses a generate, test, and
constrain loop to generate programs and test them on the examples. If
a program is not a solution, POPPER builds constraints to explain why
and uses these constraints to restrict future program generation. We
use LFF to explore our idea because it supports learning optimal and
recursive programs from infinite domains. Moreover, it is easily adapt-
able because of its declarative constraint-driven approach. We build
on LFF by (i) only generating non-separable programs in the generate
stage, and (ii) adding a combine stage to search for combinations of
non-separable programs.

Motivating Example

We illustrate our approach with a simple example. Suppose we want
to learn a program that generalises the following positive (E+) and
negative (E−) examples of lists of numbers:

E+ = {f([1,3,5,7]), f([6,9,4,4]), f([21,22,23,24])}
E− = {f([2,3,1]), f([9,3,2]), f([21,22,1])}

For instance, we might want to learn a program such as:

h0 =


f(A)← head(A,7)
f(A)← head(A,4), tail(A,B), head(B,4)
f(A)← head(A,23), tail(A,B), head(B,24)
f(A)← tail(A,B), f(B)


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This program says that the relation f(A) holds for a listA ifA contains
the sequence [7] or [4,4] or [23,24]. The last recursive rule is important
because it allows the program to generalise to lists of arbitrary length.

To find a program that generalises the examples, we use a generate,
test, combine, and constrain loop. In the generate stage, we gener-
ate non-separable programs of increasing size (with one literal, two
literals, etc), such as:

h1 =
{

f(A)← head(A,1)
}

h2 =
{

f(A)← head(A,2)
}

h3 =
{

f(A)← head(A,3)
}

In the test stage, we test programs on the examples. If a program
covers a negative example then we build a generalisation constraint
to prune more general programs from the hypothesis space, as they
will also cover the negative example. For instance, as h2 covers the
first negative example (f([2,3,1]) we prune h2 and its generalisations,
such as h4:

h4 =

{
f(A)← head(A,2)
f(A)← tail(A,B), f(B)

}
If a program covers no positive examples then we build a specialisa-
tion constraint to prune more specific programs from the hypothesis
space, as they will also not cover any positive examples. For instance,
as we do not have a positive example where the first element is 3 we
prune h3 and its specialisations, such as h5:

h5 =
{

f(A)← head(A,3), tail(A,B), head(B,9)
}

If a program covers at least one positive and no negative examples we
add it to a set of promising programs. For instance, when generating
programs of size five, suppose we generate the recursive program:

h6 =

{
f(A)← head(A,7)
f(A)← tail(A,B), f(B)

}
As h6 covers at least one positive example (f([1,3,5,7])) and no nega-
tive examples we deem it a promising program.

In our novel combine stage, we then search for a combination of
promising programs that covers all the positive examples and is mini-
mal in size. We formulate this combinational problem as an answer set
programming (ASP) problem [16], for which there are highly perfor-
mance solvers, such as Clingo [17]. If we cannot find a combination,
we go to the constrain stage where we use any discovered constraints
to generate a new program. If we find a combination, we deem it
the best solution so far. For instance, suppose that after considering
programs of size seven we see the programs:

h7 =

{
f(A)← head(A,4), tail(A,B), head(B,4)
f(A)← tail(A,B), f(B)

}
h8 =

{
f(A)← head(A,23), tail(A,B), head(B,24)
f(A)← tail(A,B), f(B)

}
Then the combination of h6 ∪ h7 ∪ h8 is h0, the solution we want
to learn. Crucially, we have learned a program with 4 rules and 13
literals by only generating programs with at most 2 rules and 7 literals.
As the search complexity of ILP approaches is usually exponential in
the size of the program to be learned, this reduction can substantially
improve learning performance.

At this point, we have not proven that the combination is optimal in
terms of program size. In other words, we have not proven that there
is no smaller solution. Therefore, to learn an optimal solution, we
continue to the constrain stage and add a constraint on the maximum

program size (at most 12 literals) in future iterations. This constraint
prohibits (i) any program with more than 12 literals from being gen-
erated in the generate stage, and (ii) any combination of promising
programs with more than 12 literals from being found in the combine
stage. We repeat this loop until we prove the optimality of a solution.

Novelty, impact, and contributions. The main novelty of this pa-
per is the idea of learning small non-separable programs that cover
some of the examples and combining these programs to learn large
programs with many rules and literals. We expand on this novelty in
Section 2. The impact, which our experiments conclusively show on
many diverse domains, is vastly improved learning performance, both
in terms of predictive accuracies and learning times, sometimes re-
ducing learning times from over one hour to a few seconds. Moreover,
as the idea connects many areas of AI , including program synthe-
sis, constraint satisfaction, and logic programming, the idea should
interest a broad audience.

Overall, we make the following contributions:

• We introduce a generate, test, combine, and constrain ILP ap-
proach.

• We implement our idea in COMBO, a new system that learns optimal
and recursive programs and supports predicate invention. We prove
that COMBO always returns an optimal solution if one exists.

• We experimentally show on many diverse domains, including game
playing and program synthesis, that our approach can substantially
outperform other approaches, especially in terms of learning times.

2 Related Work
Rule mining. ILP is a form of rule mining. A notable rule mining
approach is AMIE+ [15]. Comparing COMBO with AMIE+ is diffi-
cult. AMIE+ adopts an open-world assumption. By contrast, COMBO

adopts the closed-world assumption. Moreover, COMBO can learn
programs with relations of arity greater than two, which AMIE+
cannot, i.e. AMIE+ can only use unary and binary relations. This
difference is important as AMIE+ cannot be used on most of the
datasets in our experiments. For instance, all the IGGP tasks [9] and
many of the program synthesis tasks use relations of arity greater than
2, such next_cell/3, true_cell/3 and does_jump/4 in the iggp-coins
task. Likewise, many of the program synthesis tasks use append/3 or
sum/3. Finally, AMIE+ requires facts as input, which can be difficult
to provide, especially when learning from infinite domains such as
the program synthesis domain. By contrast, COMBO takes as input a
definite program as BK.

Classic ILP. TILDE [4] is a divide-and-conquer approach. PRO-
GOL [28] is a separate-and-conquer approach that has inspired many
other approaches [35, 2, 36], notably ALEPH [38]. Although both
approaches can learn programs with many rules and literals, they
struggle to learn recursive and optimal programs and cannot perform
predicate invention [39].

Scalability. Scalability can be on many dimensions. For instance,
many systems, such as QuickFOIL [40], focus on scaling to handle
millions of training examples and background facts. Scaling to mil-
lions of examples is not a goal of this work (although we show that
COMBO can handle hundreds of thousands of examples). Instead, our
goal is to scale to scale to large hypothesis spaces, which is difficult
for many existing systems, notably rule selection approaches, outlined
in the following paragraph.
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Rule selection. Many systems formulate the ILP problem as a rule
selection problem [6, 24, 13, 22]. These approaches precompute every
possible rule in the hypothesis space and then search for a subset that
covers the examples, frequently using ASP to perform the search. The
major limitation of precomputation approaches is scalability in terms
of (i) the size of rules, and (ii) the number of possible rules. As these
approaches precompute every possible rule, they cannot scale to rules
with more than a few body literals because the number of rules is
exponential in the number of body literals. Similarly, as they perform
a combinatorial search over every possible rule, they cannot scale to
problems with many possible rules. For instance, PROSYNTH [34]
and DIFFLOG [37] consider at most 1000 and 1267 candidate rules
respectively. However, our simplest experiment (trains1) requires
31,860 candidate rules. Our coins-goal experiment requires approxi-
mately 1015 candidate rules, which is infeasible for these approaches.
Moreover, our approach differs in many ways. We do not precompute
every possible rule, which allows us to learn rules with many body lit-
erals. In addition, we only search over promising programs (programs
known to cover at least one positive and no negative example), which
allows us to scale to problems with many possible rules.

LFF. Rather than precompute every possible rule, the key idea of
POPPER is to discover constraints from smaller programs (potentially
with multiple rules) to rule out larger programs. However, POPPER

struggles to learn large programs with many rules and many literals
because it tries to generate a single program that covers all the exam-
ples. We differ by (i) only generating non-separable programs in the
generate step, and (ii) adding a combine step. DCC [7] combines clas-
sical divide-and-conquer search with modern constraint-driven ILP.
DCC learns a program for each example separately. As these programs
are likely to be overly specific, DCC iteratively tries to learn more
general programs. To improve performance, DCC reuses knowledge
between iterations. Our approach is completely different from DCC.
DCC tries to generate a single program, potentially separable, that cov-
ers all the examples and has no combine stage. By contrast, COMBO

never generates a separable program and searches for combinations
of programs in the combine stage. HOPPER [33] extends POPPER

to learn higher-order programs. Although our implementation only
learns first-order programs, the approach should directly transfer to
HOPPER.

3 Problem Setting
We now describe our problem setting. We assume familiarity with
logic programming [25] and ASP [16] but have included a summary
in the [41] appendix.

We use the LFF setting. A hypothesis is a set of definite clauses,
i.e. we learn definite programs with the least Herbrand model se-
mantics. We use the term program interchangeably with the term
hypothesis. A hypothesis space H is a set of hypotheses. LFF uses
hypothesis constraints to restrict the hypothesis space. Let L be a
meta-language that defines hypotheses. For instance, consider a meta-
language formed of two literals h_lit/3 and b_lit/3 which represent
head and body literals respectively. With this language, we can de-
note the rule last(A,B)← tail(A,C), head(C,B) as the set of literals
{h_lit(0,last,(0,1)), b_lit(0,tail,(0,2)), b_lit(0,head,(2,1))}. The first
argument of each literal is the rule index, the second is the predicate
symbol, and the third is the literal variables, where 0 represents A,
1 represents B, etc. A hypothesis constraint is a constraint (a head-
less rule) expressed in L. Let C be a set of hypothesis constraints
written in a language L. A hypothesis is consistent with C if when

written in L it does not violate any constraint in C. For instance, the
rule last(A,B)← last(B,A) violates the constraint← h_lit(0,last,(0,1)),
b_lit(0,last,(1,0)). We denote asHC the subset of the hypothesis space
H which does not violate any constraint in C.

We define the LFF input:

Definition 1 (LFF input) A LFF input is a tuple
(E+, E−, B,H, C) where E+ and E− are sets of ground
atoms denoting positive and negative examples respectively; B is a
definite program denoting background knowledge;H is a hypothesis
space, and C is a set of hypothesis constraints.

We define a LFF solution:

Definition 2 (LFF solution) Given an input tuple
(E+, E−, B,H, C), a hypothesis h ∈ HC is a solution
when h is complete (∀e ∈ E+, B ∪ h |= e) and consistent
(∀e ∈ E−, B ∪ h 6|= e).

If a hypothesis is not a solution then it is a failure. A hypothesis h
is incomplete when ∃e ∈ E+, h ∪B 6|= e; inconsistent when ∃e ∈
E−, h ∪ B |= e; partially complete when ∃e ∈ E+, h ∪ B |= e;
and totally incomplete when ∀e ∈ E+, h ∪B 6|= e.

Let cost : H 7→ N be an arbitrary cost function that measures the
cost of a hypothesis. We define an optimal solution:

Definition 3 (Optimal solution) Given an input tuple
(E+, E−, B,H, C), a hypothesis h ∈ HC is optimal when
(i) h is a solution, and (ii) ∀h′ ∈ HC , where h′ is a solution,
cost(h) ≤ cost(h′).

In this paper, our cost function is the number of literals in a hypothesis.

Constraints. The goal of a LFF learner is to learn hypothesis con-
straints from failed hypotheses. Cropper and Morel [10] introduce
hypothesis constraints based on subsumption [32]. A clause c1 sub-
sumes a clause c2 (c1 � c2) if and only if there exists a substitution θ
such that c1θ ⊆ c2. A definite theory t1 subsumes a definite theory t2
(t1 � t2) if and only if ∀c2 ∈ t2, ∃c1 ∈ t1 such that c1 subsumes c2.
A definite theory t1 is a specialisation of a definite theory t2 if and
only if t2 � t1. A definite theory t1 is a generalisation of a definite
theory t2 if and only if t1 � t2. A specialisation constraint prunes
specialisations of a hypothesis. A generalisation constraint prunes
generalisations of a hypothesis.

4 Algorithm
We now describe our COMBO algorithm. To help explain our approach
and delineate the novelty, we first describe POPPER.

POPPER. POPPER (Algorithm 1) solves the LFF problem. POPPER

takes as input background knowledge (bk), positive (pos) and negative
(neg) examples, and an upper bound (max_size) on hypothesis sizes.
POPPER uses a generate, test, and constrain loop to find an optimal
solution. POPPER starts with an ASP program P (hidden in the gen-
erate function). The models of P correspond to hypotheses (definite
programs). In the generate stage (line 5), POPPER uses Clingo [17], an
ASP system, to search for a model of P . If there is no model, POPPER

increments the hypothesis size (line 7) and loops again. If there is a
model, POPPER converts it to a hypothesis h. In the test stage (line 9),
POPPER uses Prolog to test h on the training examples. We use Prolog
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because of its ability to handle lists and large, potentially infinite, do-
mains. If h is a solution then POPPER returns it. If h is a failure then,
in the constrain stage (line 12), POPPER builds hypothesis constraints
(represented as ASP constraints) from the failure. POPPER adds these
constraints to P to prune models, thus reducing the hypothesis space.
For instance, if h is incomplete then POPPER builds a specialisation
constraint to prune its specialisations. If h is inconsistent then POPPER

builds a generalisation constraint to prune its generalisations. POPPER

repeats this loop until it finds an optimal solution or there are no more
hypotheses to test.

Algorithm 1 POPPER

1 def popper(bk, pos, neg, max_size):
2 cons = {}
3 size = 1
4 while size ≤ max_size:
5 h = generate(cons, size)
6 if h == UNSAT:
7 size += 1
8 continue
9 outcome = test(pos, neg, bk, h)

10 if outcome == (COMPLETE, CONSISTENT)
11 return h
12 cons += constrain(h, outcome)
13 return {}

4.1 COMBO

COMBO (Algorithm 2) builds on Algorithm 1 but differs by (i) only
building non-separable programs in the generate stage, and (ii) adding
a combine stage that tries to combine promising programs. We de-
scribe these novelties.

Algorithm 2 COMBO

1 def combo(bk, pos, neg, max_size):
2 cons = {}
3 promising = {}
4 best_solution = {}
5 size = 1
6 while size ≤ max_size:
7 h = generate_non_separable(cons, size)
8 if h == UNSAT:
9 size += 1

10 continue
11 outcome = test(pos, neg, bk, h)
12 if outcome == (PARTIAL_COMPLETE, CONSISTENT):
13 promising += h
14 combine_outcome = combine(promising, max_size, bk,

neg)
15 if combine_outcome != NO_SOLUTION:
16 best_solution = combine_outcome
17 max_size = size(best_solution)-1
18 cons += constrain(h, outcome)
19 return best_solution

4.1.1 Generate

In the generate stage, COMBO only generates non-separable programs
(line 7). A program h is separable when (i) it has at least two rules,

and (ii) no predicate symbol in the head of a rule in h also appears
in the body of a rule in h. A program is non-separable when it is
not separable. For instance, COMBO cannot generate the following
separable program:

p1 =

{
happy(A)← friend(A,B), famous(B)
happy(A)← married(A,B), beautiful(B)

}
By only generating non-separable programs, we reduce the complexity
of the generate stage. Specifically, rather than search over every possi-
ble program, COMBO only searches over non-separable programs, a
vastly smaller space that notably excludes all programs with multiple
rules unless they are recursive or use predicate invention. For instance,
assume, for simplicity, that we have a problem with no recursion or
predicate invention, that the rule space contains m rules, and that we
allow at most k rules in a program. Then in the generate stage, POP-
PER searches over approximately mk programs. By contrast, COMBO

searches over only m programs.
To be clear, Algorithm 2 follows Algorithm 1 and uses an ASP

solver to search for a constraint-consistent (non-separable) program.
In other words, the generate_non_separable function in Algorithm 2 is
the same as the generate function in Algorithm 1 except it additionally
tells the ASP solver to ignore separable programs using the encoding
described in Section B.1 in the [41] appendix.

4.1.2 Test and Constrain

If a program is partially complete (covers at least one positive exam-
ple) and consistent, COMBO adds it to a set of promising programs
(line 13). If a program is inconsistent, COMBO builds a generalisation
constraint to prune its generalisations from the hypothesis space, the
same as POPPER. If a program is partially complete and inconsistent
then, unlike POPPER, COMBO does not build a specialisation con-
straint to prune its specialisations because we might want to specialise
it. For instance, consider learning a program to determine whether
someone is happy. Suppose COMBO generates the program:

happy(A)← rich(A)

Suppose this program is partially complete and inconsistent. Then we
still might want to specialise this program to:

happy(A)← rich(A), tall(A)

This program might now be partially complete and consistent, so is a
promising program. Therefore, COMBO only builds a specialisation
constraint when a program is (i) totally incomplete, because none of
its specialisations can be partially complete, or (ii) consistent, because
there is no need to specialise a consistent program, as it could only
cover fewer positive examples. We prove in the [41] appendix that
these constraints do not prune optimal hypotheses.

4.1.3 Combine

In the novel combine stage (line 14), COMBO searches for a com-
bination (a union) of promising programs that covers the positive
examples and is minimal in size. We describe our combine algorithm
in the next paragraph. If we cannot find a combination, we go to the
constrain stage where we use any discovered constraints to generate
a new program (line 18). If we find a combination, we deem it the
best solution so far (line 16). To provably learn an optimal solution,
we update the maximum program size (line 17) which prohibits any
program with more than max_size literals from being generated in the
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generate stage or any combination of promising programs with more
than max_size literals from being considered in the combine stage.
We repeat this loop until we prove the optimality of a solution.

Algorithm 3 shows the combine algorithm. To find a combination
of promising programs, we follow ASPAL and formulate this combi-
national problem as an ASP problem. The function build_encoding
builds the encoding (line 5). We briefly describe our encoding. The
[41] appendix includes more details and an example encoding. We
give each positive example a unique ID. For each rule in a promising
program, we create a choice rule to indicate whether it should be in a
solution. For each promising program, we add facts about its example
coverage and size. We ask Clingo to find a model (a combination of
rules) for the encoding (line 6) such that it (i) covers as many positive
examples as possible, and (ii) is minimal in size. If there is no model,
we return the best solution so far; otherwise, we convert the model
to a program (line 6). Every combination program without recursion
or predicate invention is guaranteed to be consistent (this result is an
intermediate result in the proof of Theorem 1 in the [41] appendix).
However, if a combination program has recursion or predicate inven-
tion then it could be inconsistent. In this case, we test the program on
the negative examples to ensure consistency. If it is inconsistent, we
add a constraint to the encoding (line 10) to eliminate this program
and any generalistion of it from the combine encoding. We then loop
again.

Algorithm 3 Combine

1 def combine(promising, max_size, bk, neg):
2 cons = {}
3 best_solution = NO_SOLUTION
4 while True:
5 encoding = build_encoding(promising, cons, max_size)
6 h = call_clingo(encoding)
7 if h == UNSAT:
8 break
9 if recursion_or_pi(h) and inconsistent(h, bk, neg):

10 cons += build_con(h)
11 else:
12 best_solution = h
13 break
14 return best_solution

A key advantage of our approach is that, whereas most rule selec-
tion approaches (Section 2), including ASPAL, assign a choice rule
to every possible rule in the hypothesis space, we only do so to rules
in promising programs. This difference is crucial to the performance
of COMBO as it greatly reduces the complexity of the combinatorial
problem. For instance, let m be the total number of possible rules and
n be the number of promising programs. Then precomputation ap-
proaches search over 2m programs whereas COMBO searches over 2n

programs. In practice n is vastly smaller than m so our combine stage
is highly efficient. For instance, in our simplest experiment (trains1)
there are 31,860 candidate rules so precomputation approaches search
over 231860 programs. By contrast, COMBO finds an optimal solution
in four seconds by only searching over 10 promising programs, i.e.
over 210 programs.

Correctness. We prove the correctness of COMBO1:

1 COMBO does not return every optimal solution. To do so, we can revise
Algorithm 3 to ask the ASP solver to find and return all combinations at
a certain size. Algorithm 2 would then maintain a set of all current best
programs, rather than a single program.

Theorem 1 (Correctness) COMBO returns an optimal solution if one
exists.

Due to space limitations, the proof is in the [41] appendix. At a high-
level, to show this result, we show that (i) COMBO can generate and
test every non-separable program, (ii) an optimal separable solution
can be formed from a union (combination) of non-separable programs,
and (iii) our constraints never prune optimal solutions.

5 Experiments
Our experiments aim to answer the question:

Q1 Can combining non-separable programs improve predictive accu-
racies and learning times?

To answer Q1, we compare the performance of COMBO against POP-
PER. As COMBO builds on POPPER, this comparison directly measures
the impact of our new idea, i.e. it is the only difference between the
systems.

To see whether COMBO is competitive against other approaches,
our experiments aim to answer the question:

Q2 How does COMBO compare against other approaches?

To answer Q2 we also compare COMBO against DCC, ALEPH, and
METAGOL [30]2. We use these systems because they can learn re-
cursive definite programs. DCC, POPPER, and COMBO use identical
biases so the comparison between them is fair. ALEPH uses a similar
bias but has additional settings. We have tried to make a fair com-
parison but there will likely be different settings that improve the
performance of ALEPH. The results for METAGOL are in the [41]
appendix.

Methods

We measure predictive accuracy and learning time given a maximum
learning time of 60 minutes. If a system does not terminate within the
time limit, we take the best solution found by the system at that point.
We repeat all the experiments 10 times and calculate the mean and
standard error3. The error bars in the tables denote standard error. We
round learning times over one second to the nearest second because
the differences are sufficiently large that finer precision is unnecessary.
We use a 3.8 GHz 8-Core Intel Core i7 with 32GB of ram. All the
systems use a single CPU.

Domains

We use the following domains. The [41] appendix contains more
details, such as example solutions for each task and statistics about
the problem sizes.

Trains. The goal is to find a hypothesis that distinguishes eastbound
and westbound trains [23].

Chess. The task is to learn chess patterns in the king-rook-king
(krk) endgame [20]. This dataset contains relations with arity greater
than two, such as distance/3 and cell/4.

Zendo. Zendo is a multiplayer game where players must discover
a secret rule by building structures. Zendo is a challenging game that
has attracted much interest in cognitive science [5].

2 We also tried to compare COMBO against rule selection approaches. However,
precomputing every possible rule is infeasible for our datasets. The [41]
appendix contains more details.

3 https://en.wikipedia.org/wiki/Standard_error
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IMDB. This real-world dataset [26] contains relations between
movies, actors, and directors. This dataset is frequently used to evalu-
ate rule learning systems [12]. Note that this dataset has non-trivial
numbers of training examples. For instance, the imdb3 task has
121,801 training examples.

IGGP. The goal of inductive general game playing [9] (IGGP) is
to induce rules to explain game traces from the general game playing
competition [18]. This dataset is notoriously difficult for ILP systems:
the currently best-performing system can only learn perfect solutions
for 40% of the tasks. Moreover, although seemingly a toy problem,
IGGP is representative of many real-world problems, such as inducing
semantics of programming languages [3]. We use six games: minimal
decay (md), rock - paper - scissors (rps), buttons, attrition, centipede,
and coins. These tasks all require learning rules with relations of arity
more than two, which is impossible for some rule learning approaches
[15].

Graph problems. We use frequently used graph problems [13, 19].
All of these tasks require the ability to learn recursive programs.

Program synthesis. Inducing complex recursive programs is a
difficult problem [29] and most ILP systems cannot learn recursive
programs. We use a program synthesis dataset [10] augmented with
two new tasks contains and reverse. The motivating example in the
introduction describes the task contains. These tasks all require the
ability to learn recursive programs and to learn from non-factual data.

5.1 Experimental Results

Q1. Can combining non-separable programs improve
predictive accuracies and learning times?

Table 1 shows that COMBO (i) has equal or higher predictive accuracy
than POPPER on all the tasks, and (ii) can improve predictive accuracy
on many tasks. A McNemar’s test confirms the significance of the
difference at the p< 0.01 level. COMBO comprehensively outperforms
POPPER when learning programs with many rules and literals. For
instance, the solution for buttons (included in the [41] appendix) has
10 rules and 61 literals. For this problem, POPPER cannot learn a
solution in an hour so has default accuracy. By contrast, COMBO

learns an accurate and optimal solution in 23s.
Table 2 shows that COMBO has lower learning times than POPPER

on all the tasks. A paired t-test confirms the significance of the differ-
ence at the p < 0.01 level. COMBO also outperforms POPPER when
learning small programs. For instance, for centipede both systems
learn identical solutions with 2 rules and 8 literals. However, whereas
it takes POPPER 1102s (18 minutes) to learn a solution, COMBO

learns one in 9s, a 99% reduction. COMBO also outperforms POPPER

when learning recursive programs. For instance, for reverse, POPPER

needs 1961s (30 minutes) to learn a recursive program with 8 literals,
whereas COMBO only needs 44s, a 98% reduction.

To illustrate the efficiency of COMBO, consider the coins-goal task.
For this task, there are approximately 1015 possible rules4 and thus(
1015

k

)
programs with k rules – which is why this task is infeasible for

most rule selection approaches. Despite this large hypothesis space,
COMBO finds an optimal solution in under two minutes. Moreover,
the combine stage has a negligible contribution to the learning time.
For instance, in one trial that took COMBO 97s to learn a solution,
only 0.07s was spent in the combine stage.

4 For coins-goal, 118 predicate symbols may appear in a rule, including
symbols of arity 3 and 4. Assuming at most 6 variables in a rule, there are
around 1200 possible body literals. Assuming at most 6 body literals, there
are

(1200
6

)
≈ 1015 possible rules.

Task COMBO POPPER DCC ALEPH

trains1 100 ± 0 100 ± 0 100 ± 0 100 ± 0
trains2 98 ± 0 98 ± 0 98 ± 0 100 ± 0
trains3 100 ± 0 79 ± 0 100 ± 0 100 ± 0
trains4 100 ± 0 32 ± 0 100 ± 0 100 ± 0

zendo1 97 ± 0 97 ± 0 97 ± 0 90 ± 2
zendo2 93 ± 2 50 ± 0 81 ± 3 93 ± 3
zendo3 95 ± 2 50 ± 0 78 ± 3 95 ± 2
zendo4 93 ± 1 54 ± 4 88 ± 1 88 ± 1

imdb1 100 ± 0 100 ± 0 100 ± 0 100 ± 0
imdb2 100 ± 0 100 ± 0 100 ± 0 50 ± 0
imdb3 100 ± 0 50 ± 0 100 ± 0 50 ± 0

krk1 98 ± 0 98 ± 0 98 ± 0 97 ± 0
krk2 79 ± 4 50 ± 0 54 ± 4 95 ± 0
krk3 54 ± 0 50 ± 0 50 ± 0 90 ± 4

md 100 ± 0 37 ± 13 100 ± 0 94 ± 0
buttons 100 ± 0 19 ± 0 100 ± 0 96 ± 0
rps 100 ± 0 18 ± 0 100 ± 0 100 ± 0
coins 100 ± 0 17 ± 0 100 ± 0 17 ± 0
buttons-g 100 ± 0 50 ± 0 86 ± 1 100 ± 0
coins-g 100 ± 0 50 ± 0 90 ± 6 100 ± 0
attrition 98 ± 0 2 ± 0 2 ± 0 98 ± 0
centipede 100 ± 0 100 ± 0 81 ± 6 100 ± 0

adj_red 100 ± 0 100 ± 0 100 ± 0 50 ± 0
connected 98 ± 0 81 ± 7 82 ± 7 51 ± 0
cyclic 89 ± 3 80 ± 7 85 ± 5 50 ± 0
colouring 98 ± 1 98 ± 1 98 ± 1 50 ± 0
undirected 100 ± 0 100 ± 0 100 ± 0 50 ± 0
2children 100 ± 0 99 ± 0 100 ± 0 50 ± 0

dropk 100 ± 0 100 ± 0 100 ± 0 55 ± 4
droplast 100 ± 0 95 ± 5 100 ± 0 50 ± 0
evens 100 ± 0 100 ± 0 100 ± 0 50 ± 0
finddup 99 ± 0 98 ± 0 99 ± 0 50 ± 0
last 100 ± 0 100 ± 0 100 ± 0 55 ± 4
contains 100 ± 0 100 ± 0 99 ± 0 56 ± 2
len 100 ± 0 100 ± 0 100 ± 0 50 ± 0
reverse 100 ± 0 85 ± 7 100 ± 0 50 ± 0
sorted 100 ± 0 100 ± 0 100 ± 0 74 ± 2
sumlist 100 ± 0 100 ± 0 100 ± 0 50 ± 0

Table 1. Predictive accuracies.

Overall, these results strongly suggest that the answer to Q1 is yes:
learning non-separable programs and combining them can drastically
improve learning performance.

Q2. How does COMBO compare against other approaches?

Table 1 shows that COMBO has equal or higher accuracy than DCC

on all the tasks. A McNemar’s test confirms the significance of the
differences at the p < 0.01 level. COMBO has notably higher accuracy
on the iggp and zendo tasks. Table 2 shows that COMBO has lower
learning times than DCC on all the tasks. A paired t-test confirms the
significance of the difference at the p < 0.01 level. COMBO finds
solutions for all but one task within the time limit. By contrast, DCC

times out on 12 tasks. For instance, for buttons-g it takes DCC over an
hour to learn a solution with 86% accuracy. By contrast, COMBO finds
a perfect solution in 3s, a 99% reduction. The [41] appendix includes
the learning output from COMBO for this task.

Table 1 shows that ALEPH sometimes has higher accuracy than
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Task COMBO POPPER DCC ALEPH

trains1 4 ± 0 5 ± 0 8 ± 1 3 ± 1
trains2 4 ± 0 82 ± 25 10 ± 1 2 ± 0
trains3 18 ± 1 timeout timeout 13 ± 3
trains4 16 ± 1 timeout timeout 136 ± 55

zendo1 3 ± 1 7 ± 1 7 ± 1 1 ± 0
zendo2 49 ± 5 timeout 3256 ± 345 1 ± 0
zendo3 55 ± 6 timeout timeout 1 ± 0
zendo4 53 ± 11 3243 ± 359 2939 ± 444 1 ± 0

imdb1 2 ± 0 3 ± 0 3 ± 0 142 ± 41
imdb2 3 ± 0 11 ± 1 3 ± 0 timeout
imdb3 547 ± 46 875 ± 166 910 ± 320 timeout

krk1 28 ± 6 1358 ± 321 188 ± 53 3 ± 1
krk2 3459 ± 141 timeout timeout 11 ± 4
krk3 timeout timeout timeout 16 ± 3

md 13 ± 1 3357 ± 196 timeout 4 ± 0
buttons 23 ± 3 timeout timeout 99 ± 0
rps 87 ± 15 timeout timeout 20 ± 0
coins 490 ± 35 timeout timeout timeout
buttons-g 3 ± 0 timeout timeout 86 ± 0
coins-g 105 ± 6 timeout timeout 9 ± 0
attrition 26 ± 1 timeout timeout 678 ± 25
centipede 9 ± 0 1102 ± 136 2104 ± 501 12 ± 0

adj_red 2 ± 0 5 ± 0 6 ± 0 479 ± 349
connected 5 ± 1 112 ± 71 735 ± 478 435 ± 353
cyclic 35 ± 13 1321 ± 525 1192 ± 456 1120 ± 541
colouring 2 ± 0 6 ± 0 5 ± 0 2373 ± 518
undirected 2 ± 0 6 ± 0 6 ± 0 227 ± 109
2children 2 ± 0 7 ± 0 6 ± 0 986 ± 405

dropk 7 ± 3 17 ± 2 14 ± 2 4 ± 1
droplast 3 ± 0 372 ± 359 13 ± 1 763 ± 67
evens 3 ± 0 29 ± 3 25 ± 2 2 ± 0
finddup 11 ± 5 136 ± 14 149 ± 7 0.8 ± 0
last 2 ± 0 12 ± 1 11 ± 1 2 ± 0
contains 17 ± 0 299 ± 52 158 ± 48 64 ± 5
len 3 ± 0 52 ± 5 45 ± 2 2 ± 0
reverse 40 ± 5 1961 ± 401 1924 ± 300 3 ± 0
sorted 127 ± 78 111 ± 11 131 ± 10 1 ± 0
sumlist 4 ± 0 256 ± 27 221 ± 12 0 ± 0

Table 2. Learning times (seconds). A timeout entry means that the system
did not terminate within 60 minutes.

COMBO, notably on the krk tasks5. However, COMBO comfortably
outperforms ALEPH on most tasks, especially graphs and synthesis,
which require recursion. COMBO notably outperforms ALEPH on the
iggp tasks which do not require recursion. For instance, for coins,
ALEPH cannot find a solution in an hour. By contrast, COMBO only
needs 105s to learn a solution that has 100% accuracy. The [41]
appendix includes a trace of the output from COMBO on this task.

Table 2 shows that ALEPH sometimes has lower learning times than
COMBO. The reason is that, unlike COMBO, ALEPH is not guaranteed
to find an optimal solution, nor tries to, so terminates quicker. For
instance, for the rps task, ALEPH is faster (20s) than COMBO (87s).
However, COMBO takes only 2s to find the same solution as Aleph
but takes 87s to prove that it is optimal.

The results in the [41] appendix show that COMBO also outperforms
METAGOL on all tasks.

5 COMBO (and POPPER and DCC) struggles on this task because of an issue
in the generate stage where the ASP solver struggles to find a model. We
are unsure precisely why. To explore the issue, we ran Clingo with two
threads, where each thread uses a different search heuristic. In this case,
Clingo trivially finds a model, so we think that the default Clingo search
heuristic just happens to struggle on the KRK tasks. To be clear, this issue is
in the generate stage, not the combine stage.

Overall, these results strongly suggest that the answer to Q2 is
that COMBO compares favourably to existing approaches and can sub-
stantially improve learning performance, both in terms of predictive
accuracies and learning times.

6 Conclusions and Limitations

We have introduced an approach that learns small non-separable
programs that cover some training examples and then tries to combine
them to learn programs with many rules and literals. We implemented
this idea in COMBO, a new system that can learn optimal, recursive,
and large programs and perform predicate invention. We showed that
COMBO always returns an optimal solution if one exists. Our empirical
results on many domains show that our approach can drastically
improve predictive accuracies and reduce learning times compared to
other approaches, sometimes reducing learning times from over 60
minutes to a few seconds. In other words, COMBO can learn accurate
solutions for problems that other systems cannot. These substantial
improvements should directly help many application areas, such as
drug design [21], pathfinding [1], and learning higher-order programs
[33].

Limitations and Future Work

Noise. In the combine stage, we search for a combination of pro-
grams that (i) covers all of the positive examples and none of the
negative examples, and (ii) is minimal in size. Our current approach
is, therefore, intolerant to noisy/misclassified examples. To address
this limitation, we can relax condition (i) to instead find a combination
that covers as many positive and as few negative examples.

Solvers. We formulate our combine stage as an ASP problem.
We could, however, use any constraint optimisation approach, such
as formulating it as a MaxSAT [31] problem. We therefore think
this paper raises a challenge, especially to the constraint satisfaction
and optimisation communities, of improving our approach by using
different solvers and developing more efficient encodings.

Code, Data, and Appendices

A longer version of this paper with the appendices is available at https:
//arxiv.org/pdf/2206.01614.pdf. The experimental code and data are
available at https://github.com/logic-and-learning-lab/ecai23-combo.
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