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Abstract. Implicit imitation assumes that learning agents observe
only the state transitions of an agent they use as a mentor, and try to
recreate them based on their own abilities and knowledge of their en-
vironment. In this paper, we put forward a deep implicit imitation Q-
network (DIIQN) model, which incorporates ideas from three well-
known Deep Q-Network (DQN) variants. As such, we enable a novel
implicit imitation method for online, model-free deep reinforcement
learning. Our thorough experimentation in the complex environment
of the emerging lane-free traffic paradigm, verifies the benefits of
our approach. Specifically, we show that deep implicit imitation RL
dramatically accelerates the learning process when compared to a
“vanilla” DQN method; and, unlike explicit imitation reinforcement
learning, it is able to outperform mentor performance without resort-
ing to additional information, such as the mentor’s actions.

1 Introduction

Deep Reinforcement Learning (DRL) [4], combining as it does Re-
inforcement Learning (RL) [43] with neural networks, has gained
popularity in several problem domains and games, with DRL-based
agents that can even outperform human experts in the field. In envi-
ronments with substantially large or continuous state spaces where
tabular reinforcement learning fails to provide competent results,
DRL provides a methodology with the ability to tackle such com-
plex problems that were out of reach otherwise. Still, problems with
high complexity usually require substantially more training steps for
DRL algorithms.

As such, the need for accelerated training arises. Provided with a
highly trained agent, hastened improvement can be achieved through
the use of imitation [36, 1] methods. The most common applica-
tions of imitation in machine learning take advantage of explicit im-
itation [15]. According to explicit imitation, the skilled agent—the
mentor—transfers most, if not all, information available to it (com-
monly states, actions taken, and rewards received) to the trainee ob-
server agent, granting the latter the opportunity to explicitly imitate
its behaviour [3]. However, this comes with the price of having to
communicate information, which may not be available. Depending
on the environment, the agent, or data privacy restrictions, observ-
ability of the expert’s actions or policy-related information is not al-
ways possible. For example, observing a human driver in a vehicle,
we may not be in a position to monitor their throttle press values.
Since complete transparency is not always available, an implicit im-
itation [36] paradigm can be used instead. With just the state transi-
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tion observations of the mentor, the trainee can decrease its training
time and reach the skill level of its mentor in fewer episodes, by
filling the blanks of the information it needs, using its own heuris-
tic approaches. Moreover, implicit imitation, even in tabular RL, has
demonstrated an ability to outperform the mentor [36] without re-
quiring access to further information.

In this work we put forward a framework and algorithms for
model-free deep implicit imitation reinforcement learning (DIIRL).
Specifically, we describe an implicit imitation model and its inte-
gration into the arguably most widely used model-free DRL tech-
nique, the Deep Q-Network (DQN) [29] algorithm. Using neural net-
works for RL along with mentor observations, complex continuous
state space can be solved in significantly less time. We detect state
similarities between the observer and the mentor using the mentor’s
state transition demonstrations, so that the observer can then infer the
mentor’s action and use it to calculate TD error values based on aug-
mented loss functions we introduce. Since the observer is not explic-
itly restricted to imitate the mentor’s policy, the possibility for the ob-
server to actually surpass a potentially sub-optimal mentor emerges.

A highly challenging domain for evaluating our approach lies
within the area of lane-free autonomous driving. Autonomous driv-
ing is a complex field when taking into consideration the plethora of
dynamic variables involved [34]. The lane-free traffic paradigm [33]
further increases its complexity by not restricting the vehicles to a
standard predetermined number of lanes for them to abide, but pro-
viding free lateral movement. This novel paradigm calls for the de-
velopment of novel approaches in (optimal) control [33, 54, 26], mul-
tiagent coordination [49], simulator environments [48], and machine
learning methods [17]. In particular, the opportunity emerges for the
use of existing, or the formulation of novel (deep) reinforcement
learning algorithms that take into account the position and behaviour
of nearby vehicles, and aim to adjust the (both longitudinal and lat-
eral) acceleration of the vehicle under control [17]; and for testing
DIIRL in this interesting and challenging domain.

Summarizing, our contributions are the following: we provide DI-
IQN, a novel DQN-based method for DRL implicit imitation; and
enhance it via incorporating the key ideas of three well-known DQN
variants as algorithmic components of our model. Central in our ap-
proach is the creation of novel augmented loss functions to update
our network’s weights in accordance with implicit imitation. More-
over, our approach is an online, model-free RL one: it does not in-
clude the offline supervised pre-training phase common in DRL im-
itation techniques; and makes use of mentor-provided information
while interacting with the environment. Our experimental results in
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the challenging lane-free traffic autonomous driving environment,
demonstrate that deep implicit imitation can both accelerate DRL
agent training, and improve its performance over the mentor agent.

The remainder of the paper is structured as follows. Section 2 pro-
vides background on DRL and imitation learning, as well as related
work on imitation and lane-free traffic. Section 3 presents in detail
our deep implicit imitation RL model. Section 4 describes our exten-
sive experimental evaluation process and our results. Finally, Section
5 concludes this paper and outlines future work.

2 Background and Related Work

Here we provide background and discuss related work.

2.1 Deep Q-Networks

Deep Q-Networks (DQON) [29], a distinguished method of deep re-
inforcement learning, combines Q-learning [53] with neural net-
works. A deep Q-network is a multi-layered neural network with
weights 6;, that approximates the Q action-value function of the stan-
dard Q-learning algorithm utilizing a neural network representation
Q(s, a; 0;). As such, given a transition tuple (s, a,,s’,7)," the cur-
rent Q-network’s weights ; are optimized w.r.t. the loss function:

L(0:) = Esans [(y2 Y — Q(s,a;0:))°] )

where yP 9N = r + ymax, Q(s',a’;6;) is the target value corre-
sponding to the updated evaluation of the Q-function, at current time-
step t. The notion of a target network is used in DQN to provide sta-
bility in training. This is achieved using a snapshot of the network’s
weights 6, from a specific prior time-step for the ytD N estimate.
Weights 6, are periodically synchronized with the current weights
0:. Another important DQN component is experience replay [22, 29],
a data structure that stores past experiences. In each episode, the net-
work is updated based on a small minibatch uniformly sampled from
the replay memory, breaking consecutive sample state chains that can
misguide the training process with over-fitting data.

Now, the use of Double DON (DDQN) [11] tackles value
overestimation issues: Since DQN is based on a single estima-
tor method, numerous occasions of value overestimation can be
observed during training [41, 10]. To diminish this overestima-

tion, the DDQN target value has the form ytD baoN r 4+

vQ(s',argmax, Q(s',a;6:);0; ).

Moreover, prioritizing high TD-error samples via a Prioritized Ex-
perience Replay (PER) [37] has led to more efficient training, using
importance sampling [25] to balance the magnitude under which the
samples affect the network’s weights.

Finally, Dueling Network Architecture (DNA) [52], decouples the
Q-network architecture so that it estimates a value function V (s)
and a state-dependent action advantage function A(s, a) separately,
improving performance in the face of redundant or similar actions.

2.2 Imitation Learning

The concept of transferring knowledge among agents for the bene-
fit of constant improvement is not new [5, 27]. The core idea behind
imitation reinforcement learning includes two agents, the mentor and
the observer. The observer is the agent under training, with unknown
starting values to all predictions, trying to learn from scratch. The

mentor agent has already undergone training up to a satisfactory
level, rendering it capable of guiding the observer through differ-
ent proposed methods [36, 42]. The goal of imitation learning is to
accelerate the learning process of the observer, by feeding informa-
tion provided by the mentor. Traditionally, this can be achieved either
explicitly, implicitly [36] or by other means, such as third person im-
itation with unsupervised learning [42].

Explicit imitation requires a set of first-person point of view in-
formation. For RL algorithms, these mainly include the state transi-
tions, the actions taken, and the rewards received [36]. When com-
bined with DRL and other methods, explicit imitation can contribute
to outperforming mentor behavior [40, 31, 51, 12, 16]. The state tran-
sitions information is essential for imitation RL algorithms (both ex-
plicit and implicit). However, the remaining information, primarily
the actions taken, may be private or hard to observe and acquire.

Our focus thus is on implicit imitation: i.e., the observer can note
only the changes of the mentor’s experience environment, leaving to
fill in the blanks for actions taken. Implicit Imitation attempts to ap-
proximate the mentor’s behavior by observing the state transitions,
but estimating (or, “predicting””?) the actions resulting to them. It
should be highlighted that in implicit imitation the observer does not
blindly follow the mentor’s directions. This results to a more flexible
and stable observer agent that aims to adapt and even outperform the
mentor in, especially, non-visited states. To define correctly the men-
tor’s shared knowledge, some assumptions are required [36]: (i) The
observer has access to the mentor’s state transitions, but not its action
taken in each step; (ii): Both mentor and observer use the same local
state spaces, otherwise the observations would be irrelevant and ut-
terly unusable by the learner; (iii): There is homomorphism between
the abilities of the mentor and the observer agent: both action spaces
are assumed to coincide, and state transitions follow the same MDP
for each a € A; (iv): In our work, as in [36], both mentor and ob-
server have matching reward functions.

2.3 Related Work

The primary influence of our approach is that of [36, 35] on model-
based (non-deep) reinforcement learning through implicit imitation.
Our work is a model-free, deep RL variant of their approach, inspired
by a conceptual extension for model-free RL, proposed as part of
future work in [36].

Several other methods on imitation learning exist, making use of
either explicit or implicit imitation models. Regarding explicit imita-
tion algorithms, they typically either introduce a pre-training step ap-
plying explicit imitation with the use of supervised learning [40, 12],
or inject mentor samples directly into the replay memory of the ob-
server [31, 51, 16]. Other interesting explicit imitation approaches in-
clude taking advantage of human experience combined with a check-
point system [14] and introducing a two-level hierarchical technique
to the imitation learning application [19]. Finally, [42] use a third-
person imitation approach, which is a form of explicit imitation in
which the mentor’s demonstrations do not comply with the perspec-
tive of the observer.

Now, as far as implicit imitation applications are concerned,
they are mainly categorized into two groups [47]; model-based and
model-free. Model-based approaches make use of dynamics mod-
els, mainly in the form of inverse dynamics models [30, 23, 45], us-
ing mentor demonstrations to infer an action policy that is later ex-
ploited in a supervised or model-based manner. In this model-based

1 Transition tuple with state s, action a, reward 7, next state s’ and discount
factor ~y.

2 We use “predict” in lack of a better term; we do not choose to use the word
“infer” as this term points to approaches that construct a mentor model.
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Algorithm 1 High-level overview of the DIIQN algorithm
Input: Mentor extracted experiences

1: Initialize environment, DQN model and import experiences;
2: Enable pre-demonstration phase for initially associating actions
to experiences (as discussed in Section 3.1.2)

3: while environment not solved do
Select observer action a, based on policy 7 and e-greedy ex-
ploration;

5:  Predict mentor action a., (as explained in Section 3.1.2) via
exploiting a state similarity (findSimilarStates() assessment
process, presented in Section 3.1.2);

6: Create a new “augmented” observer experience tuple, which
includes the predicted a,,, and store it in the experience re-
play;

7:  Sample minibatch from experience replay;

8:  Compute values of augmented loss functions L, L, (defined
in Section 3.1.3) with respect to the sampled minibatch;

9:  Select suitable augmented loss function using Q-value diver-
gence D,, D,, (as explained in Section 3.1.3);

10:  Optimize network parameters 6; with respect to the selected
augmented loss function;
11: end while

paradigm, forward dynamics models [6] also tackle a similar prob-
lem of missing information, predicting the next state s’ provided a
state s and an action a. Model-free approaches comprise adversar-
ial methods [28, 46], using as discriminator a model trained by the
mentor’s data.

Finally, many imitation learning approaches involve the use of in-
verse RL (IRL) [32, 1], i.e., inferring a (human or non-human) men-
tor’s reward function. For instance, [13, 7] explore IRL to extract an
expert mentor policy using adversarial networks. Then, authors in [2]
design an elaborate imitation learning model that employs IRL and
behavioural cloning in an interactive training setup.

It is important to highlight that our approach does not include
the supervised pre-training or explicit sample injection phases com-
mon in DRL imitation techniques. Even though we have a pre-
demonstration phase which initializes mentor action estimates infor-
mation (see Sec. 3.1.2), we do not build an inverse dynamics mentor
model, but simply utilize the collected information from the mentor
in a model-free way while interacting with the environment at each
step. Consequently, ours is a model-free online RL algorithm.

Regarding the emerging lane-free traffic paradigm, a plethora of
works have introduced novel ideas for vehicle movement strate-
gies [54, 33, 49, 50]. In terms of RL, the work of [17] proposed a
DRL setting for lane-free autonomous driving. Their approach de-
fined MDP-related variables such as the state space and, more impor-
tantly, the reward function. Even though their work heavily focuses
on continuous action space with the use of the Deep Deterministic
Policy Gradient algorithm [21], the integration of our algorithm into
the lane-free domain was based on their MDP formulation.

3 Deep Implicit Imitation RL

We now describe our framework for enabling implicit imitation for
DRL. We first describe how to incorporate implicit imitation in DQN,
giving rise to DIIQN, our novel basic implicit imitation-equipped
DQN algorithm. We then further improve our deep imitation model
by incorporating additional DQN variants into our framework.

3.1 Implicit Imitation for DON

DIIQN can be viewed as a modular extension of DQN, i.e., DQN
with the additional capability to exploit a mentor’s dataset in order
to accelerate training. The mentor provides a dataset of state tran-
sitions (Sm, Sy, ), namely experiences, which serves as input to the
observer. Training the observer while utilizing mentor’s information
requires an estimate of the mentor’s action a., for the proper calcu-
lation of the augmented loss functions L,, L,, we introduce in this
section—these augmented loss functions are responsible for optimiz-
ing the observer’s network. To do so in an implicit manner, we asso-
ciate the mentor’s states s,, with an estimate for the action, which
is iteratively updated while the observer interacts with the environ-
ment. These mentor action estimates are gradually improved by the
observer. Essentially, the observer’s state information is juxtaposed
with the state information of the mentor, and, with KL-divergence,
we can have an error metric in order to measure similarity of states.
To provide structure to the different DIIQN processes, we divide it
into separate components. In Alg. 1 we summarize the steps taken in
our DIIQN model. We now proceed to explain these steps in detail.

3.1.1 Experience Extraction

Before initiating the process of DIIQN, we need access to a dataset
with the mentor’s extracted experiences. For our purposes, the men-
tor can be a standard DQN model, or any type of algorithmic con-
troller. In the former case, we first train the DQN agent until con-
vergence, and view the trained model as a mentor. Regardless of the
mentor’s form, we monitor its interactions with the environment un-
til N observations are collected. Each observation contains only the
state transition, i.., a tuple of (Sm, S,,), where s, is the mentor
state before it takes an unknown action a.,,, while s/, is the result-
ing state after the action execution. Upon initialization of DIIQN, the
observer agent has access to all recorded observation tuples, indi-
cated as mentor extracted experiences in Alg. 1. Likewise, multiple
mentors can be directly integrated by combining their observations
in a single dataset. We highlight that only state information is being
tracked, and neither the mentor action a.,., nor the received reward
Tm is known to the observer.

3.1.2 Mentor Action Prediction

The observer can make use of mentor experiences by correlating
its encountered states with those of the mentor, in order to “fill
in the blanks” regarding the actions actually taken by the mentor
(which are not observed). We now proceed to describe a process
(Alg. 2) that predicts the mentor action a., for an observer’s transi-
tion (s,, a,, s, )—without relying on model-based techniques com-
monly found in the literature (see Sec. 2.3). This information is re-
quired for DIIQN, specifically when we calculate the augmented loss
function from the mentor’s perspective, as shown in Sec. 3.1.3.

Associating actions to mentor states We begin by associating
actions to mentor states—that is, the process associates each state
sm in the mentor’s extracted experiences, with a corresponding error
and action estimate (1.1 — 7 in Alg. 2).

Specifically, for each observer transition tuple (so,ao,s,), we
compare the transition (sub-)tuple (s,, s,) with each transition tu-
ple (S, sr,) in the mentor’s experience, using as an error metric the
Kullback-Leibler (KL) divergence for multivariate normal distribu-
tion over the state features. If the error computed is lower than the
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error already assigned to this mentor state, we update the estimate of
the mentor’s action a., at s,, to the a, taken by the observer at s,
while also updating its error value accordingly. This ensures that we
have associated to each mentor state transition the most accurate—
given our knowledge so far—action.

However, utilizing the above-mentioned technique with action es-
timates in a cold start fashion can reduce the mentor’s influence
on the observer’s training. To tackle this problem, we proceed as
follows. We have a dedicated pre-demonstration phase of random
movement before training, devoted to initializing the action estimates
with beneficial information. Subsequently, this information is con-
tinuously being updated with observer transition tuples (s, ao, s5),
while training online.

Finding similar states Thus, Alg. 2 has so far updated the actions
and errors associated with each mentor state. Therefore, one could
simply choose the s, state most similar (in terms of KL-divergence)
to So, and pick the a,, action associated with s, in order to fill in an
“augmented” observer experience tuple with the “missing” mentor
action. However, such an approach could favor specific states, result-
ing to early overfitting problems.

This calls for a heuristic that will provide a set Sy, (with |Sp,| > 1)
of mentor states that are similar to the s, observer state. The search
for similar mentor states to s, (denoted as findSimilarStates(s,) in
Alg. 1 and Alg. 2) is performed as follows. For each observer state
S0, We use Nearest Neighbour (KNN) [9] search on the mentor’s
dataset to find a set of the K-nearest neighbour mentor states. We
then identify, among all neighbour candidates, the “most similar”
to s, (in terms of KL-divergence) mentor state s’ ”. Additionally,
we introduce an error threshold e Z. For each remaining neighbor,
if its KL-divergence from sX% does not exceed eX7, it is deemed
similar and kept alongside the chosen mentor state s%”. As such,
findSimilarStates(s,) returns a set of similar states S,,, which in-
cludes sX L together with similar neighbors states. The state similar-
ity problem we face has conceptual connections with work related
to Exploration in Deep Reinforcement Learning [44]. There, authors
introduce hashing to discretize large state spaces as a way to identify
similar states, in order to enhance exploration in the environment.

Final mentor action selection After obtaining a set of sim-
ilar mentor states S,, through the state similarity process (1.8
in Alg. 2), we can conclude to a final mentor action a,,. Via
getAssociatedActions(Sy,) (1.9 in Alg. 2), we retrieve the associ-
ated mentor’s actions estimates, which constructs the action set A,,,
and then randomly choose a single action a,, € An,.

Due to the expertise of the mentor, it is expected during the early
training stages that the inexperienced observer will tend to take dif-
ferent actions from the mentor action estimate (a, # @) and there-
fore result in different next states ( s, and s}, could potentially be
quite different even though the current states are ‘similar’). We note
that a,, is only perceived as the correct mentor action from the per-
spective of the observer, and does not necessarily correspond to the
actual mentor action taken for this state transition. This is caused
by the action association process definition, since action estimates
may have high error values (i.e., when correlated with high KL-
divergence mentor states).

Based on this a,, selection, we can directly extract the related state
transition (s, sy,,) from the mentor’s dataset. We now have com-
plete information for an “augmented” observer experience tuple, that
contains additional information regarding the estimated transition of
the mentor: (8o, Go, St, To, Sm, Am, Sy ). This tuple is stored in the

Algorithm 2 Mentor action prediction

<307 Qo S,0>,

Input: Observer transition Mentor extracted
experiences

Output: Predicted mentor action a,,

1: for (s,,, s}, ) in experiences do

2:  err = KLdivergence((so, 5,), {(Sm, Sim))
3 if err < getAssociatedError(s,,) then

4 setAssociatedError(s.,, err)

5 setAssociated Action(sy, , ao)

6: endif

7: end for

8: Sy, = findSimilarStates(s,)

9: A, = getAssociatedActions(S,)

0: ay, =random(A,,)

1

1
11: return a,,

replay memory and will be used for computing values of the “aug-
mented” loss functions below, to appropriately optimize the network
parameters.

3.1.3 Augmented Loss Functions

By predicting the mentor’s action, the observer now has all compo-
nents of its “augmented” experience tuple in place. Thus, it is able in
principle to estimate the () action-value function from both perspec-
tives, the mentor’s and its own. Of course, to estimate these in a DRL
fashion, one needs to equip the Q-approximating network with loss
functions that augment the default one to incorporate both perspec-
tives. We create such augmented loss functions for both the mentor
and observer, from the observer’s perspective. We use a common @
network, where the observer augmented loss function is constructed

as:
L(et)o -

Es,a,'r,s’ [(7‘0 + 'YQ(SIm argr?ax Q(Slm al; 0;)7 0;) (2)

— Q(s0, 03 61))7]

while the mentor augmented loss function as:
L(et)m -
Es,a,r,s’ [(TO + ’YQ(s{m, argmax Q(S’lmv al; et_): et_) (3)
a/

= Q(5m, am; ot))2]

Having two different loss functions creates the need to select
the best one for the model. Intuitively, small deviations for ) val-
ues on subsequent states translates into a more stable model. We
thus use @-values divergence as the deciding factor on which aug-
mented loss function we use. For each time step we store the value
Qpast = Q(s,a;0:), where s = so,a = a, if L(0+), was chosen,
and s = Sy, a = am otherwise. Now, we can compare the immedi-
ately previous Q-function values with present ones. Specifically, we
calculate two square distance terms at each step:

Do = ||Q(50, a0; 0:) — Qpast||” ©)

D = 1|Q(8m am; 0:) — Qpast|? ©)

We select the augmented loss function associated with the minimum
distance: the observer uses L(60;), if Do < Dy, and L(60;)n, other-
wise. The selected augmented loss function will be used to optimize
the network.
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3.2 Improving the DIIQN model

We further optimize our algorithm by integrating three well-known
DQN extensions in our model, specifically DDON, PER and DNA
(see Sec. 2) and view these as algorithmic components that poten-
tially enhance our DIIQN model. The DNA and PER algorithms do
not require any changes for their implementation as our algorithm
does not directly affect the network’s architecture or experience re-
play sampling. However, for the remaining one, specific modifica-
tions of the original algorithm are required.

3.2.1 DDQN on Deep Implicit Imitation

As with non-augmented DQN-based loss functions, overestimation
error can be improved by DDQN in our setting also. Specifically, we
can update the estimate of the target value according to DDQN for
both mentor and observer respectively. As such, the augmented loss
functions with DDQN are the following:

L(6)o =
Es,a,r,s’ [(TO + fVQ(S/ov argmax Q(S:n a’; et); 0;) (6)

— Q(50, a03 Gt))Q}

L(Qt)m =
Eqars [(7‘0 + ’YQ(S:,“ argmax Q(Slma a,; 0:);6,) 7

= Q(sm, am; 0r))’]

3.2.2  Algorithmic Components’ Selection

We performed extensive testing of various combinations of these al-
gorithmic components (DDQN, PER, DNA) and our initial DIIQN
model, evaluating their performance in well-known DRL testbed
domains—specifically, 2D Maze and Cart-pole. This systematic ini-
tial experimentation led us to the conclusion that the most benefi-
cial choice is using all those components in our final (“extended”)
DIIQN model. In material supplementary to this paper’ we include
relevant results on these DRL testbed domains, where we exhibit the
benefit of including all these algorithmic components on the DIIQN
model. The algorithmic steps for training our final DIIQN model are
summarized in Fig. 1. We now proceed to present the experimental
evaluation of our final DIIQN model (henceforth referred to simply
as “DIIQN model” or “DIIQN agent”).

4 Experimental Evaluation

We now present in detail a systematic experimental evaluation of our
deep implicit imitation approach within a highly complex and chal-
lenging experimental setting, namely the autonomous driving in a
lane-free traffic simulation environment. In the supplementary ma-
terial, we first provide a full list of the hyperparameters used in the
lane-free traffic domain, paired with their corresponding values for
these experiments. Additionally, common DRL testbed environments
are also included, which showcase the performance of our algorithm
in low complexity environments.

3 The supplementary material, which also includes a link to a remote git
repository with our DIIQN implementation, can be found at: https://bit.ly/
3Kco5jZ

6
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mentor experiences -
8
Update sample
weights of PER

Figure 1. DIIQN training step flowchart. Step(s) labeled as: 6 is part of
DDOQN, 4-5-8 are part of PER, 7 is part of DNA

4.1 Experimental Setup

The lane-free traffic paradigm implies that no inner lanes -within the
same direction- restrict the movement of the vehicles. The vehicles
are thus able to utilize the full width of the road, thus this paradigm
is inherently able to resolve recurrent traffic congestion problems.
Our simulations utilize the lane-free traffic simulator TrafficFluid-
Sim [48] which is an extension of the well-known Simulation of Ur-
ban MObility (SUMO) tool [24]. In our scenario, we have m vehicles
that populate a highway, each with its own target cruising speed—
namely, a desired speed vq corresponding to a random value be-
tween [vfi"“’, v;”g h]. The parameter choices* constitute a demanding
learning environment, where our agent needs to consistently and cau-
tiously operate alongside nearby traffic, and learn to overtake when
needed. This highway emulates ring-road behaviour, in the sense that
vehicles at the end of the road reappear at the beginning. This is a
discrete-time domain, with the time-step set to dt = 0.25 sec; while
each episode consists of 1000 time-steps.

The state space should provide sufficient information to properly
describe the agent’s position on the road, as well as its interaction
with neighbour vehicles. Thus, ours is a continuous state space,
allowing for the following observed state features. Regarding the
agent, at each time step we observe: its lateral position on the road
Yy, its speed as a two dimension vector containing both its longitu-
dinal and lateral speed v, vy, and its longitudinal desired speed vg.
Regarding the neighbouring vehicles, for each neighbour we store in-
formation concerning: the longitudinal and lateral distances between
our agent and the neighbour dx, dy, the longitudinal and lateral speed
divergence between the aforementioned vehicles dv., dv,. We ob-
serve the n closest neighbours with respect to a threshold distance
parameter, regulating our longitudinal field of vision up to a certain
length. Our state has a fixed vector size, therefore we always have
n neighbours in the state information. In case our agent actually ob-
serves fewer neighbours within its field of view, we augment our state
with virtual neighbours at the furthest possible distance with respect
to our agent. Figure 2 shows an example of our state representation.

Each simulated vehicle is controlled by two continuous accelera-
tion values, the longitudinal and the lateral acceleration a;, a,. We
follow the action space implementation of [49], increasing the action

4 Specifically, we populate a 2km highway with 100 vehicles, with desired
speed range [25, 35]m /s = [90, 126]km/hr.
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Figure 2. The Lane-Free traffic environment. Top: snapshot of the
environment in TrafficFluid-Sim. Bottom: state information visualization.

space from 5 to 9 discrete actions (see Figure 3). These (joint lon-
gitudinal and lateral acceleration) actions cover all main orthogonal
and diagonal acceleration and deceleration directions, as well as the
zero acceleration one.

Finally, we adopt the reward function put forward in [17]. The
reward function introduced in their work is constructed for the lane-
free traffic paradigm and it covers multiple objectives, namely, de-
sired speed pursuit and collision avoidance. Starting with the main-
tenance of the desired speed vq, using the current longitudinal speed
v, we can calculate a normalized speed divergence:

Co = [ve = va| )

Vd
aiming for zero values. Then, in order to integrate collision preven-
tion into the reward function at each time step we provide a negative
value of ¢;; = w, - [, where [ is the total number of collisions oc-
curred during a time step and w, is a weight magnifying the impact
of each collision in the reward function. To provide a reward signal
before a collision happens, we employ potential fields [18], calcu-
lating ellipsoid field utilities that can measure the threat of collision.
Using longitudinal and lateral distances and speed divergences, two
ellipsoid functions are calculated for each neighbour j, covering the
critical and broad region. The critical region (E.) is based on the dis-
tance between the vehicles, while the broad region (E}) also consid-
ers speed deviations to predict potential danger. Higher returns are
correlated with a higher chance of approaching collision. As such,
avalue u; = E.(dzj,dy;) + Ev(dz;, dy;, dve;, dvy;) is calcu-
lated for each neighbor vehicle in our state, and a combined value
¢y = min {Z JRUS 1} to be minimized is computed, and bounded
to 1. For a detailed analysis, we refer to [17, 49]. Our final reward
function is calculated as:
€

TS e Twy e T ©)

where r; is the reward on step ¢, w, and w; are weights empirically
set to control the influence of ¢, and cy respectively, € is a parameter
that maximizes the returns when both ¢, and cy tend to 0.

Given the parameters, we can empirically set a lower bound to
define a near optimal policy. In our case, a near optimal policy is
characterized with no collisions (c;; = 0) and a close pursuit of the
vehicle’s desired speed vg (c; = 0). Since the potential fields func-
tion ¢y will always return a non-zero value as long as a neighbour
vehicle is nearby, we assume a low value on average (c; = 0.1) ac-
cording to empirical investigation, and based on the hyperparameters
(e = 0.1, wy = 0.65), we empirically set the lower bound to 605.
Thus, we consider the problem environment solved when the agent

Figure 3. Lane-Free traffic: Action space, measurement unit m/s?

reaches a point when it is consistently collecting a reward of at least
605 per episode (i.e., a total of 1000 time-steps).

4.2  Experiments and Results

In our experiments within the lane-free traffic domain, the other ve-
hicles follow the controller of a highly optimized, state-of-the-art
movement control strategy for lane-free traffic, introduced in [33].
That method relies on the use of forces, which adjust the vehicles’ be-
havior for collision avoidance. Additionally, due to its efficiency, we
utilize the same controller as an “expert” mentor in our experiments.
Note that convergence is reached at a reward of 605 per episode as
explained above.

Fig. 4 depicts the performance of three different agents in terms
of reward collected per episode over a 400 episode horizon (with all
results averaged over 30 runs). First, we show the performance of our
(“final”’) DIIQN approach, with its mentor being the aforementioned
“expert” movement control strategy. Thus, we term this trainee agent
as DITQNyEepm (i.e., “DIIQN with an Expert Mentor”). Second,
we examine the performance of a “baseline” simple DQN learning
agent (enhanced with DDQN, PER, DNA), labeled as DQ Npormit-
We also indicate in the figure the performance of our DIIQN ap-
proach when using as a mentor a “non-expert” DON agent. This
“non-expert” mentor shares the same model with the baseline DQN
agent, but is only trained until its episodic reward is 500. We thus
term this observer agent as DIIQNyNonEzpm (i.€., “DIIQN with
a Non-Expert Mentor”). This additional mentee agent is included so
as to examine the behaviour of our approach when a sub-optimal
mentor agent is used, aiming to highlight the capability of DIIQN to
outperform such mentors. The highest reward achieved by the “non-
expert” mentor is visible in Fig. 4 with a green dotted line, serving as
a threshold for our DITQNywnNonEzpm agent to reach and expect-
edly exceed. Given the importance of safety in this problem domain,
we additionally report on the corresponding collision measurements
in Fig. 5.

We first focus on the behaviour of the baseline DQ Ny ormq+ agent.
Its early curve is steep, improving substantially during the first steps,
and slowly converges to our empirically-set lower bound (605) for
the reward, at 370 episodes. Studying the collisions’ curve (Fig. 5),
we can attribute the steepness to the corresponding decrease in colli-
sions. The agent has a consistently small number of collision occur-
rences approximately from episode 70, and then attempts to improve
upon the speed strategy, i.e., reach the desired speed without being
involved in collisions. It is obvious that a combination of these two
goals is a considerably more difficult objective, however convergence
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is eventually achieved (in all cases). In intense traffic, when multiple
slower vehicles in front of our agent, the desired speed objective can
be hindered when overtaking is difficult or even impossible. Situa-
tions where the agent is reluctant to overtake (due to its surround-
ings) are quite common, thus fluctuations in reward can occur, even
when near convergence.

We now discuss the learning curve of DITQNyEepn, the DI-
IQN agent using observations extracted from the optimized move-
ment control strategy mentor. The same remarks regarding the curve
steepness and fluctuations apply to this agent as well; however, it ex-
ceeds the lower bound of reward value 605 much earlier, at episode
120. Compared to the reward curve of the DQ Ny, 61mit, the learning
acceleration improvement is immediately clear, requiring only a third
of the DQNyormit’s episodes. We also observe that DQ Npormit
does not surpass a certain reward threshold (606), which is notably
lower than the reward consistently gained by DIIQNygzpar (627)
in the last episode.

Finally, we examine DIIQNyNonEzpm, Which corresponds to
an agent imitating the non-optimized mentor. As mentioned, the
mentor was averaging rewards of 500 when its experiences were ex-
tracted. The learning curve converges at episode 180. It is apparent
that the DIIQNwnNonEzpm outperforms its mentor, achieving per-
formance comparable to the previously presented DIIQNwgzpn -
This illustrates experimentally that implicit imitation is not upper-
bounded by the mentor’s performance. Naturally, since the men-
tor is of lower quality, observed learning speed is slower than
that of DIIQNyE«pm, but still substantially faster than that of
D QN nolmit-

By contrast, Fig. 5, which presents the total number of collisions
per episode, indicates similar behaviour across all agents. This re-
flects the urgency of collisions avoidance that is embedded in our
reward function. In the autonomous driving domain, safety of the
drivers is imperative, and consequently we use reward functions that
satisfy this requirement. Fluctuations in the collision graphs are to be
expected, since our exploration parameter € is non-zero and instances
with collisions can still occur. However, in the last 50 episodes, dur-
ing which exploration is disabled, we observe no collisions, demon-
strating that all final models are collision-free upon convergence of
the agent policy.

5 Conclusions and Future Work

This paper puts forward a novel model that enables, the incorpora-
tion of implicit imitation into deep reinforcement learning, thus al-
lowing DRL methods to reap the benefits of implicit imitation. Our
thorough experimentation on the novel and challenging lane-free au-
tonomous driving domain (and also in common RL testbed environ-
ments, as reported in the supplementary material) clearly demon-
strate the benefits of our approach. Specifically, deep implicit imi-
tation was shown to accelerate significantly the DRL process, and to
enable the “mentee” to outperform a non-optimal mentor.

Our novel deep implicit imitation model is so far built on the well-
known DQN algorithm, however it can and should be extended to
allow the integration of implicit imitation in alternative DRL meth-
ods. We intend to begin such extensions with the DDPG and PPO
algorithms [21, 38], allowing for the integration of a continuous
action space model in our approach. Specifically, for an on-policy
method such as PPO, the adoption of our current approach would
not be straightforward. PPO requires a trajectory of on-policy, con-
secutive state-action-reward pairs to estimate an advantage function
(as the critic) at each training iteration. Moreover, we intend to study

Reward
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Figure 4. Lane-Free traffic: DIIQN reward (avg. over 30 runs)
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Figure 5. Lane-Free traffic: DIIQN collisions (avg. over 30 runs)

the performance differences of explicit imitation [45, 12] or inverse
RL [7] techniques with our implicit imitation algorithm; and exam-
ine the influence of action information on performance and training
acceleration when compared to an implicit imitation problem.
Future work focusing on the use of deep implicit imitation in the
lane-free autonomous driving domain, includes the implementation
of a DRL safety model. Theoretical approaches on safety boundaries
for lane-based autonomous DRL [20, 39], could be extended and
tested in lane-free traffic as well. Specifically, one could filter the
actions taken by the agent based on safety boundaries, in order to
achieve accelerated, imitation-based learning, while avoiding colli-
sions altogether during training. More generally, it would be interest-
ing to incorporate safety constraints in our implicit imitation meth-
ods. This can be key for enabling safe reinforcement learning [8]
with implicit imitation in non-simulation, real-life environments.
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